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3 Logical Formulas
It is amazing that people manage to cope with all the ambiguities in the English
language. Here are some sentences that illustrate the issue:

� “You may have cake, or you may have ice cream.”

� “If pigs can fly, then you can understand the Chebyshev bound.”

� “If you can solve any problem we come up with, then you get an A for the
course.”

� “Every American has a dream.”

What precisely do these sentences mean? Can you have both cake and ice cream or
must you choose just one dessert? Pigs can’t fly, so does the second sentence say
anything about your understanding the Chebyshev bound? If you can solve some
problems we come up with, can you get an A for the course? And if you can’t
solve a single one of the problems, does it mean you can’t get an A? Finally, does
the last sentence imply that all Americans have the same dream—say of owning a
house—or might different Americans have different dreams—say, Eric dreams of
designing a killer software application, Tom of being a tennis champion, Albert of
being able to sing?

Some uncertainty is tolerable in normal conversation. But when we need to
formulate ideas precisely—as in mathematics and programming—the ambiguities
inherent in everyday language can be a real problem. We can’t hope to make an
exact argument if we’re not sure exactly what the statements mean. So before we
start into mathematics, we need to investigate the problem of how to talk about
mathematics.

To get around the ambiguity of English, mathematicians have devised a spe-
cial language for talking about logical relationships. This language mostly uses
ordinary English words and phrases such as “or,” “implies,” and “for all.” But
mathematicians give these words precise and unambiguous definitions.

Surprisingly, in the midst of learning the language of logic, we’ll come across
the most important open problem in computer science—a problem whose solution
could change the world.
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3.1 Propositions from Propositions

In English, we can modify, combine, and relate propositions with words such as
“not,” “and,” “or,” “implies,” and “if-then.” For example, we can combine three
propositions into one like this:

If all humans are mortal and all Greeks are human, then all Greeks are mortal.

For the next while, we won’t be much concerned with the internals of propositions—
whether they involve mathematics or Greek mortality—but rather with how propo-
sitions are combined and related. So, we’ll frequently use variables such as P and
Q in place of specific propositions such as “All humans are mortal” and “2C 3 D
5.” The understanding is that these propositional variables, like propositions, can
take on only the values T (true) and F (false). Propositional variables are also
called Boolean variables after their inventor, the nineteenth century mathematician
George—you guessed it—Boole.

3.1.1 NOT, AND, and OR

Mathematicians use the words NOT, AND, and OR for operations that change or
combine propositions. The precise mathematical meaning of these special words
can be specified by truth tables. For example, if P is a proposition, then so is
“NOT.P /,” and the truth value of the proposition “NOT.P /” is determined by the
truth value of P according to the following truth table:

P NOT.P /

T F
F T

The first row of the table indicates that when proposition P is true, the proposition
“NOT.P /” is false. The second line indicates that when P is false, “NOT.P /” is
true. This is probably what you would expect.

In general, a truth table indicates the true/false value of a proposition for each
possible set of truth values for the variables. For example, the truth table for the
proposition “P AND Q” has four lines, since there are four settings of truth values
for the two variables:

P Q P AND Q

T T T
T F F
F T F
F F F
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According to this table, the proposition “P ANDQ” is true only when P andQ are
both true. This is probably the way you ordinarily think about the word “and.”

There is a subtlety in the truth table for “P OR Q”:

P Q P OR Q

T T T
T F T
F T T
F F F

The first row of this table says that “P ORQ” is true even if both P andQ are true.
This isn’t always the intended meaning of “or” in everyday speech, but this is the
standard definition in mathematical writing. So if a mathematician says, “You may
have cake, or you may have ice cream,” he means that you could have both.

If you want to exclude the possibility of having both cake and ice cream, you
should combine them with the exclusive-or operation, XOR:

P Q P XOR Q

T T F
T F T
F T T
F F F

3.1.2 IMPLIES

The combining operation with the least intuitive technical meaning is “implies.”
Here is its truth table, with the lines labeled so we can refer to them later.

P Q P IMPLIES Q

T T T (tt)
T F F (tf)
F T T (ft)
F F T (ff)

The truth table for implications can be summarized in words as follows:

An implication is true exactly when the if-part is false or the then-part is true.

This sentence is worth remembering; a large fraction of all mathematical statements
are of the if-then form!

Let’s experiment with this definition. For example, is the following proposition
true or false?
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“If Goldbach’s Conjecture is true, then x2 � 0 for every real number x.”

Now, we already mentioned that no one knows whether Goldbach’s Conjecture,
Proposition 1.1.8, is true or false. But that doesn’t prevent you from answering the
question! This proposition has the form P IMPLIES Q where the hypothesis, P ,
is “Goldbach’s Conjecture is true” and the conclusion, Q, is “x2 � 0 for every
real number x.” Since the conclusion is definitely true, we’re on either line (tt) or
line (ft) of the truth table. Either way, the proposition as a whole is true!

One of our original examples demonstrates an even stranger side of implications.

“If pigs fly, then you can understand the Chebyshev bound.”

Don’t take this as an insult; we just need to figure out whether this proposition is
true or false. Curiously, the answer has nothing to do with whether or not you can
understand the Chebyshev bound. Pigs do not fly, so we’re on either line (ft) or line
(ff) of the truth table. In both cases, the proposition is true!

In contrast, here’s an example of a false implication:

“If the moon shines white, then the moon is made of white cheddar.”

Yes, the moon shines white. But, no, the moon is not made of white cheddar cheese.
So we’re on line (tf) of the truth table, and the proposition is false.

False Hypotheses

It often bothers people when they first learn that implications which have false
hypotheses are considered to be true. But implications with false hypotheses hardly
ever come up in ordinary settings, so there’s not much reason to be bothered by
whatever truth assignment logicians and mathematicians choose to give them.

There are, of course, good reasons for the mathematical convention that implica-
tions are true when their hypotheses are false. An illustrative example is a system
specification (see Problem 3.12) which consisted of a series of, say, a dozen rules,

if Ci : the system sensors are in condition i , then Ai : the system takes
action i ,

or more concisely,
Ci IMPLIES Ai

for 1 � i � 12. Then the fact that the system obeys the specification would be
expressed by saying that the AND

ŒC1 IMPLIES A1� AND ŒC2 IMPLIES A2� AND � � � AND ŒC12 IMPLIES A12� (3.1)

of these rules was always true.
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For example, suppose only conditions C2 and C5 are true, and the system indeed
takes the specified actions A2 and A5. This means that in this case the system is
behaving according to specification, and accordingly we want the formula (3.1) to
come out true. Now the implications C2 IMPLIES A2 and C5 IMPLIES A5 are
both true because both their hypotheses and their conclusions are true. But in order
for (3.1) to be true, we need all the other implications with the false hypotheses Ci
for i ¤ 2; 5 to be true. This is exactly what the rule for implications with false
hypotheses accomplishes.

3.1.3 If and Only If

Mathematicians commonly join propositions in one additional way that doesn’t
arise in ordinary speech. The proposition “P if and only if Q” asserts that P and
Q have the same truth value. Either both are true or both are false.

P Q P IFF Q

T T T
T F F
F T F
F F T

For example, the following if-and-only-if statement is true for every real number
x:

x2 � 4 � 0 IFF jxj � 2:

For some values of x, both inequalities are true. For other values of x, neither
inequality is true. In every case, however, the IFF proposition as a whole is true.

3.2 Propositional Logic in Computer Programs

Propositions and logical connectives arise all the time in computer programs. For
example, consider the following snippet, which could be either C, C++, or Java:

if ( x > 0 || (x <= 0 && y > 100) )
:::

(further instructions)

Java uses the symbol || for “OR,” and the symbol && for “AND.” The further
instructions are carried out only if the proposition following the word if is true.
On closer inspection, this big expression is built from two simpler propositions.
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Let A be the proposition that x > 0, and let B be the proposition that y > 100.
Then we can rewrite the condition as

A OR .NOT.A/ AND B/: (3.2)

3.2.1 Truth Table Calculation

A truth table calculation reveals that the more complicated expression 3.2 always
has the same truth value as

A OR B: (3.3)

We begin with a table with just the truth values of A and B:

A B A OR .NOT.A/ AND B/ A OR B

T T
T F
F T
F F

These values are enough to fill in two more columns:

A B A OR .NOT.A/ AND B/ A OR B

T T F T
T F F T
F T T T
F F T F

Now we have the values needed to fill in the AND column:

A B A OR .NOT.A/ AND B/ A OR B

T T F F T
T F F F T
F T T T T
F F T F F

and this provides the values needed to fill in the remaining column for the first OR:

A B A OR .NOT.A/ AND B/ A OR B

T T T F F T
T F T F F T
F T T T T T
F F F T F F

Expressions whose truth values always match are called equivalent. Since the two
emphasized columns of truth values of the two expressions are the same, they are
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equivalent. So we can simplify the code snippet without changing the program’s
behavior by replacing the complicated expression with an equivalent simpler one:

if ( x > 0 || y > 100 )
:::

(further instructions)

The equivalence of (3.2) and (3.3) can also be confirmed reasoning by cases:

A is T. An expression of the form .T OR anything/ is equivalent to T. Since A is T
both (3.2) and (3.3) in this case are of this form, so they have the same truth
value, namely, T.

A is F. An expression of the form .F OR anything/ will have same truth value as
anything. Since A is F, (3.3) has the same truth value as B .

An expression of the form .T AND anything/ is equivalent to anything, as is
any expression of the form F OR anything. So in this case AOR .NOT.A/AND

B/ is equivalent to .NOT.A/ AND B/, which in turn is equivalent to B .

Therefore both (3.2) and (3.3) will have the same truth value in this case,
namely, the value of B .

Simplifying logical expressions has real practical importance in computer sci-
ence. Expression simplification in programs like the one above can make a program
easier to read and understand. Simplified programs may also run faster, since they
require fewer operations. In hardware, simplifying expressions can decrease the
number of logic gates on a chip because digital circuits can be described by logical
formulas (see Problems 3.5 and 3.6). Minimizing the logical formulas corresponds
to reducing the number of gates in the circuit. The payoff of gate minimization is
potentially enormous: a chip with fewer gates is smaller, consumes less power, has
a lower defect rate, and is cheaper to manufacture.

3.2.2 Cryptic Notation

Java uses symbols like “&&” and “jj” in place of AND and OR. Circuit designers
use “�” and “C,” and actually refer to AND as a product and OR as a sum. Mathe-
maticians use still other symbols, given in the table below.
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English Symbolic Notation

NOT.P / :P (alternatively, P )
P AND Q P ^Q

P OR Q P _Q

P IMPLIES Q P �! Q

if P then Q P �! Q

P IFF Q P  ! Q

P XOR Q P ˚Q

For example, using this notation, “If P AND NOT.Q/, then R” would be written:

.P ^Q/ �! R:

The mathematical notation is concise but cryptic. Words such as “AND” and
“OR” are easier to remember and won’t get confused with operations on numbers.
We will often use P as an abbreviation for NOT.P /, but aside from that, we mostly
stick to the words—except when formulas would otherwise run off the page.

3.3 Equivalence and Validity

3.3.1 Implications and Contrapositives

Do these two sentences say the same thing?

If I am hungry, then I am grumpy.
If I am not grumpy, then I am not hungry.

We can settle the issue by recasting both sentences in terms of propositional logic.
LetP be the proposition “I am hungry” andQ be “I am grumpy.” The first sentence
says “P IMPLIES Q” and the second says “NOT.Q/ IMPLIES NOT.P /.” Once
more, we can compare these two statements in a truth table:

P Q .P IMPLIES Q/ .NOT.Q/ IMPLIES NOT.P //

T T T F T F
T F F T F F
F T T F T T
F F T T T T

Sure enough, the highlighted columns showing the truth values of these two state-
ments are the same. A statement of the form “NOT.Q/ IMPLIES NOT.P /” is called
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the contrapositive of the implication “P IMPLIES Q.” The truth table shows that
an implication and its contrapositive are equivalent—they are just different ways of
saying the same thing.

In contrast, the converse of “P IMPLIES Q” is the statement “Q IMPLIES P .”
The converse to our example is:

If I am grumpy, then I am hungry.

This sounds like a rather different contention, and a truth table confirms this suspi-
cion:

P Q P IMPLIES Q Q IMPLIES P

T T T T
T F F T
F T T F
F F T T

Now the highlighted columns differ in the second and third row, confirming that an
implication is generally not equivalent to its converse.

One final relationship: an implication and its converse together are equivalent to
an iff statement, specifically, to these two statements together. For example,

If I am grumpy then I am hungry, and if I am hungry then I am grumpy.

are equivalent to the single statement:

I am grumpy iff I am hungry.

Once again, we can verify this with a truth table.

P Q .P IMPLIES Q/ AND .Q IMPLIES P / P IFF Q

T T T T T T
T F F F T F
F T T F F F
F F T T T T

The fourth column giving the truth values of

.P IMPLIES Q/ AND .Q IMPLIES P /

is the same as the sixth column giving the truth values of P IFF Q, which confirms
that the AND of the implications is equivalent to the IFF statement.
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3.3.2 Validity and Satisfiability

A valid formula is one which is always true, no matter what truth values its vari-
ables may have. The simplest example is

P OR NOT.P /:

You can think about valid formulas as capturing fundamental logical truths. For
example, a property of implication that we take for granted is that if one statement
implies a second one, and the second one implies a third, then the first implies the
third. The following valid formula confirms the truth of this property of implication.

Œ.P IMPLIES Q/ AND .Q IMPLIES R/� IMPLIES .P IMPLIES R/:

Equivalence of formulas is really a special case of validity. Namely, statements
F and G are equivalent precisely when the statement .F IFF G/ is valid. For
example, the equivalence of the expressions (3.3) and (3.2) means that

.A OR B/ IFF .A OR .NOT.A/ AND B//

is valid. Of course, validity can also be viewed as an aspect of equivalence. Namely,
a formula is valid iff it is equivalent to T.

A satisfiable formula is one which can sometimes be true—that is, there is some
assignment of truth values to its variables that makes it true. One way satisfiabil-
ity comes up is when there are a collection of system specifications. The job of
the system designer is to come up with a system that follows all the specs. This
means that the AND of all the specs must be satisfiable or the designer’s job will be
impossible (see Problem 3.12).

There is also a close relationship between validity and satisfiability: a statement
P is satisfiable iff its negation NOT.P / is not valid.

3.4 The Algebra of Propositions

3.4.1 Propositions in Normal Form

Every propositional formula is equivalent to a “sum-of-products” or disjunctive
form. More precisely, a disjunctive form is simply an OR of AND-terms, where
each AND-term is an AND of variables or negations of variables, for example,

.A AND B/ OR .A AND C/: (3.4)
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You can read a disjunctive form for any propositional formula directly from its
truth table. For example, the formula

A AND .B OR C/ (3.5)

has truth table:
A B C A AND .B OR C/

T T T T
T T F T
T F T T
T F F F
F T T F
F T F F
F F T F
F F F F

The formula (3.5) is true in the first row whenA,B , andC are all true, that is, where
A AND B AND C is true. It is also true in the second row where A AND B AND C

is true, and in the third row when A AND B AND C is true, and that’s all. So (3.5)
is true exactly when

.A AND B AND C/ OR .A AND B AND C/ OR .A AND B AND C/ (3.6)

is true.

Theorem 3.4.1. [Distributive Law of AND over OR]

A AND .B OR C/ is equivalent to .A AND B/ OR .A AND C/:

Theorem 3.4.1 is called a distributive law because of its resemblance to the dis-
tributivity of products over sums in arithmetic.

Similarly, we have (Problem 3.10):

Theorem 3.4.2. [Distributive Law of OR over AND]

A OR .B AND C/ is equivalent to .A OR B/ AND .A OR C/:

Note the contrast between Theorem 3.4.2 and arithmetic, where sums do not
distribute over products.

The expression (3.6) is a disjunctive form where each AND-term is an AND of
every one of the variables or their negations in turn. An expression of this form is
called a disjunctive normal form (DNF). A DNF formula can often be simplified
into a smaller disjunctive form. For example, the DNF (3.6) further simplifies to
the equivalent disjunctive form (3.4) above.
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Applying the same reasoning to the F entries of a truth table yields a conjunctive
form for any formula—an AND of OR-terms in which the OR-terms are OR’s only
of variables or their negations. For example, formula (3.5) is false in the fourth
row of its truth table (3.4.1) where A is T, B is F and C is F. But this is exactly
the one row where .A OR B OR C/ is F! Likewise, the (3.5) is false in the fifth
row which is exactly where .A OR B OR C/ is F. This means that (3.5) will be F
whenever the AND of these two OR-terms is false. Continuing in this way with the
OR-terms corresponding to the remaining three rows where (3.5) is false, we get a
conjunctive normal form (CNF) that is equivalent to (3.5), namely,

.A OR B OR C/ AND .A OR B OR C/ AND .A OR B OR C/AND

.A OR B OR C/ AND .A OR B OR C/

The methods above can be applied to any truth table, which implies

Theorem 3.4.3. Every propositional formula is equivalent to both a disjunctive
normal form and a conjunctive normal form.

3.4.2 Proving Equivalences

A check of equivalence or validity by truth table runs out of steam pretty quickly:
a proposition with n variables has a truth table with 2n lines, so the effort required
to check a proposition grows exponentially with the number of variables. For a
proposition with just 30 variables, that’s already over a billion lines to check!

An alternative approach that sometimes helps is to use algebra to prove equiv-
alence. A lot of different operators may appear in a propositional formula, so a
useful first step is to get rid of all but three: AND, OR, and NOT. This is easy
because each of the operators is equivalent to a simple formula using only these
three. For example, A IMPLIES B is equivalent to NOT.A/ OR B . Formulas using
onlyAND, OR, and NOT for the remaining operators are left to Problem 3.13.

We list below a bunch of equivalence axioms with the symbol “ ! ” between
equivalent formulas. These axioms are important because they are all that’s needed
to prove every possible equivalence. We’ll start with some equivalences for AND’s
that look like the familiar ones for multiplication of numbers:

A AND B  ! B AND A (commutativity of AND) (3.7)

.A AND B/ AND C  ! A AND .B AND C/ (associativity of AND) (3.8)

T AND A  ! A (identity for AND)

F AND A  ! F (zero for AND)
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Three axioms that don’t directly correspond to number properties are

A AND A  ! A (idempotence for AND)

A AND A  ! F (contradiction for AND) (3.9)

NOT.A/  ! A (double negation) (3.10)

It is associativity (3.8) that justifies writing A AND B AND C without specifying
whether it is parenthesized as A AND .B ANDC/ or .A ANDB/ ANDC . Both ways
of inserting parentheses yield equivalent formulas.

There are a corresponding set of equivalences for OR which we won’t bother to
list, except for the OR rule corresponding to contradiction for AND (3.9):

A OR A  ! T (validity for OR)

Finally, there are DeMorgan’s Laws which explain how to distribute NOT’s over
AND’s and OR’s:

NOT.A AND B/  ! A OR B (DeMorgan for AND) (3.11)

NOT.A OR B/  ! A AND B (DeMorgan for OR) (3.12)

All of these axioms can be verified easily with truth tables.
These axioms are all that’s needed to convert any formula to a disjunctive normal

form. We can illustrate how they work by applying them to turn the negation of
formula (3.5),

NOT..A AND B/ OR .A AND C//: (3.13)

into disjunctive normal form.
We start by applying DeMorgan’s Law for OR (3.12) to (3.13) in order to move

the NOT deeper into the formula. This gives

NOT.A AND B/ AND NOT.A AND C/:

Now applying Demorgan’s Law for AND (3.11) to the two innermost AND-terms,
gives

.A OR B/ AND .A OR C/: (3.14)

At this point NOT only applies to variables, and we won’t need Demorgan’s Laws
any further.

Now we will repeatedly apply The Distributivity of AND over OR (Theorem 3.4.1)
to turn (3.14) into a disjunctive form. To start, we’ll distribute .A OR B/ over AND

to get
..A OR B/ AND A/ OR ..A OR B/ AND C/:
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Using distributivity over both AND’s we get

..A AND A/ OR .B AND A// OR ..A AND C/ OR .B AND C//:

By the way, we’ve implicitly used commutativity (3.7) here to justify distributing
over an AND from the right. Now applying idempotence to remove the duplicate
occurrence of A we get

.A OR .B AND A// OR ..A AND C/ OR .B AND C//:

Associativity now allows dropping the parentheses around the terms being OR’d to
yield the following disjunctive form for (3.13):

A OR .B AND A/ OR .A AND C/ OR .B AND C/: (3.15)

The last step is to turn each of these AND-terms into a disjunctive normal form
with all three variables A, B , and C . We’ll illustrate how to do this for the second
AND-term .B AND A/. This term needs to mention C to be in normal form. To
introduce C , we use validity for OR and identity for AND to conclude that

.B AND A/ ! .B AND A/ AND .C OR C/:

Now distributing .B AND A/ over the OR yields the disjunctive normal form

.B AND A AND C/ OR .B AND A AND C/:

Doing the same thing to the other AND-terms in (3.15) finally gives a disjunctive
normal form for (3.5):

.A AND B AND C/ OR .A AND B AND C/ OR

.A AND B AND C/ OR .A AND B AND C/ OR

.B AND A AND C/ OR .B AND A AND C/ OR

.A AND C AND B/ OR .A AND C AND B/ OR

.B AND C AND A/ OR .B AND C AND A/:

Using commutativity to sort the term and OR-idempotence to remove duplicates,
finally yields a unique sorted DNF:

.A AND B AND C/ OR

.A AND B AND C/ OR

.A AND B AND C/ OR

.A AND B AND C/ OR

.A AND B AND C/:

This example illustrates a strategy for applying these equivalences to convert any
formula into disjunctive normal form, and conversion to conjunctive normal form
works similarly, which explains:
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Theorem 3.4.4. Any propositional formula can be transformed into disjunctive
normal form or a conjunctive normal form using the equivalences listed above.

What has this got to do with equivalence? That’s easy: to prove that two for-
mulas are equivalent, convert them both to disjunctive normal form over the set of
variables that appear in the terms. Then use commutativity to sort the variables and
AND-terms so they all appear in some standard order. We claim the formulas are
equivalent iff they have the same sorted disjunctive normal form. This is obvious
if they do have the same disjunctive normal form. But conversely, the way we read
off a disjunctive normal form from a truth table shows that two different sorted
DNF’s over the same set of variables correspond to different truth tables and hence
to inequivalent formulas. This proves

Theorem 3.4.5 (Completeness of the propositional equivalence axioms). Two propo-
sitional formula are equivalent iff they can be proved equivalent using the equiva-
lence axioms listed above.

The benefit of the axioms is that they leave room for ingeniously applying them
to prove equivalences with less effort than the truth table method. Theorem 3.4.5
then adds the reassurance that the axioms are guaranteed to prove every equiva-
lence, which is a great punchline for this section. But we don’t want to mislead
you: it’s important to realize that using the strategy we gave for applying the ax-
ioms involves essentially the same effort it would take to construct truth tables, and
there is no guarantee that applying the axioms will generally be any easier than
using truth tables.

3.5 The SAT Problem

Determining whether or not a more complicated proposition is satisfiable is not so
easy. How about this one?

.P OR Q OR R/ AND .P OR Q/ AND .P OR R/ AND .R OR Q/

The general problem of deciding whether a proposition is satisfiable is called
SAT. One approach to SAT is to construct a truth table and check whether or not
a T ever appears, but as with testing validity, this approach quickly bogs down
for formulas with many variables because truth tables grow exponentially with the
number of variables.

Is there a more efficient solution to SAT? In particular, is there some brilliant
procedure that determines SAT in a number of steps that grows polynomially—like
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n2 or n14—instead of exponentially—2n—whether any given proposition of size n
is satisfiable or not? No one knows. And an awful lot hangs on the answer.

The general definition of an “efficient” procedure is one that runs in polynomial
time, that is, that runs in a number of basic steps bounded by a polynomial in s,
where s is the size of an input. It turns out that an efficient solution to SAT would
immediately imply efficient solutions to many other important problems involving
scheduling, routing, resource allocation, and circuit verification across multiple dis-
ciplines including programming, algebra, finance, and political theory. This would
be wonderful, but there would also be worldwide chaos. Decrypting coded mes-
sages would also become an easy task, so online financial transactions would be
insecure and secret communications could be read by everyone. Why this would
happen is explained in Section 8.12.

Of course, the situation is the same for validity checking, since you can check for
validity by checking for satisfiability of a negated formula. This also explains why
the simplification of formulas mentioned in Section 3.2 would be hard—validity
testing is a special case of determining if a formula simplifies to T.

Recently there has been exciting progress on SAT-solvers for practical applica-
tions like digital circuit verification. These programs find satisfying assignments
with amazing efficiency even for formulas with millions of variables. Unfortu-
nately, it’s hard to predict which kind of formulas are amenable to SAT-solver meth-
ods, and for formulas that are unsatisfiable, SAT-solvers generally get nowhere.

So no one has a good idea how to solve SAT in polynomial time, or how to
prove that it can’t be done—researchers are completely stuck. The problem of
determining whether or not SAT has a polynomial time solution is known as the
“P vs. NP” problem.1 It is the outstanding unanswered question in theoretical
computer science. It is also one of the seven Millenium Problems: the Clay Institute
will award you $1,000,000 if you solve the P vs. NP problem.

3.6 Predicate Formulas

3.6.1 Quantifiers

The “for all” notation, 8, has already made an early appearance in Section 1.1. For
example, the predicate

“x2 � 0”
1P stands for problems whose instances can be solved in time that grows polynomially with the

size of the instance. NP stands for nondeterministtic polynomial time, but we’ll leave an explanation
of what that is to texts on the theory of computational complexity.
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is always true when x is a real number. That is,

8x 2 R: x2 � 0

is a true statement. On the other hand, the predicate

“5x2 � 7 D 0”

is only sometimes true; specifically, when x D ˙
p
7=5. There is a “there exists”

notation, 9, to indicate that a predicate is true for at least one, but not necessarily
all objects. So

9x 2 R: 5x2 � 7 D 0

is true, while
8x 2 R: 5x2 � 7 D 0

is not true.
There are several ways to express the notions of “always true” and “sometimes

true” in English. The table below gives some general formats on the left and specific
examples using those formats on the right. You can expect to see such phrases
hundreds of times in mathematical writing!

Always True

For all x 2 D, P.x/ is true. For all x 2 R, x2 � 0.
P.x/ is true for every x in the set, D. x2 � 0 for every x 2 R.

Sometimes True

There is an x 2 D such that P.x/ is true. There is an x 2 R such that 5x2 � 7 D 0.
P.x/ is true for some x in the set, D. 5x2 � 7 D 0 for some x 2 R.
P.x/ is true for at least one x 2 D. 5x2 � 7 D 0 for at least one x 2 R.

All these sentences “quantify” how often the predicate is true. Specifically, an
assertion that a predicate is always true is called a universal quantification, and an
assertion that a predicate is sometimes true is an existential quantification. Some-
times the English sentences are unclear with respect to quantification:

If you can solve any problem we come up with,

then you get an A for the course. (3.16)

The phrase “you can solve any problem we can come up with” could reasonably be
interpreted as either a universal or existential quantification:

you can solve every problem we come up with, (3.17)
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or maybe
you can solve at least one problem we come up with. (3.18)

To be precise, let Probs be the set of problems we come up with, Solves.x/ be
the predicate “You can solve problem x,” and G be the proposition, “You get an A
for the course.” Then the two different interpretations of (3.16) can be written as
follows:

.8x 2 Probs:Solves.x// IMPLIES G; for (3.17);

.9x 2 Probs:Solves.x// IMPLIES G: for (3.18):

3.6.2 Mixing Quantifiers

Many mathematical statements involve several quantifiers. For example, we al-
ready described

Goldbach’s Conjecture 1.1.8: Every even integer greater than 2 is the
sum of two primes.

Let’s write this out in more detail to be precise about the quantification:

For every even integer n greater than 2, there exist primes p and q such
that n D p C q.

Let Evens be the set of even integers greater than 2, and let Primes be the set of
primes. Then we can write Goldbach’s Conjecture in logic notation as follows:

8n 2 Evens„ ƒ‚ …
for every even
integer n > 2

9p 2 Primes 9q 2 Primes:„ ƒ‚ …
there exist primes
p and q such that

n D p C q:

3.6.3 Order of Quantifiers

Swapping the order of different kinds of quantifiers (existential or universal) usually
changes the meaning of a proposition. For example, let’s return to one of our initial,
confusing statements:

“Every American has a dream.”

This sentence is ambiguous because the order of quantifiers is unclear. Let A be
the set of Americans, let D be the set of dreams, and define the predicate H.a; d/
to be “American a has dream d .” Now the sentence could mean there is a single
dream that every American shares—such as the dream of owning their own home:

9 d 2 D 8a 2 A:H.a; d/
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Or it could mean that every American has a personal dream:

8a 2 A 9 d 2 D:H.a; d/

For example, some Americans may dream of a peaceful retirement, while others
dream of continuing practicing their profession as long as they live, and still others
may dream of being so rich they needn’t think about work at all.

Swapping quantifiers in Goldbach’s Conjecture creates a patently false statement
that every even number � 2 is the sum of the same two primes:

9p 2 Primes 9 q 2 Primes:„ ƒ‚ …
there exist primes
p and q such that

8n 2 Evens„ ƒ‚ …
for every even
integer n > 2

n D p C q:

3.6.4 Variables Over One Domain

When all the variables in a formula are understood to take values from the same
nonempty set, D, it’s conventional to omit mention of D. For example, instead of
8x 2 D 9y 2 D:Q.x; y/ we’d write 8x9y:Q.x; y/. The unnamed nonempty set
that x and y range over is called the domain of discourse, or just plain domain, of
the formula.

It’s easy to arrange for all the variables to range over one domain. For exam-
ple, Goldbach’s Conjecture could be expressed with all variables ranging over the
domain N as

8n: n 2 Evens IMPLIES .9p 9 q: p 2 Primes AND q 2 Primes AND n D p C q/:

3.6.5 Negating Quantifiers

There is a simple relationship between the two kinds of quantifiers. The following
two sentences mean the same thing:

Not everyone likes ice cream.

There is someone who does not like ice cream.

The equivalence of these sentences is a instance of a general equivalence that holds
between predicate formulas:

NOT.8x: P.x// is equivalent to 9x: NOT.P.x//: (3.19)

Similarly, these sentences mean the same thing:

There is no one who likes being mocked.

Everyone dislikes being mocked.
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The corresponding predicate formula equivalence is

NOT.9x: P.x// is equivalent to 8x: NOT.P.x//: (3.20)

The general principle is that moving a NOT across a quantifier changes the kind of
quantifier. Note that (3.20) follows from negating both sides of (3.19).

3.6.6 Validity for Predicate Formulas

The idea of validity extends to predicate formulas, but to be valid, a formula now
must evaluate to true no matter what the domain of discourse may be, no matter
what values its variables may take over the domain, and no matter what interpreta-
tions its predicate variables may be given. For example, the equivalence (3.19) that
gives the rule for negating a universal quantifier means that the following formula
is valid:

NOT.8x: P.x// IFF 9x: NOT.P.x//: (3.21)

Another useful example of a valid assertion is

9x8y: P.x; y/ IMPLIES 8y9x: P.x; y/: (3.22)

Here’s an explanation why this is valid:

Let D be the domain for the variables and P0 be some binary predi-
cate2 on D. We need to show that if

9x 2 D:8y 2 D:P0.x; y/ (3.23)

holds under this interpretation, then so does

8y 2 D 9x 2 D:P0.x; y/: (3.24)

So suppose (3.23) is true. Then by definition of 9, this means that some
element d0 2 D has the property that

8y 2 D:P0.d0; y/:

By definition of 8, this means that

P0.d0; d /

is true for all d 2 D. So given any d 2 D, there is an element in D,
namely, d0, such that P0.d0; d / is true. But that’s exactly what (3.24)
means, so we’ve proved that (3.24) holds under this interpretation, as
required.

2That is, a predicate that depends on two variables.
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We hope this is helpful as an explanation, but we don’t really want to call it a
“proof.” The problem is that with something as basic as (3.22), it’s hard to see
what more elementary axioms are ok to use in proving it. What the explanation
above did was translate the logical formula (3.22) into English and then appeal to
the meaning, in English, of “for all” and “there exists” as justification.

In contrast to (3.22), the formula

8y9x: P.x; y/ IMPLIES 9x8y: P.x; y/: (3.25)

is not valid. We can prove this just by describing an interpretation where the hy-
pothesis, 8y9x: P.x; y/, is true but the conclusion, 9x8y: P.x; y/, is not true. For
example, let the domain be the integers and P.x; y/ mean x > y. Then the hy-
pothesis would be true because, given a value, n, for y we could choose the value
of x to be nC 1, for example. But under this interpretation the conclusion asserts
that there is an integer that is bigger than all integers, which is certainly false. An
interpretation like this that falsifies an assertion is called a counter model to that
assertion.

3.7 References

[18]

Problems for Section 3.1

Practice Problems

Problem 3.1.
Some people are uncomfortable with the idea that from a false hypothesis you can
prove everything, and instead of having P IMPLIES Q be true when P is false,
they want P IMPLIES Q to be false when P is false. This would lead to IMPLIES

having the same truth table as what propositional connective?

Problem 3.2.
Your class has a textbook and a final exam. Let P , Q, and R be the following
propositions:

P WWD You get an A on the final exam.
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QWWD You do every exercise in the book.

RWWD You get an A in the class.

Translate following assertions into propositional formulas using P , Q, R and
the propositional connectives AND; NOT; IMPLIES.
(a) You get an A in the class, but you do not do every exercise in the book.

(b) You get an A on the final, you do every exercise in the book, and you get an A
in the class.

(c) To get an A in the class, it is necessary for you to get an A on the final.

(d) You get an A on the final, but you don’t do every exercise in this book; never-
theless, you get an A in this class.

Class Problems

Problem 3.3.
When the mathematician says to his student, “If a function is not continuous, then it
is not differentiable,” then lettingD stand for “differentiable” andC for continuous,
the only proper translation of the mathematician’s statement would be

NOT.C / IMPLIES NOT.D/;

or equivalently,
D IMPLIES C:

But when a mother says to her son, “If you don’t do your homework, then you
can’t watch TV,” then letting T stand for “can watch TV” and H for “do your
homework,” a reasonable translation of the mother’s statement would be

NOT.H/ IFF NOT.T /;
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or equivalently,
H IFF T:

Explain why it is reasonable to translate these two IF-THEN statements in dif-
ferent ways into propositional formulas.

Homework Problems

Problem 3.4.
Describe a simple procedure which, given a positive integer argument, n, produces
a width n array of truth-values whose rows would be all the possible truth-value
assignments for n propositional variables. For example, for n D 2, the array would
be:

T T
T F
F T
F F

Your description can be in English, or a simple program in some familiar lan-
guage such as Python or Java. If you do write a program, be sure to include some
sample output.

Problems for Section 3.2

Class Problems

Problem 3.5.
Propositional logic comes up in digital circuit design using the convention that T
corresponds to 1 and F to 0. A simple example is a 2-bit half-adder circuit. This
circuit has 3 binary inputs, a1; a0 and b, and 3 binary outputs, c; s1; s0. The 2-bit
word a1a0 gives the binary representation of an integer, k, between 0 and 3. The
3-bit word cs1s0 gives the binary representation of k C b. The third output bit, c,
is called the final carry bit.

So if k and b were both 1, then the value of a1a0 would be 01 and the value of
the output cs1s0 would 010, namely, the 3-bit binary representation of 1C 1.

In fact, the final carry bit equals 1 only when all three binary inputs are 1, that is,
when k D 3 and b D 1. In that case, the value of cs1s0 is 100, namely, the binary
representation of 3C 1.



“mcs” — 2015/5/18 — 1:43 — page 64 — #72

Chapter 3 Logical Formulas64

This 2-bit half-adder could be described by the following formulas:

c0 D b

s0 D a0 XOR c0

c1 D a0 AND c0 the carry into column 1

s1 D a1 XOR c1

c2 D a1 AND c1 the carry into column 2

c D c2:

(a) Generalize the above construction of a 2-bit half-adder to an n C 1 bit half-
adder with inputs an; : : : ; a1; a0 and b and outputs c; sn; : : : ; s1; s0. That is, give
simple formulas for si and ci for 0 � i � nC 1, where ci is the carry into column
i C 1, and c D cnC1.

(b) Write similar definitions for the digits and carries in the sum of two nC 1-bit
binary numbers an : : : a1a0 and bn : : : b1b0.

Visualized as digital circuits, the above adders consist of a sequence of single-
digit half-adders or adders strung together in series. These circuits mimic ordinary
pencil-and-paper addition, where a carry into a column is calculated directly from
the carry into the previous column, and the carries have to ripple across all the
columns before the carry into the final column is determined. Circuits with this
design are called ripple-carry adders. Ripple-carry adders are easy to understand
and remember and require a nearly minimal number of operations. But the higher-
order output bits and the final carry take time proportional to n to reach their final
values.
(c) How many of each of the propositional operations does your adder from part (b)

use to calculate the sum?

Homework Problems

Problem 3.6.
There are adder circuits that are much faster, and only slightly larger, than the
ripple-carry circuits of Problem 3.5. They work by computing the values in later
columns for both a carry of 0 and a carry of 1, in parallel. Then, when the carry
from the earlier columns finally arrives, the pre-computed answer can be quickly
selected. We’ll illustrate this idea by working out the equations for an .nC 1/-bit
parallel half-adder.

Parallel half-adders are built out of parallel add1 modules. An .nC 1/-bit add1
module takes as input the .nC 1/-bit binary representation, an : : : a1a0, of an inte-
ger, s, and produces as output the binary representation, c pn : : : p1p0, of s C 1.
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(a) A 1-bit add1 module just has input a0. Write propositional formulas for its
outputs c and p0.

(b) Explain how to build an .nC1/-bit parallel half-adder from an .nC1/-bit add1
module by writing a propositional formula for the half-adder output, oi , using only
the variables ai , pi , and b.

We can build a double-size add1 module with 2.nC 1/ inputs using two single-
size add1 modules with nC1 inputs. Suppose the inputs of the double-size module
are a2nC1; : : : ; a1; a0 and the outputs are c; p2nC1; : : : ; p1; p0. The setup is illus-
trated in Figure 3.1.

Namely, the first single size add1 module handles the first nC 1 inputs. The in-
puts to this module are the low-order nC1 input bits an; : : : ; a1; a0, and its outputs
will serve as the first nC 1 outputs pn; : : : ; p1; p0 of the double-size module. Let
c.1/ be the remaining carry output from this module.

The inputs to the second single-size module are the higher-order nC 1 input bits
a2nC1; : : : ; anC2; anC1. Call its first nC 1 outputs rn; : : : ; r1; r0 and let c.2/ be its
carry.
(c) Write a formula for the carry, c, in terms of c.1/ and c.2/.

(d) Complete the specification of the double-size module by writing propositional
formulas for the remaining outputs, pi , for nC 1 � i � 2nC 1. The formula for
pi should only involve the variables ai , ri�.nC1/, and c.1/.

(e) Parallel half-adders are exponentially faster than ripple-carry half-adders. Con-
firm this by determining the largest number of propositional operations required to
compute any one output bit of an n-bit add module. (You may assume n is a power
of 2.)

Exam Problems

Problem 3.7.
There are exactly two truth environments (assignments) for the variablesM;N;P;Q;R; S
that satisfy the following formula:

.P OR Q/„ ƒ‚ …
clause (1)

AND .Q OR R/„ ƒ‚ …
clause (2)

AND .R OR S/„ ƒ‚ …
clause (3)

AND .S OR P /„ ƒ‚ …
clause (4)

AND M AND N

(a) This claim could be proved by truth-table. How many rows would the truth
table have?

(b) Instead of a truth-table, prove this claim with an argument by cases according
to the truth value of P .
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.nC1/-bit add1

2.nC2/-bit add1 module

.nC1/-bit add1

a2nC1 anC2 anC1

rn r1 r0

an a1 a0

pn p1 p0p2nC1 pnC2 pnC1

c

c.1/c.2/

Figure 3.1 Structure of a Double-size add1 Module.
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Problems for Section 3.3

Practice Problems

Problem 3.8.
Indicate whether each of the following propositional formulas is valid (V), satis-
fiable but not valid (S), or not satisfiable (N). For the satisfiable ones, indicate a
satisfying truth assignment.

M IMPLIES Q

M IMPLIES .P OR Q/

M IMPLIES ŒM AND .P IMPLIES M/�

.P OR Q/ IMPLIES Q

.P OR Q/ IMPLIES .P AND Q/

.P OR Q/ IMPLIES ŒM AND .P IMPLIES M/�

.P XOR Q/ IMPLIES Q

.P XOR Q/ IMPLIES .P OR Q/

.P XOR Q/ IMPLIES ŒM AND .P IMPLIES M/�

Problem 3.9.
Prove that the propositional formulas

P OR Q OR R

and

.P AND NOT.Q//OR .QAND NOT.R//OR .RAND NOT.P //OR .P ANDQANDR/:

are equivalent.

Problem 3.10.
Prove by truth table that OR distributes over AND, namely,

P OR .Q AND R/ is equivalent to .P OR Q/ AND .P OR R/ (3.26)
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Class Problems

Problem 3.11. (a) Verify by truth table that

.P IMPLIES Q/ OR .Q IMPLIES P /

is valid.

(b) Let P and Q be propositional formulas. Describe a single formula, R, using
only AND’s, OR’s, NOT’s, and copies of P and Q, such that R is valid iff P and Q
are equivalent.

(c) A propositional formula is satisfiable iff there is an assignment of truth values
to its variables—an environment—which makes it true. Explain why

P is valid iff NOT.P / is not satisfiable.

(d) A set of propositional formulas P1; : : : ; Pk is consistent iff there is an envi-
ronment in which they are all true. Write a formula, S , so that the set P1; : : : ; Pk
is not consistent iff S is valid.

Problem 3.12.
This problem3 examines whether the following specifications are satisfiable:

1. If the file system is not locked, then

(a) new messages will be queued.
(b) new messages will be sent to the messages buffer.
(c) the system is functioning normally, and conversely, if the system is

functioning normally, then the file system is not locked.

2. If new messages are not queued, then they will be sent to the messages buffer.

3. New messages will not be sent to the message buffer.

(a) Begin by translating the five specifications into propositional formulas using
four propositional variables:

L WWD file system locked;

Q WWD new messages are queued;

B WWD new messages are sent to the message buffer;

N WWD system functioning normally:

3Revised from Rosen, 5th edition, Exercise 1.1.36
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(b) Demonstrate that this set of specifications is satisfiable by describing a single
truth assignment for the variables L;Q;B;N and verifying that under this assign-
ment, all the specifications are true.

(c) Argue that the assignment determined in part (b) is the only one that does the
job.

Problems for Section 3.4

Practice Problems

Problem 3.13.
A half dozen different operators may appear in propositional formulas, but just
AND, OR, and NOT are enough to do the job. That is because each of the operators
is equivalent to a simple formula using only these three operators. For example,
A IMPLIES B is equivalent to NOT.A/ OR B . So all occurences of IMPLIES in a
formula can be replaced using just NOT and OR.

(a) Write formulas using only AND, OR, NOT that are equivalent to each ofA IFFB

and A XOR B . Conclude that every propositional formula is equivalent to an AND-
OR-NOT formula.

(b) Explain why you don’t even need AND.

(c) Explain how to get by with the single operator NAND where A NANDB is
equivalent by definition to NOT.A AND B/.

Class Problems

Problem 3.14.
The propositional connective NOR is defined by the rule

P NORQ WWD .NOT.P / AND NOT.Q//:

Explain why every propositional formula—possibly involving any of the usual op-
erators such as IMPLIES, XOR, . . . —is equivalent to one whose only connective is
NOR.

Problem 3.15.
Explain how to find a conjunctive form for a propositional formula directly from a
disjunctive form for its complement.
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Homework Problems

Problem 3.16.
Use the equivalence axioms of Section 3.4.2 to convert the following formula to
disjunctive form:

A XOR B XOR C:

Problems for Section 3.5

Homework Problems

Problem 3.17.
A 3-conjunctive form (3CF) formula is a conjunctive form formula in which each
OR-term is an OR of at most 3 variables or negations of variables. Although it
may be hard to tell if a propositional formula, F , is satisfiable, it is always easy to
construct a formula, C.F /, that is

� in 3-conjunctive form,

� has at most 24 times as many occurrences of variables as F , and

� is satisfiable iff F is satisfiable.

To construct C.F /, introduce a different new variables for each operator that
occurs in F . For example, if F was

..P XOR Q/ XOR R/ OR .P AND S/ (3.27)

we might use new variables X1, X2, O , and A corresponding to the operator oc-
currences as follows:

..P XOR„ƒ‚…
X1

Q/ XOR„ƒ‚…
X2

R/ OR„ƒ‚…
O

.P AND„ƒ‚…
A

S/:

Next we write a formula that constrains each new variable to have the same truth
value as the subformula determined by its corresponding operator. For the example
above, these constraining formulas would be

X1 IFF .P XOR Q/;

X2 IFF .X1 XOR R/;

A IFF .P AND S/;

O IFF .X2 OR A/
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(a) Explain why the AND of the four constraining formulas above along with a
fifth formula consisting of just the variable O will be satisfiable iff (3.27) is satisfi-
able.

(b) Explain why each constraining formula will be equivalent to a 3CF formula
with at most 24 occurrences of variables.

(c) Using the ideas illustrated in the previous parts, explain how to construct C.F /
for an arbitrary propositional formula, F .

Problem 3.18.
It doesn’t matter whether we formulate the SAT problem (Section 3.5 in terms of
propositional formulas or digital circuits. Here’s why:

Let f be a Boolean function of k variables. That is, f W fT;Fgk ! fT;Fg.
When P is a propositional formula that has, among its variables, propositional
variables labelled X1; : : : ; Xk . For any truth values b1; : : : ; bk 2 fT;Fg, we let let
P.b1; : : : ; bk/ be the result of substituting bi for all occurrences of Xi in P , for
1 � i � k.

IfPf is a formula such thatPf .b1; : : : ; bk/ is satisfiable exactly when f .b1; : : : ; bk/ D
T, we’ll say that Pf SAT-represents f .

Suppose there is a digital circuit using two-input, one-output binary gates (like
the circuits for binary addition in Problems 3.5 and 3.6) that has n wires and com-
putes the function f . Explain how to construct a formula Pf of size cn that SAT-
represents f for some small constant c. (Letting c D 6 will work).

Conclude that the SAT problem for digital circuits—that is, determining if there
is some set of input values that will lead a circuit to give output 1—is no more
difficult than the SAT problem for propositional formulas.

Hint: Introduce a new variable for each wire. The idea is similar to the one used
in Problem 3.17 to show that satisfiablity of 3CNF propositional formmulas is just
as hard as for arbitrary formulas.

Problems for Section 3.6

Practice Problems

Problem 3.19.
For each of the following propositions:

1. 8x 9y: 2x � y D 0
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2. 8x 9y: x � 2y D 0

3. 8x: x < 10 IMPLIES .8y: y < x IMPLIES y < 9/

4. 8x 9y: Œy > x ^ 9z: y C z D 100�

determine which propositions are true when the variables range over:

(a) the nonnegative integers.

(b) the integers.

(c) the real numbers.

Problem 3.20.
Let Q.x; y/ be the statement

“x has been a contestant on television show y.”

The universe of discourse for x is the set of all students at your school and for y is
the set of all quiz shows that have ever been on television.

Determine whether or not each of the following expressions is logically equiva-
lent to the sentence:

“No student at your school has ever been a contestant on a television quiz show.”

(a) 8x 8y: NOT.Q.x; y//

(b) 9x 9y: NOT.Q.x; y//

(c) NOT.8x 8y: Q.x; y//

(d) NOT.9x 9y: Q.x; y//

Problem 3.21.
Find a counter model showing the following is not valid.

9x:P.x/ IMPLIES 8x:P.x/

(Just define your counter model. You do not need to verify that it is correct.)
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Problem 3.22.
Find a counter model showing the following is not valid.

Œ9x: P.x/ AND 9x:Q.x/� IMPLIES 9x:ŒP.x/ AND Q.x/�

(Just define your counter model. You do not need to verify that it is correct.)

Problem 3.23.
Which of the following are valid?
(a) 9x9y: P.x; y/ IMPLIES 9y9x: P.x; y/

(b) 8x9y: Q.x; y/ IMPLIES 9y8x: Q.x; y/

(c) 9x8y: R.x; y/ IMPLIES 8y9x: R.x; y/

(d) NOT.9x S.x// IFF 8x NOT.S.x//

Class Problems

Problem 3.24.
A media tycoon has an idea for an all-news television network called LNN: The
Logic News Network. Each segment will begin with a definition of the domain of
discourse and a few predicates. The day’s happenings can then be communicated
concisely in logic notation. For example, a broadcast might begin as follows:

THIS IS LNN. The domain of discourse is

fAlbert;Ben;Claire;David;Emilyg:

Let D.x/ be a predicate that is true if x is deceitful. Let L.x; y/
be a predicate that is true if x likes y. Let G.x; y/ be a predicate that
is true if x gave gifts to y.

Translate the following broadcasts in logic notation into (English) statements.
(a)

NOT.D.Ben/ OR D.David// IMPLIES .L.Albert;Ben/ AND L.Ben;Albert//

(b)

8x ..x D Claire AND NOT.L.x;Emily/// OR .x ¤ Claire AND L.x;Emily/// AND

8x ..x D David AND L.x;Claire// OR .x ¤ David AND NOT.L.x;Claire////
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(c)

NOT.D.Claire// IMPLIES .G.Albert;Ben/ AND 9x:G.Ben; x//

(d)
8x9y9z .y ¤ z/ AND L.x; y/ AND NOT.L.x; z//

(e) How could you express “Everyone except for Claire likes Emily” using just
propositional connectives without using any quantifiers (8; 9)? Can you generalize
to explain how any logical formula over this domain of discourse can be expressed
without quantifiers? How big would the formula in the previous part be if it was
expressed this way?

Problem 3.25.
The goal of this problem is to translate some assertions about binary strings into
logic notation. The domain of discourse is the set of all finite-length binary strings:
�, 0, 1, 00, 01, 10, 11, 000, 001, . . . . (Here � denotes the empty string.) In your
translations, you may use all the ordinary logic symbols (including =), variables,
and the binary symbols 0, 1 denoting 0, 1.

A string like 01x0y of binary symbols and variables denotes the concatenation
of the symbols and the binary strings represented by the variables. For example, if
the value of x is 011 and the value of y is 1111, then the value of 01x0y is the
binary string 0101101111.

Here are some examples of formulas and their English translations. Names for
these predicates are listed in the third column so that you can reuse them in your
solutions (as we do in the definition of the predicate NO-1S below).

Meaning Formula Name
x is a prefix of y 9z .xz D y/ PREFIX(x; y)
x is a substring of y 9u9v .uxv D y/ SUBSTRING(x; y)
x is empty or a string of 0’s NOT.SUBSTRING.1; x// NO-1S(x)

(a) x consists of three copies of some string.

(b) x is an even-length string of 0’s.

(c) x does not contain both a 0 and a 1.

(d) x is the binary representation of 2k C 1 for some integer k � 0.
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(e) An elegant, slightly trickier way to define NO-1S.x/ is:

PREFIX.x;0x/: (*)

Explain why (*) is true only when x is a string of 0’s.

Problem 3.26.
For each of the logical formulas, indicate whether or not it is true when the do-
main of discourse is N, (the nonnegative integers 0, 1, 2, . . . ), Z (the integers), Q
(the rationals), R (the real numbers), and C (the complex numbers). Add a brief
explanation to the few cases that merit one.

9x: x2 D 2

8x:9y: x2 D y

8y:9x: x2 D y

8x ¤ 0:9y: xy D 1

9x:9y: x C 2y D 2 AND 2x C 4y D 5

Problem 3.27.
Show that

.8x9y: P.x; y// �! 8z: P.z; z/

is not valid by describing a counter-model.

Problem 3.28.
If the names of procedures or their parameters are used in separate places, it doesn’t
really matter if the same variable name happens to be appear, and it’s always safe
to change a “local” name to something brand new. The same thing happens in
predicate formulas.

For example, we can rename the variable x in “8x:P.x/” to be “y” to obtain
8y:P.y/ and these two formulas are equivalent. So a formula like

.8x:P.x// AND .8x:Q.x// (3.28)

can be rewritten as the equivalent formula

.8y:P.y// AND .8x:Q.x//; (3.29)



“mcs” — 2015/5/18 — 1:43 — page 76 — #84

Chapter 3 Logical Formulas76

which more clearly shows that the separate occurrences of 8x in (3.28) are unre-
lated.

Renaming variables in this way allows every predicate formula to be converted
into an equivalent formula in which every variable name is used in only one way.
Specifically, a predicate formula satisfies the unique variable convention if

� for every variable x, there is at most one quantified occurrence of x, that is, at
most one occurrence of either “8x” or “9x,” and moreover, “8x” and “9x”
don’t both occur, and

� if there is a subformula of the form 8x:F or the form 9x:F , then all the
occurrences of x that appear anywhere in the whole formula are within the
formula F .

So formula (3.28) violates the unique variable convention because “8x” occurs
twice, but formula (3.29) is OK.

A further example is the formula

Œ8x 9y: P.x/ AND Q.x; y/� IMPLIES (3.30)

.9x:R.x; z// OR 9x 8z: S.x; y; w; z/:

Formula (3.30) violates the unique variable convention because there are three
quantified occurrences of x in the formula, namely, the initial “8x” and then two
occurrences of “9x” later. It violates the convention in others ways as well. For
instance, there is an occurrence of y that is not inside the subformula 9y: P.x/AND

Q.y/.
It turns out that every predicate formula can be changed into an equivalent for-

mula that satisfies the unique variable convention—just by renaming some of the
occurrences of its variables, as we did this when we renamed the first two occur-
rences of x in (3.28) into y’s to obtain the equivalent formula (3.29).
(a) Rename occurrences of variables in (3.30) to obtain an equivalent formula

that satisfies the unique variable convention. Try to rename as few occurrences as
posible.

(b) Describe a general procedure for renaming variables in any predicate formula
to obtain an equivalent formula satisfying the unique variable convention.

Homework Problems

Problem 3.29.
Express each of the following predicates and propositions in formal logic notation.
The domain of discourse is the nonnegative integers, N. Moreover, in addition to
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the propositional operators, variables and quantifiers, you may define predicates
using addition, multiplication, and equality symbols, and nonnegative integer con-
stants (0, 1,. . . ), but no exponentiation (like xy). For example, the predicate “n is
an even number” could be defined by either of the following formulas:

9m: .2m D n/; 9m: .mCm D n/:

(a) m is a divisor of n.

(b) n is a prime number.

(c) n is a power of a prime.

Problem 3.30.
Translate the following sentence into a predicate formula:

There is a student who has e-mailed at most two other people in the
class, besides possibly himself.

The domain of discourse should be the set of students in the class; in addition,
the only predicates that you may use are

� equality, and

� E.x; y/, meaning that “x has sent e-mail to y.”

Problem 3.31.
Translate the following sentence into a predicate formula:

There is a student who has emailed exactly two other people in the
class, besides possibly herself.

The domain of discourse should be the set of students in the class; in addition,
the only predicates that you may use are

� equality, and

� E.x; y/, meaning that “x has sent e-mail to y.”
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Exam Problems

Problem 3.32.

The following predicate logic formula is invalid:

8x; 9y:P.x; y/ �! 9y;8x:P.x; y/

Which of the following are counter models for it?

1. The predicate P.x; y/ D ‘y � x D 1’ where the domain of discourse is Q.

2. The predicate P.x; y/ D ‘y < x’ where the domain of discourse is R.

3. The predicate P.x; y/ D ‘y � x D 2’ where the domain of discourse is R
without 0.

4. The predicate P.x; y/ D ‘yxy D x’ where the domain of discourse is the
set of all binary strings, including the empty string.

Problem 3.33.
Some students from a large class will be lined up left to right. There will be at least
two stduents in the line. Translate each of the following assertions into predicate
formulas with the set of students in the class as the domain of discourse. The only
predicates you may use are

� equality and,

� F.x; y/, meaning that “x is somewhere to the left of y in the line.” For
example, in the line “CDA”, both F.C;A/ and F.C;D/ are true.

Once you have defined a formula for a predicate P you may use the abbreviation
“P ” in further formulas.

(a) Student x is in the line.

(b) Student x is first in line.

(c) Student x is immediately to the right of student y.

(d) Student x is second.
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Problem 3.34.
We want to find predicate formulas about the nonnegative integers, N, in which �
is the only predicate that appears, and no constants appear.

For example, there is such a formula defining the equality predicate:

Œx D y� WWD Œx � y AND y � x�:

Once predicate is shown to be expressible solely in terms of �, it may then be used
in subsequent translations. For example,

Œx > 0� WWD 9y: NOT.x D y/ AND y � x:

(a) Œx D 0�.

(b) Œx D y C 1�

(c) x D 3


