Programming in C!

Bharat Kinariwala Tep Dobry
University of Hawai‘i University of Hawai‘i

January 5, 1993

LCopyright (©1993 by B. Kinariwala and T. Dobry. All rights reserved.

Contents

Table of Contents 1
List of Figures vii
List of Tables xiil
Preface xvii
1 Introduction 1
1.1 Computer System Organization 2
1.1.1 Computer Hardware o 2

1.1.2 Computer Software — The Operating System 3

1.1.3 Utility Programs L 4

1.1.4 User Programs and Applications 5

1.2 Representing Data and Program Internally 5
1.2.1 Representing Data oo Lo 6

1.2.2 Main Memory 15

1.2.3 Representing Programs Lo o oo 16

1.3 Designing Programs and the C Language 19
1.3.1 Designing The Algorithm L. 19

1.3.2 The C Language« e 23

1.4 Summary e 24

i

CONTENTS

1.5 References 25
1.6 Exercises oL e e 26
1.7 Problems. 28
Basic Concepts 29
2.1 A Simple C Programo 30
2.1.1 Developing the Algorithm 0. 30
2.1.2 Translating the Algorithm to Co . 31
2.1.3 Running the Program 31

2.2 Organization of C Programs — Simple Statements. 33
2.2.1 Comment Statements 33
2.2.2 Defining a Function —main()o 34
2.2.3 Variable Declarations o o 35
2.2.4 The Assignment Statement oo 37
2.2.5 Generating Output oL 40

2.3 Testing the Program L 42
2.3.1 Debugging the Program L o 43
2.3.2 Documenting the Code L o 47

2.4 Input: Reading Data o 47
2.5 More C Statements 51
2.5.1 Making Decisions with Branches 0. 51
2.5.2 Simple Compiler Directiveso 55
2.5.3 More on Expressions Lo oL 57
2.5.4 A Simple Loop — while L 64
2.5.5 Controlling Loop Termination 70
2.5.6 More Complex Loop Constructs — Nested Loops T4

2.6 Common Errors 78

CONTENTS i1

2.7 SUMMATY . . o o vt e e e e e e e 81
2.8 Exercises oL e e 83
2.9 Problems. 86
3 Designing Programs Top Down 89
3.1 Designing the Algorithm with Functions 90
3.1.1 Implementing the Program with Functions 91

3.2 Defining Functions oL 94
3.2.1 Passing Data to and from Functions. 0. 96
3.2.2 Call by Value and Local Variables 99

3.3 Coding Programs for Readability00 105
3.3.1 The C Preprocessor e 105
3.3.2 Macroso 105
3.3.3 Including Header Files o o 113
3.3.4 Conditional Compilation 116

3.4 Interacting with the Operating System 119
3.4.1 Standard Files and EOF o000 119
3.4.2 Standard Files and Redirection 125

3.5 Debugging Guidelines L L o 126
3.6 Common Errors 127
3.7 Summary ... L e e e 128
3.8 Exercises L L e 130
3.9 Problems. L 132
4 Processing Character Data 135
4.1 A New Data Type: char 135

4.1.1 The ASCII Character Set 138

v

CONTENTS

4.1.2 Operations on Characters 140
4.1.3 Character I/O Using getchar() and putchar() 147
4.1.4 Strings vs Characters Lo 150

4.2 Sample Character Processing Functions 151
4.2.1 Converting Letter Characters 152
4.2.2 Converting Digit Characters to Numbers 154
4.2.3 Counting Words L 162
4.2.4 Extracting Words Lo 169

4.3 New Control Constructs 172
4.3.1 The switch Statemento 172
4.3.2 The break Statement L 178
4.3.3 The continue Statement Lo 182

4.4 Mixing Character and Numeric Inputo 0000 185
4.5 Menu Driven Programs L 194
4.6 Common Errorso 196
A7 Summary ... e e e 199
4.8 EXerciseso e 201
4.9 Problems. L 203
Numeric Data Types and Expression Evaluation 207
5.1 Representing Numbers L Lo 207
5.1.1 Signed and Unsigned Integer Types 209
5.1.2 Single and Double Precision Floating Point Numbers 211

5.2 New Control Constructs 212
5.2.1 The for Statement oL 212
5.2.2 The do...while Statement L. 216

5.3 Scalar Data Types 224

CONTENTS

5.3.1 Data Typevoid. o
5.3.2 FEnumeration 0L 0oL
5.3.3 Defining User Types: typedef
5.4 Operators and Expression Evaluation
5.4.1 Precedence and Associativityo
5.4.2 The Data Type of the Result
5.4.3 Some New Operators
5.5 Common Errorso

5.6 Summary

5.7 Exercises

5.8 Problems

6 Pointers
6.1 What is a Pointer? L
6.1.1 Data vs Address
6.1.2 Indirect Accessof Values oo
6.2 Passing Pointers to Functions o oo
6.2.1 Indirectly Incrementing a Variable. 0000
6.2.2 Computing the Square and Cube
6.2.3 A function to Swap Valueso
6.3 Returning to the Payroll Task with Pointers
6.4 Common Errors L

6.5 Summary

6.6 Exercises

6.7 Problems

7 Arrays

224

226

228

229

232

234

236

244

246

248

251

255

255

256

259

268

268

268

276

276

287

288

290

292

293

vi CONTENTS
7.1 A Compound Data Type — array 294
7.1.1 Declaring Arrays L e e 294

7.1.2 Character Strings as Arrays L oo 298

7.2 Passing Arrays to Functions oo oo 302
7.3 Arrays, Pointers, Pointer Arithmetic o 0L 306
7.3.1 Pointers: Increment and Decrement 311

7.3.2 Array Names vs Pointer Variables 315

7.4 String Assignment and I/O oL 319
7.5 Array Initializerso 321
7.6 Arrays for Databaseso 323
7.7 Common Errors e 327
T.8 SUMIMATY . . . o v v et et e e e e e e e e e e 329
7.9 Exercises 332
7.10 Problems L e 336

8 Functions and Files 339
9 Sorting and Searching 341
10 String Processing 343
11 Two Dimensional Arrays 345
12 Structures and Unions 347
13 File Input/Output 349
14 Storage Class and Scope 351

15 Engineering Programming Examples 353

CONTENTS vii

A C Language Reference 355
B ANSI C vs Old C 357

C The C Standard Library 359

viii CONTENTS

List of Figures

1.1

1.2

1.3

1.4

1.5

1.6

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

Computer System Block Diagram 2
Memory and Addresseso 16
CPU and Memory Configuration 17
Machine and Assembly Language Program Fragment 19
Structural Diagram for Payroll Task L . 20
Flow Chart for Payroll Task 21
Code for pay0.c o 32
Allocation of Memory Cells or Objects 36
Assignment of Values L 37
Computation of pay L 38
Program Trace for payO.c 46
Keyboard Buffer 49
Code for payl.c o 50
If statement control flow 53
Code for pay2.c L 59
Control Flow for while statement 66
Coding a While Loop o 67
Code for pay3.c 70
Code for payd.c L 73
Code for prime.c L 77

X

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

LIST OF FIGURES

Structural Diagram for Payroll Task L . 90
Code for payd.cdriver L 93
Function Call to calcpay() 94
Code for calcpay() o i 95
Function Call Trace 97
Trace for calcpay() o . o 99
Call by value variable allocation L. 101
Local Variables in Blocks o 103
Driver for niceday.c 111
Functions for niceday.c 112
Using Directives in niceday.c L oo 121
End of File Marker L 122
Code for maxabs.c 124
Code for copy0.c o 137
Code for ASCIT Attributes o 145
Printing character representations oo o L 146
Alternate code for attributes program o o000 148
Using getchar() and putchar() 150
SEEINGS . . o o o e 151
Code for upper caseo 153
Code for Character Utilities 155
Header file for Character Utilities 156
Code for getint () e 158
Revised Character Utility Header File 163
Revised Character Utility Codeo o ... 164
Code for Count Words Driver 166

LIST OF FIGURES X1

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

5.1

5.2

3.3

5.4

3.5

5.6

5.7

5.8

3.9

Header Files for Word Count 167
Code for Word Count Utility Functions 168
Code fore extracting words Lo 171
Control Flow for switch statement L. 174
Code for vowelp() Using a switch Statement 175
Code for encrypt.c oL 176
Implementing print next () Using a switch Statement 178
New Implementation of print_category using switch 179
Extracting Words Using break. e 181
Code for Revised encrypt.c 184
Code for Testing scanf() 185
Revised Code for Reading Integers 188
Mixing Numeric and Character Data0 0 ... 190
Revised Code for Mixing Data o 192
A Better Revision for Mixing Data oo 193
Code for menu driven program L Lo 195
Menu Driven Functions L oo 197
Control Flow of for Loop 213
Code for factorial 214
Control Flow of do...whileLoop 216
Code for Square Rooto 219
Code for Math Utilitieso o 220
Modified Square Root Driver. 222
Modified Square Root Utilities o 223
Code for Simple Postfix Calculator, 230

Code for get_operator() 231

xii

5.10

5.11

5.12

5.13

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

6.20

6.21

6.22

LIST OF FIGURES

Factorial Function Using Composite Operators 239
Function maxdbl Using a Conditional Expression 240
Revised Fibonacci0 oo 241
Testing sizeof Operator L 244
Declaring Pointer Variables o 258
Declaration of Pointer Variables 0oL 260
Assignments of pointerso 260
Effect of Pointer to Pointer Assignment oL 261
Effect of Pointer Reassignment oL oo 262
Effect of Indirect Pointer Access and Assignment 263
Effect of Indirect Assignment L L oL oo 263
Effect of Indirect Pointer Access and Assignment 264
Example Code with Direct and Indirect Access. 266
Trace for Direct and Indirect Access. oL 267
Code for Indirect Access by a Function 269
Trace for Indirect Access by a Function 270
Code for Indirectly Returned Values. 271
Trace for sqcube L 272
Trace for sqcube L 273
Trace for sqcube L 274
Trace for sqcube L 275
Code for a Function, swap() 277
Trace for swap() L 278
Trace for swap() L 279
Trace for swap() L 280

Trace for swap() L 281

LIST OF FIGURES x1il

6.23
6.24
6.25
6.26

6.27

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13

7.14

Header file payutil.h o 283
Code for the Driver for pay6.c L 284
Code for print data() and print pay() 285
Code for calcpay() o i 286
Code for get data() e 286
Code for scores.c 295
An Array of size MAX L oL 296
A String Stored in Memory L Lo 299
Code for string.c 300
Code fore scores.c. 304
Code for string2.c 305
Pointer Arithmetic oL 307
Array Pointers as Function Parameters 000 309
Pointer to a Sub-array 312
Pointer Variables and Arrays.o 317
Pointer Variables and Strings L oo 318
Data Record Spread Over Several Arrays 323
Code for paytab.c 324

Code for payutil.c L e 325

x1v

LIST OF FIGURES

List of Tables

1.1

2.1
2.2
2.3
2.4

2.5

4.1
4.2

4.3

5.1

5.2

3.3

7.1

Number Representations 14
Arithmetic Operators L 40
Relational Operators 55
Precedence and Associativity of Operators 59
Logical Operator Symbolsin C 62
Truth Table for Logical Combinations 63
Escape Sequences L 136
ASCIT Table o o o 139
Escape sequences with Octal & Hexadecimal values 141
Precedence and Associativity Table 0oL 233
Composite Assignment Operators and Their Equivalents 238
Space allocation in Bytes for data typeso oL, 243
Pointer Arithmetic and Indirect Access oL 307

XV

XVi LIST OF TABLES

Preface

The C language has boomed in popularity and availability since its creation in the 70’s. It
has largely become the language of choice for systems programming as well as general purpose
programming in both the numeric and symbolic realms. As a result, all programmers today should
have some working knowledge of C, particularly in engineering.

This book is intended to be a first text in programming in general with emphasis on the C
language. It is meant for students with little or no previous programming experience and as such,
a primary focus is on the top down design of programs, beginning with the development of an
algorithm, proceeding to the translation of the algorithm into a programming language (C), and
the subsequent testing and debugging of the resulting code. Throughout the text, emphasis is
placed on organization and readability of code as well as debugging aids in program development.
In addition, understandable and functional user interfaces are described.

As an introductory text on programming, our approach is to motivate the introduction of
features of the language through example problems. We start with meaningful but simple tasks,
develop an algorithm to solve the task and then introduce the necessary language constructs to
implement the algorithm. We then refine the task, adding complexity or desirable features to mo-
tivate introduction of new language constructs. As such, the text is not meant to be a C reference
manual, but a text on program design utilizing the available language features to implement the
design. However, for student’s reference, the key constructs introduced are summarized at the end
of each chapter. The intent is for the student to be able to design and code programs from the
very beginning.

The book is organized as follows:

Chapter 1 is an introduction to computers and some of the terminology used throughout the
text.

o Chapter 2 begins the development of a simple C program and the introduction to the orga-
nization and basic statements of the language.

o Chapter 3 stresses the top down approach to design and introduces functions at an early
stage to emphasize their relation to algorithms.

e Chapter 4 introduces the character data type and algorithms for processing characters.

xXvil

xXViil

PREFACE

Chapter 5 presents numeric data types and their limitations and discusses the details of C
expression evaluation.

Chapter 6 addresses the important concept of pointers and their use in C in functions.

Chapter 7 introduces compound data types with arrays and discusses their relation with
pointers.

Chapter 8 describes some of the standard library functions provided in C for character and
math processing as well as giving a detailed description of the standard I/O functions printf()
and scanf() and their variations for file I/0.

Chapter 9 presents some standard sorting and searching techniques.

Chapter 10 describes the powerful string processing utilities in C and the concept of libraries
of functions.

Chapter 11 returns to arrays presenting two dimensional arrays.
Chapter 12 discusses the remaining compound data type; structures and unions.
Chapter 13 presents advanced file Input/OQutput features of the language.

Chapter 14 describes the memory organization of C programs and discusses the details of
storage classes and scope.

Finally, Chapter 15 provides several examples of algorithms useful in Engineering computa-
tion. It makes use of the concepts presented in earlier Chapters and these examples may be
discussed with the appropriate Chapter.

In addition, three Appendices are provided as follows:

Appendix A provides a summary of the C language constructs discussed in the text.

Appendix B contrasts the language features of ANSI C as presented in this text to “old” C
which is still available on many Unix systems.

Appendix C summarizes the standard library functions available in C.

Chapter 1

Introduction

In our modern society Electronic Digital Computer Systems, commonly referred to as computer
systems or computers, are everywhere. We find them in offices, factories, hospitals, schools,
stores, libraries, and now in many homes. Computers show up in sometimes unexpected places
— in your car, your television and your microwave, for example. We use computers to perform
tasks in science, engineering, medicine, business, government, education, entertainment, and many
other human endeavors. Computers are in demand wherever complex and/or high speed tasks are
to be performed.

Computers have become indispensable tools of modern society. They work at high speed, are
able to handle large amounts of data with great accuracy, and have the ability to carry out a
specified sequence of operations, i.e. a program without human intervention and are able to
change from one program to another on command.

Computer systems are general purpose information processing machines used to solve problems.
Solving these problems may involve processing information (i.e., data) which represent numbers,
words, pictures, sounds, and many other abstractions. Because we are talking about digital
computers, the information to be processed must be represented as discrete values selected from a
(possibly very large but finite) set of individual values. For example, integer numbers (the counting
numbers) can be represented in a computer by giving a unique pattern to each integer up to the
maximum number of patterns available to the particular machine. We will see how these patterns
are defined in a later section of this Chapter. This mapping of an internal machine pattern to a
meaning is refered to as a data type.

Given a representation of information, we would like to be able to perform operations on this
data such as addition or comparison. The fundamental operations provided in a computer are
very simple logical and arithmetic operations; however, these simple operations can be combined
to perform more complex operations. For example, multiplication can be performed by doing
repeated additions. The basic operations provided by a particular computer are called instruc-
tions and a well defined sequence of these instructions is called a program. It is the job of the
programmer, then, to represent the information of the problem using the data types provided and
to specify the sequence of operations which must be performed to solve the problem. As we will

2 CHAPTER 1. INTRODUCTION

Applications

Word Processing Spread Sheet Etc.

User Programs

Utilities
Shell Editor Compiler File System
Software Operating System
Scheduler Memory Manager I/O System Protection
Peripherald . CPU |, > Main
Memory
Hardware
Secondary
Memory

Figure 1.1: Computer System Block Diagram

see in Section 1.2.3, because of the simple nature of the operations available, specifying the proper
sequence of instructions to perform a task can be a very complex and tedious task. Fortunately
for us, this task has been made simpler these days (using the computers themselves) through the
use of high level programming languages. It is one of these languages, the C language that we will
discuss in this text.

1.1 Computer System Organization

Before we look at the C language, let us look at the overall organization of computing systems.
Figure 1.1 shows a block diagram of a typical computer system. Notice it is divided into two
major sections; hardware and software.

1.1.1 Computer Hardware

The physical machine, consisting of electronic circuits, is called the hardware. It consists of
several major units: the Central Processing Unit (CPU), Main Memory, Secondary Memory and
Peripherals.

The CPU is the major component of a computer; the “electronic brain” of the machine. It
consists of the electronic circuits needed to perform operations on the data. Main Memory is
where programs that are currently being executed as well as their data are stored. The CPU

1.1. COMPUTER SYSTEM ORGANIZATION 3

fetches program instructions in sequence, together with the required data, from Main Memory
and then performs the operation specified by the instruction. Information may be both read
from and written to any location in Main Memory so the devices used to implement this block
are called random access memory chips (RAM). The contents of Main Memory (often simply
called memory) are both temporary (the programs and data reside there only when they are
needed) and volatile (the contents are lost when power to the machine is turned off).

The Secondary Memory provides more long term and stable storage for both programs and
data. In modern computing systems this Secondary Memory is most often implemented using
rotating magnetic storage devices, more commmonly called disks (though magnetic tape may also
be used); therefore, Secondary Memory is often referred to as the disk. The physical devices
making up Secondary Memory, the disk drives, are also known as mass storage devices because
relatively large amounts of data and many programs may be stored on them.

The disk drives making up Secondary Memory are one form of Input/Output (1/O) device since
they provide a means for information to be brought into (input) and taken out of (output) the CPU
and its memory. Other forms of I/O devices which transfer information between humans and the
computer are represented by the Peripherals box in Figure 1.1. These Peripherals include of devices
such as terminals — a keyboard (and optional mouse) for input and a video screen for output, high-
speed printers, and possibly floppy disk drives and tape drives for permanent, removable storage of
data and programs. Other [/O devices may include high-speed optical scanners, plotters, multiuser
and graphics terminals, networking hardware, etc. In general, these devices provide the physical
interface between the computer and its environment by allowing humans or even other machines
to communicate with the computer.

1.1.2 Computer Software — The Operating System

Hardware is called “hard” because, once it is built, it is relatively difficult to change. However,
the hardware of a computer system, by itself, is useless. It must be given directions as to what
to do, i.e. a program. These programs are called software; “soft” because it is relatively easy to
change both the instructions in a particular program as well as which program is being executed
by the hardware at any given time. When a computer system is purchased, the hardware comes
with a certain amount of software which facilitates the use of the system. Other software to run
on the system may be purchased and/or written by the user. Some major vendors of computer

systems include: IBM, DEC, HP, AT&T, Sun, Compaq, and Apple.

The remaining blocks in Figure 1.1 are typical software layers provided on most computing
systems. This software may be thought of as having a hierarchical, layered structure, where each
layer uses the facilities of layers below it. The four major blocks shown in the figure are the
Operating System, Utilities, User Programs and Applications.

The primary responsibility of the Operating System (OS) is to “manage” the “resources” pro-
vided by the hardware. Such management includes assigning areas of memory to different programs
which are to be run, assigning one particular program to run on the CPU at a time, and con-
trolling the peripheral devices. When a program is called upon to be executed (its operations

4 CHAPTER 1. INTRODUCTION

performed), it must be loaded, i.e. moved from disk to an assigned area of memory. The OS may
then direct the CPU to begin fetching instructions from this area. Other typical responsibilities
of the OS include Secondary Storage management (assignment of space on the disk), a piece of
software called the file system, and Security (protecting the programs and data of one user from
activities of other users that may be on the same system).

Many mainframe machines normally use proprietary operating systems, such as VM and CM$S
(IBM) and VAX VMS and TOPS 20 (DEC). More recently, there is a move towards a standard-
ized operating system and most workstations and desktops typically use Unix (AT&T and other
versions). A widely used operating system for IBM PC and compatible personal computers is DOS
(Microsoft). Apple Macintosh machines are distinguished by an easy to use proprietary operating
system with graphical icons.

1.1.3 Utility Programs

The layer above the OS is labeled Utilities and consists of several programs which are primarily
responsible for the logical interface with the user, i.e. the “view” the user has when interacting
with the computer. (Sometimes this layer and the OS layer below are considered together as the
operating system). Typical utilities include such programs as shells, text editors, compilers, and
(sometimes) the file system.

A shell is a program which serves as the primary interface between the user and the operating
system. The shell is a “command interpreter”, i.e. is prompts the user to enter commands for
tasks which the user wants done, reads and interprets what the user enters, and directs the OS to
perform the requested task. Such commands may call for the execution of another utility (such as
a text editor or compiler) or a user program or application, the manipulation of the file system, or
some system operation such as logging in or out. There are many variations on the types of shells
available, from relatively simple command line interpreters (DOS) or more powerful command line
interpreters (the Bourne Shell, sh, or C Shell, ¢sh in the Unix environment), to more complex, but
easy to use graphical user interfaces (the Macintosh or Windows). You should become familiar
with the particular shell(s) available on the computer you are using, as it will be your primary
means of access to the facilities of the machine.

A text editor (as opposed to a word processor) is a program for entering programs and data
and storing them in the computer. This information is organized as a unit called a file similar to a
file in an office filing cabinet, only in this case it is stored on the disk. (Word processors are more
complex than text editors in that they may automatically format the text, and are more properly
considered applications than utilities). There are many text editors available (for example vi and
emacs on Unix systems) and you should familiarize yourself with those available on your system.

As was mentioned earlier, in today’s computing environment, most programming is done in
high level languages (HLL) such as C. However, as we shall see in Section 1.2.3, the computer
hardware cannot understand these languages directly. Instead, the CPU executes programs coded
in a lower level language called the machine language. A utility called a compiler is program
which translates the HLL program into a form understandable to the hardware. Again, there are

1.2. REPRESENTING DATA AND PROGRAM INTERNALLY 5

many variations in compilers provided (for different languages, for example) as well as facilities
provided with the compilers (some may have built-in text editors or debugging features). Your
system manuals can describe the features available on your system.

Finally, another important utility (or task of the operating system) is to manage the file system
for users. A file system is a collection of files in which a user keeps programs, data, text material,
graphical images, etc. The file system provides a means for the user to organize files, giving them
names and gathering them into directories (or folders) and to manage their file storage. Typical
operations which may be done with files include creating new files, destroying, renaming, and
copying files.

1.1.4 User Programs and Applications

Above the utilities in Figure 1.1 is the block labeled User Programs. It is at this level where a
computer becomes specialized to perform a task to solve a user’s problem. Given a task that
needs to be performed, a programmer can design and code a program to perform that task using
the text editors, compilers, debuggers, etc. The program so written may make use of operating
system facilities, for example to do 1/0 to interact with the program user. It is at this level that
the examples, exercises and problems in this text will be written.

However, not everyone who uses a computer is a programmer or desires to be a programmer. As
well, if every time a new task was presented to be programmed, one had to start from scratch with
a new program, the utility and ease of using the computers would be reduced. These days packages
of predefined software, or Applications, are available from many vendors in the industry. Highly
functional word processors, desktop publishing packages, spread sheet and data base programs and,
yes, games are readily available for computer users as well as programmers. In fact, perhaps most
computer users these days access their machines exclusively through these application programs.

A computer system is typically purchased with an operating system, a variety of utilities (such
as compilers for high level languages and text editors) and application programs. Without the
layers of software in modern computers, computer systems would not be as useful and popular as
they are today. While the complexity of these underlying layers has increased greatly in recent
years, the net effect has been to make computers easier for people to use.

In the remainder of this Chapter we will take a more detailed look at how data and programs
are represented within the machine. We finally discuss the design of programs and their coding in
the C language before beginning a detailed description in Chapter 2.

1.2 Representing Data and Program Internally

In a computer, it is the hardware discussed in the previous section that stores data items and
programs and that performs operations on these items. This hardware is implemented using
electronic circuits called gates which, because we are talking about digital computers, represent

6 CHAPTER 1. INTRODUCTION

information using only two values: True and False. In most machines, these two values are
represented by two different voltages with in the circuit; for example 0 Volts representing a False
value, and +5 Volts representing a True value. One such value is called a binary digit or bit
and each such bit can be considered to be a symbol for a piece of information. However, in
computer applications we need to represent information that can have more than just two values,
i.e. we have more than 2 symbols. So bits are grouped together and the pattern of values on
the group is used to represent a symbol. For example, a group of 8 bits, called a byte can have
256 different patterns (we will see how below) and therefore represent 256 different symbols. In
modern computers, groupings of bytes (usually 2 or 4), called words can represent larger “chunks”
of information.

Simply representing symbols in a computer, however, is not sufficient. We also need to process
the information, i.e. perform operations on it. The designers of the hardware make use of an
algebra, called Boolean Algebra, which uses two values, 0 and 1, and logical operations (AND),
OR and NOT) to design the circuits that perform more complex operations on bytes and words
of data. These complex operations are the instruction set of the computer and are the basic
tools the programmer has to write software for the computer. All executable programs must be
sequences of instructions from this set which includes basic arithmetic, logical, store and retrieve,
and program control instructions. The instructions themselves can also be represented in the
machine as patterns of bits.

This section first discusses how different types of data are represented using patterns of bits,
then describes how data, as well as instructions, are stored in memory, and finally gives a short
example of how instructions are represented.

1.2.1 Representing Data

Standard methods for representing commonly used numeric and non-numeric data have been
developed and are widely used. While a knowledge of internal binary representation is not required
for programming in C, an understanding of internal data representation is certainly helpful.

Binary Representation of Integers

As mentioned above, all data, including programs, in a computer system is represented in terms
of groups of binary digits. A single bit can represent one of two values, 0 or 1. A group of two
bits can be used to represent one of four values:

00 --- 0
01 --- 1
10 --- 2
11 --- 3

If we have only four symbols to represent, we can make a one-to-one correspondence between the
patterns and the symbols, i.e., one and only one symbol is associated with each binary pattern.

1.2. REPRESENTING DATA AND PROGRAM INTERNALLY 7

For example, the numbers 0, 1, 2, and 3 are mapped to the patterns above.

Such a correspondence is called a code and the process of representing a symbol by the
corresponding binary pattern is called coding or encoding. Three binary digits can be used to
represent eight possible distinct values using the patterns:

000 100
001 101
010 110
011 111

A group of k binary digits (bits) can be used to represent 2% symbols. Thus, 8 bits are used to
represent 28 = 256 values, 10 bits to represent 2!° = 1024 values, and so on. It should be clear by
now that powers of two play an important role because of the binary representation of all data.
The number 1024 is close to one thousand, and it is called 1K', where K stands for Kilo; n K equals
n* 1024, and if n = 2™, then nK is 201047,

We will first present a standard code for natural numbers, i.e., unsigned integers 0, 1, 2, 3, 4,
etc. There are several ways to represent these numbers as groups of bits, the most natural way
is analogous to the method we use to represent decimal numbers. Recall, a decimal (or base 10)
representation uses exactly ten digit symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. Any decimal number
is represented using a weighted positional notation.

For example, a single digit number, say 9, represents just nine, because the weight of the
rightmost position is 1. A two digit number, say 39, represents thirty plus nine. The rightmost
digit has a weight 1, and the next digit to the left has a weight of 10. So, we multiply 3 by 10,
and add 9 multiplied by 1. Thus, for decimal notation the weights for the digits starting from the
rightmost digit and moving to the left are 1, 10, 100, and so on, as shown below.

5 4 3 2 1 0 digit position
100000 10000 1000 100 10 1 position weight

Thus,

3456 = (6 % 1) + (5 * 10) + (4 % 100) + (3 * 1000)

The positional weights are the powers of the base value 10, with the rightmost position having
the weight of 10°, the next positions to the left having in succession the weight of 10', 10%, 107,
and so on. Such an expression is commonly written as a sum of the contribution of each digit,
starting with the lowest order digit and working toward the largest weight; that is, as sums of
contributions of digits starting from the rightmost position and working toward the left.

Thus, if ¢ is an integer written in decimal form with digits dj:

8 CHAPTER 1. INTRODUCTION

i — dn_ldn_g e d2d1d0

then ¢ represents the sum:

n—1

i=Y dy* 10F

k=0

where n is the total number of digits, and d, is the k' digit from the rightmost position in the
decimal number.

Binary representation of numbers is written in exactly the same manner. The base is 2, and
a number is written using just two digits symbols, 0 and 1. The positional weights, starting from
the right are now powers of the base 2. The weight for the rightmost digit is 2° = 1, the next digit
has the weight of 2! = 2, the next digit has the weight of 2% = 4, and so on. Thus, the weights for
the first ten positions from the right are as follows:

w9 8 7 6 5 4

0 position
1024 512 256 128 64 32 16 1

2 1
4 2 pos. weights

A natural binary number is written using these weights. For example, the binary number
10010
represents the number whose decimal equivalent is
2042'=2+16=18

and the binary number

10101000

represents the number whose decimal equivalent is

23 +2° 42" =8 +4+32+ 128 = 168

When a binary number is stored in a computer word with a fixed number of bits, unused bits
to the left (leading bits) are set to 0. For example, with a 16 bit word, the binary equivalent of
168 is

0000 0000 1010 1000

We have shown the bits in groups of four to make it easier to read.
In general, if 2 is an integer written in binary form with digits by:

i — bn—lbn—Z e bzblbo

1.2. REPRESENTING DATA AND PROGRAM INTERNALLY 9

then its decimal equivalent is:
n—1
i= > byx2F
k=0

As we said, a word size of k bits can represent 2* distinct patterns. We use these patterns to
represent the unsigned integers from 0 to 2% — 1. For example, 4 bits have 16 distinct patterns
representing the equivalent decimal unsigned integers 0 to 15, 8 bits for decimal numbers 0 through

255, and so forth.

Given this representation, we can perform operations on these unsigned integers. Addition of
two binary numbers is straightforward. The following examples illustrate additions of two single
bit binary numbers.

0 0 1 1
+0 +1 +0 +1
0 1 1 10

The last addition, 1 + 1, results in a sum digit of 0 and a carry forward of 1. Similarly, we can
add two arbitrary binary numbers, b1l and b2:

011100 (carry forward)
b1 101110 (base 10 value: 46)
+b2 +001011 (base 10 value: 11)
sum 111001 (base 10 value: 57)

Decimal to Binary Conversion

We have seen how, given a binary representation of a number, we can determine the decimal
equivalent. We would also like to go the other way; given a decimal number, find the corresponding
binary pit pattern representing this number. In general, there are two approaches; one generates
the bits from the most significant (the leftmost bit) to the least significant; the other begins with
the rightmost bit and proceeds to the leftmost.

In the first case, to convert a decimal number, n, to a binary number, determine the highest
power, k, of 2 that can be subtracted from n:

r=n—2k

10 CHAPTER 1. INTRODUCTION

and place a 1 in the k' binary digit position. The process is repeated for the remainder r, and
so forth until the remainder is zero. All other binary digit positions have a zero. For example,
consider a decimal number 103. The largest power of 2 less than 103 is 64 (2°):

103 — 26 = 103 — 64 = 39
39 — 28 = 39 — 32 = 7
T — 22 = T — 4 = 3
3 — 28 = 3 — 2 =1
1 — 20 = 1 — 1 = 0
So we get:
welghts 128 64 32 16 8 4 2 1
1 1 1 1 1
which, for an 8 bit representation give:
0110 0111

In the alternate method, we divide n by 2, using integer division (discarding any fractional
part), and the remainder is the next binary digit moving from least significant to most. In the
example below, the % operation is called mod and is the remainder from integer division.

103 %2 =1 103 /2 = 51
51 %2 =1 51 /2= 25
25 %2 =1 25 /2= 12
12 %2=0 12 /2= 6
6 %2 =0 6 /2= 3
3 %2 =1 3 /2= 1
1 %2 =1 1 /2= 0

Reading the bits top to bottom filling right to left, the number is

0110 0111

Representing Signed Integers

The binary representation discussed above is a standard code for storing unsigned integer numbers.
However, most computer applications use signed integers as well; i.e. integers that may be either
positive or negative. There are several methods used for representing signed numbers.

The first, and most obvious, is to represent signed numbers as we do in decimal, with an
indicator for the sign followed by the magnitude of the number as an unsigned quantity. For
example, we write:

+100
—100

1.2. REPRESENTING DATA AND PROGRAM INTERNALLY 11

In binary we can use one bit within a representation (usually the most significant or leading bit)
to indicate either positive (0) or negative (1), and store the unsigned binary representation of the
magnitude in the remaining bits. So for an 16 bit word, we can represent the above numbers as:

-+100 : 0000 0000 0110 0100

—100 : 1000 0000 0110 0100

However; for reasons of ease of design of circuits to do arithmetic on signed binary numbers
(e.g. addition and subtraction), a more common representation scheme is used called two’s
complement. In this scheme, positive numbers are represented in binary, the same as for unsigned
numbers. On the other hand, a negative number is represented by taking the binary representation
of the magnitude, complementing all bits (changing 0’s to 1’s and 1’s to 0’s), and adding 1 to the
result.

Let us examine the 2’s complement representation of +100 and —100 using 16 bits. For 4100,
the result is the same as for unsigned numbers:

+100 : 0000 0000 0110 0100
For —100, we begin with the unsigned representation of 100:

0000 0000 0110 0100

complement each bit:

1111 1111 1001 1011
and add 1 to the above to get 2’s complement:

—100: 1111 1111 1001 1100

This operation is reversible, that is, the magnitude (or absolute value) of a two’s complement
representation of a negative number can be obtained with the same procedure; complement all
bits:

0000 0000 0110 0011

and add 1:
0000 0000 0110 0100

In a two’s complement representation, we can still use the most significant bit to determine
the sign of the number; 0 for positive, and 1 for negative. Let us determine the decimal value of
a negative 2’s complement number:

1111 1111 1101 0110

This is a negative integer since the leading bit is 1, so to find its magnitude we complement all
bits:.
0000 0000 0010 1001

12 CHAPTER 1. INTRODUCTION

and add 1:
0000 0000 0010 1010

The decimal magnitude is 42, and the sign is negative, so, the original integer represents decimal
—42.

In determining the range of integers that can be represented by k bits, we must allow for the
sign bit. Only £ — 1 bits are available for positive integers, and the range for them is 0 through
2(k=1) _ 1. The range of negative integers representable by k bits is -1 through —2%=1 . Thus, the
range of integers representable by k bits is —2(*=1) through 2(*=1) — 1. For example, for 8 bits, the
range of signed integers is —28~Y through 2= — 1, or —128 to +127.

It can be seen from the above analysis that, due to a finite number of bits used to represent
numbers, there are limits to the largest and/or smallest numbers that can be represented in the
computer. We will discuss this further in Chapter 5.

Octal and Hexadecimal Representations

One important thing to keep in mind at this point is that we have been discussing different
representations for numbers. Whether a number is expressed in binary, e.g. 010011, or decimal,
19, it is still the same number, namely nineteen. It is simply more convenient for people to
think in decimal and for the computer to use binary. However, converting the computer binary
representation to the human decimal notation is somewhat tedious, but at the same time writing
long strings of bits is also inconvenient and error prone. So two other representation schemes
are commonly used in working with binary representations. These schemes are call octal and
hexadecimal (sometimes called hex) representations and are simply positional number systems
using base 8 and 16, respectively.

In general, an unsigned integer, ¢, consisting of n digits d; written as:
i — dn_ldn_g e d3d2d1d0

in any base is interpreted as the sum:

n—1

= Z dy, * base®

k=0
If the base is 2 (binary), the symbols which may be used for the digits d; are [0, 1]. If the base
is 10 (decimal) the digit symbols are [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]. Likewise, for base 8 (octal) the
digit symbols are [0, 1, 2, 3, 4, 5, 6, 7]; and for hexadecimal (base 16) they are [0, 1, 2, 3, 4, 5, 6,
7,8,9,a, b, c,d, e f]. The letter symbols, [a, b, ¢, d, e, f] (upper case [A, B, C, D, E, F] may
also be used) give us the required 16 symbols and correspond to decimal values [10, 11, 12, 13, 14,
15] respectively. Using the above sum, it should be clear that the following are representations for
the same number:

Base 10: 423
Base 2: 0000 0001 1010 0111
Base 8 000647

Base 16: 01A7

1.2. REPRESENTING DATA AND PROGRAM INTERNALLY 13

For hexadecimal numbers, the positional weights are, starting from the right, 1, 16, 256, etc.
Here are a few examples of converting hex to decimal:

Hexadecimal Decimal
30 0*1+4+3%*16 = 48
1E 14*1+1*16 = 30
1C2 2*%14+12%16 +1*256 = 450

Similarly, octal numbers are base 8 numbers with weights 1, 8, 64, etc. The following are some

examples of converting octal to decimal:

Octal Decimal

11 1*14+1%8 = 9
20 0*%14+2%*8 = 16
257 T*14+5*%84+2%64 = 175

The reason octal and hex are so common in programming is the ease of converting between
these representations and binary, and vice versa. For hexadecimal numbers, exactly four bits are
needed to represent the symbols 0 through F. Thus, segmenting any binary number into 4 bit
groups starting from the right, and converting each group to its hexadecimal equivalent gives the

hexadecimal representation.

Binary: 1010 1000

Hex: A 8
10*16 + 8*1

Decimal: 168

As a side effect, conversion from binary to decimal is much easier by first converting to hex and

then to decimal, as shown above.

Similarly, segmenting a binary number into three bit groups starting from the right gives us
the octal representation. Thus, the same number can be expressed in octal as:

Binary: 10 101 000
Octal: 2 5 0

2%64 + 5*8 4+ 0*1
Decimal: 168

Conversion of base 8 or base 16 numbers to binary is very simple; for each digit, its binary
representation is written down. Conversion between octal and hex is easiest done by converting

to binary first:

14 CHAPTER 1. INTRODUCTION

Decimal 122 199 21 63
Binary 01111010 11000111 010101 111111
Hexadec. 0111 1010 1100 0111 0001 0101 0011 1111

0XT7A 0XC7 0X15 0X3F
Octal 01 111 010 11 000 111 00 010 101 00 111 111
0172 0307 025 o077

Table 1.1: Number Representations

Hex: 2 f 3
Binary: 0010 1111 0011

Binary: 001 011 110 011
Octal: 1 3 6 3

Some additional examples of equivalent hexadecimal, octal, binary, and decimal numbers are
shown in Table 1.1 In a programming language we need a way to distinguish numbers written in
different bases (base 8, 16, 10, or 2). In C source programs, a simple convention is used to write
constants in different bases. Decimal numbers are written without leading zeros. Octal numbers
are written with a leading zero, e.g. 0250 is octal 250. Hexadecimal numbers are written with
a leading zero followed by an x or X, followed by the hexadecimal digits. Thus, 0xA8 will mean
hexadecimal A8. (Binary numbers are not used in source programs).

Representing Other Types of Data

So far we have discussed representations of integers, signed and unsigned; however, many appli-
cations make use of other types of data in their processing. In addition, some applications using
integers require numbers larger than can be stored in the available number of bits. To address
these problems, another representation scheme, called floating point is used. This scheme allows
representation of numbers with fractional parts (real numbers) as well as numbers that may be
very large or very small.

Representation of floating point numbers is analogous to decimal scientific notation. For
example:

1.234 10 4 2

1.2. REPRESENTING DATA AND PROGRAM INTERNALLY 15

1234 %1043

By adjusting the decimal place, as in the last case above, a number of this form consists of
just three parts: a fractional part called the mantissa, a base, and an exponent. Over the years,
several schemes have been devised for representing each of these parts and storing them as bits in
a computer. However, in recent years a standard has been defined by the Institute for Electrical
and Electronics Engineers (IEEE Standard 754) which is gaining in acceptance and use in many
computers. A detailed description of these schemes, and their relative tradeoffs, is beyond the
scope of this text; however, as programmers, it is sufficient that we realize that we can express
floating point numbers either in decimal with a fractional part:

325.54927

or using exponential form:

3.2554927F + 2
325549.27FK — 3

where E or e refers to exponent of the base (10 in this case). As with integers, due to the fixed
number of bits used in the representation, there are limits to the range (largest and smallest
numbers) and the precision (number of digits of accuracy) for the numbers represented.

Another widely used data type is character data which is non-numeric and includes all the sym-
bols normally used to represent textual material such as letters, digits and punctuation. Chapter
4 discusses the representation of character data in detail, however, the principle is the same; some
pattern of bits is selected to represent each symbol to be stored.

These are the principle data types provided by programming languages, but as we will see
in future Chapters, languages also provide a means for the programmer to define their own data
types and storage schemes.

1.2.2 Main Memory

Now that we have seen that information (data) can be represented in a computer using binary
patterns, we can look at how this information is stored within the machine. An electronic circuit
that can be switched ON or OFF can represent one binary digit or one bit of information. A
class of such devices (called flip-flops) which can retain the value of a bit, even after the input
to them changes (though only as long as power is applied to them), can be used to store a bit.
The Main Memory block of Figure 1.1 is constructed of many of these devices, organized so that
data (and instructions) may be stored there and subsequently accessed. Memory in present day
computers is usually organized as a sequence of bytes (a byte is a group of eight bits). Each byte
in memory is given a unique unsigned integer address, which may be considered its “name”. (See
Figure 1.2). A row of houses on a street with street addresses or a row of numbered mailboxes
are reasonable analogies to memory addresses. The CPU (or any other device wishing to access
memory) may place an address on a set of wires connected to the memory (called the address
bus) in order to either read (load) or write (store) information in memory. Once information

16 CHAPTER 1. INTRODUCTION

0000 0000 0000 0000 0000 L1111 1 1
0000 0000 0000 0001 0001 L1111 1 1
0000 0000 0000 0010 0002 L1111 1 1
0000 0000 0000 0011 0003 L1111 1 1
0000 0000 0000 0100 0004 L1111 1 1
0000 0000 0000 0101 0005 L1111 1 1
0000 0000 0100 1001 0049 L1111 1 1
0000 0000 0100 1010 004A L1111 1 1
0000 0000 0100 1011 004B L1111 1 1
1111 1111 1111 1111 FFFF L1111 1 1

Binary Hex Memory
Address Bytes

Figure 1.2: Memory and Addresses

has been written to a particular location (address) in memory, it will remain unchanged unless
a subsequent write is performed to the same address. Multiple bytes may be accessed (either
simultaneously or sequentially) for data items large than a single byte. Like other information in
the computer, an address is represented internally in binary. In the figure, we have shown the
addresses both in binary and in hexadecimal form.

Computers are often classified by how many bits may be accessed simultaneously, e.g. 16 bits
or 32 bits. The maximum number of bytes directly addressable in a computer depends on the
number of bits in the memory address. A 16 bit machine usually allows 16 bits for address and a
32 bit machine usually allows anywhere form 17 to 32 bits for address. Since n bits can represent
2" values, 16 bit addresses can address 64 KBytes (i.e. 65,536 bytes from byte addresses 0 to
65535) and 32 bit addresses can address 4 GigaBytes (over 4,000,000,000 bytes) directly.

1.2.3 Representing Programs

As has been mentioned, in addition to data being stored in memory, the program to be executed is
also stored there in the form of a sequence of instructions. It is the CPU shown in Figure 1.1 that
is responsible for fetching instructions, one at a time, from memory and performing the specified
operation on data. A more detailed picture of the CPU with its memory is shown in Figure 1.3.
Within the CPU are several key components; the ALU, a set of Registers, and a Control Unit.

The ALU (Arithmetic Logic Unit) is a digital circuit which is designed to perform arithmetic

1.2. REPRESENTING DATA AND PROGRAM INTERNALLY 17

Regist
Control CBISters
Ul’lit = >
Data
\ Alu / .
Address
Opcode Address
Instruction
CPU Memory

Figure 1.3: CPU and Memory Configuration

(add, subtract) operations as well as logic (AND, OR) operations on data. The registers in the
CPU are a small scratchpad memory to temporarily store data while it is in use. The Control
Unit is another circuit which determines what operation is being requested by an instruction and
controls the other circuitry to carry out that operation; i.e. the Control Unit directs all operations
within the machine.

Also shown in the figure are the connections between the CPU and Memory. They consist of
an address bus, as mentioned in the previous Section, and a data bus, over which all information
(data and program) passes between the CPU and Memory.

This Section describes how programs are stored in the machine as a sequence of instructions
coded in binary. Such an encoding is called the machine language of the computer and is

described below.

Machine Language

The basic operations that the CPU is capable of performing are usually quite simple and the set
of these operations provided on a particular computer is called the instruction set. Within this
set are instructions which can move data from one place to another, for example from memory to
a CPU register; an operation called load. Similarly there are store instructions for moving data
from the CPU to a location in memory. In addition there are instructions directing arithmetic

18 CHAPTER 1. INTRODUCTION

operations, such as add, on data values. There are also instructions which control the flow of the
program; i.e. that determine from where in memory the next instruction should be fetched. Nor-
mally instructions are fetched sequentially — the next instruction is fetch from the next memory
address; however, these control instructions may test a condition and direct that the next instruc-
tion be fetched from somewhere else in memory instead. Finally, there may also be instructions in
the set for “housekeeping” operations within the machine, such as controlling external I/O devices.

To encode these instructions in binary form for storage in memory, some convention must be
adopted to describe the meaning of the bits in the instruction. Most of the instructions described
above require at least 2 pieces of information — a specification of what particular instruction this
is, called the opcode or operation code, and the address of the data item on which to operate.
These parts can be seen in Figure 1.3 in the block labeled instruction.

Instructions coded in binary form are called machine language instructions and the col-
lection of these instructions that make up a program is called a machine language program.
Such a program is very difficult for a person to understand or to write. Just imagine thinking in
terms of binary codes for very low level instructions and in terms of binary memory addresses for
data items. It is not practical to do so except for very trivial programs. Humans require a higher
level of programming languages that are more adapted to our way of thinking and communicating.
Therefore, at a level a little higher than machine language, is a programming language called as-
sembly language which is very close to machine language. Each assembly instruction translates
to one machine language instruction. The main advantage is that the instructions and memory
cells are not in binary form; they have names. Assembly instructions include operational codes,
(i.e., mnemonic or memory aiding names for instructions), and they may also include addresses of
data. An example of a very simple program fragment for the machine described above is shown in
Figure 1.4. The figure shows the machine language code and its corresponding assembly language
code. Definitions of memory cells are shown below the program fragment.

The machine language code is shown in binary. It consists of 8 bits of opcode and 16 bits of
address for each instruction. From the assembly language code it is a little easier to see what this
program does. The first instruction loads the data stored in memory at a location known as “Y”
into the CPU register (for CPU’s with only one register, this is often called the accumulator). The
second instruction adds the data stored in memory at location “X” to the data in the accumulator,
and stores the sum back in the accumulator. Finally, the value in the accumulator is stored back
to memory at location “Y”. With the data values shown in memory in the figure, at the end of
this program fragment, the location known as “Y” will contain the value 48.

A utility program is provided to translate the assembly language code (arguably) readable
by people into the machine language code readable by the CPU. This program is called the
assembler. The program in the assembly language or any other higher language is called the
source program, whereas the program assembled into machine language is called the object
program. The terms source code and object code are also used to refer to source and object
programs.

Assembly language is a decided improvement over programming in machine language, however,
we are still stuck with having to manipulate data in very simple steps such as load, store, add,
etc., which can be a tedious, error prone process. Fortunately for us, programming languages at

1.3. DESIGNING PROGRAMS AND THE C LANGUAGE 19

Program Fragment: Y=Y +X

Machine Language Code Assembly Language
(Binary Code) Code
Opcode Address

1100 0000 0010 0000 0000 0000 LOAD Y

1011 0000 0001 0000 0000 0000 ADD X

1001 0000 0010 0000 0000 0000 STORE Y

Memory Cell Definitions:

Addr. Name Cell Contents
1000 X 32
2000 Y 16

Figure 1.4: Machine and Assembly Language Program Fragment

higher levels still, languages closer to the way we think about programming, have been developed
along with translators (called compilers) for converting to object programs. One such language
is C, which is the subject of this text and is introduced in the next Section.

1.3 Designing Programs and the C Language

We defined a program as an organized set of instructions stating the steps to be performed by
a computer to accomplish a task. Computer programming is the process of planning, im-
plementing, testing, and revising (if necessary) the sequences of instructions in order to develop
successful programs. In writing computer programs we must specify with precise, unambiguous
instructions exactly what we want done and the order in which it should be done. Before we can
write the actual program, we must either know or develop a step-by-step procedure, or algorithm,
that will accomplish the task. We can then implement the algorithm by coding it into a source
language program.

1.3.1 Designing The Algorithm

An algorithm is a general solution of a problem which can be written as a verbal description of
a precise, logical sequence of actions. Cooking recipes, assembly instructions for appliances and

20 CHAPTER 1. INTRODUCTION

Payroll
Task
Y y
(loop) print
proc 1 empl. pay disbursed
/ Y Y Y
read calculate update print
data pay cum. total pay

Figure 1.5: Structural Diagram for Payroll Task

toys, or precise directions to reach a friend’s house, are all examples of algorithms. A computer
program is an algorithm expressed in a specific programming language. An algorithm is the key
to developing a successful program.

Suppose a business office requires a program for computing its payroll. There are several people
employed. They work regular hours, and sometimes overtime. The task is to compute pay for
each person as well as compute the total pay disbursed.

Given the problem, we may wish to express our recipe or algorithm for solving the payroll
problem in terms of repeated computations of total pay for several people. The logical modules
involved are easy to see.

Algorithm: PAYROLL

Repeat the following while there is more data:
get data for an individual,
calculate the pay for the individual from the current data,
and, update the cumulative pay disbursed so far,
print the pay for the individual.
After the data is exhausted, print the total pay disbursed.

Figure 1.5 shows a structural diagram for our task. This is a layered diagram showing the
development of the steps to be performed to solve the task. Each box corresponds to some subtask
which must be performed. On each layer, it is read from left to right to determine the performance
order. Proceeding down one layer corresponds to breaking a task up into smaller component steps
— a refinement of the algorithm. In our example, the payroll task is at the top and that box
represents the entire solution to the problem. On the second layer, we have divided the problem
into two subtasks; processing a single employee’s pay in a loop (to be described below), and

1.3. DESIGNING PROGRAMS AND THE C LANGUAGE 21

start
|

read data

<L >

yes

calc pay

'

update
cum total

print pay

'

read data

]

—

print pay
disbursed

end

Figure 1.6: Flow Chart for Payroll Task

printing the total pay disbursed for all employees. The subtask of processing an individual pay
record is then further refined in the next layer. It consists of, first reading data for the employee,
then calculating the pay, updating a cumulative total of pay disbursed, and finally printing the
pay for the employee being processed.

The structural diagram is useful in developing the steps involved in designing the algorithm.
Boxes are refined until the steps within the box are “doable”. Our diagram corresponds well with
the algorithm developed above. However, this type of diagram is not very good at expressing the
sequencing of steps in the algorithm. For example, the concept of looping over many employees
is lost in the bottom layer of the diagram. Another diagram, called a flow chart is useful for
showing the control flow of the algorithm, and can be seen in Figure 1.6. Here the actual flow
of control for repetitions is shown explicitly. We first read data since the control flow requires us
to test if there is more data. If the answer is “yes” we proceed to the calculation of pay for an
individual, updating of total disbursed pay so far, and printing of the individual pay. We then
read the next set of data and loop back to the test. If there is more data, repeat the process,
otherwise control passes to the printing of total disbursed pay and the program ends.

22 CHAPTER 1. INTRODUCTION

From this diagram we can write our refined algorithm as shown below. However, one module
may require further attention; the one that calculates pay. Each calculation of pay may involve
arithmetic expressions such as multiplying hours worked by the rate of pay. It may also involve
branching to alternate computations if the hours worked indicate overtime work. Incorporating
these specifics, our algorithm may be written as follows:

Algorithm: PAYROLL

get (first) data, e.g., id, hours worked, rate of pay
while more data (repeat the following)
1f hours worked exceeds 40
(then) calculate pay using overtime pay calculation
otherwise calculate pay using regular pay calculation
calculate cumulative pay disbursed so far
print the pay statement for this set of data
get (next) data

print cumulative pay disbursed

The algorithm is the most important part of solving difficult problems. Structural diagrams
and flow charts are tools that make the job of writing the algorithm easier, especially in complex
programs. The final refined algorithm should use the same type of constructs as most programming
languages. Once an algorithm is developed, the job of writing a program in a computer language
is relatively easy; a simple translation of the algorithm steps into the proper statements for the
language. In this text, we will use algorithms to specify how tasks will be performed. Programs
that follow the algorithmic logic will then be easy to implement. Readers may wish to draw
structural diagrams and flow charts as visual aids in understanding complex algorithms.

There is a common set of programming constructs provided by most languages useful for

algorithm construction, including:

e Branching: test a condition, and specify steps to perform for the case when the condition is
satisfied (True), and (optionally) when the condition is not satisfied (False). This construct
was used in our algorithm as:

1f overtime hours exceed 40
then calculate pay using overtime pay calculation

otherwise calculate pay using regular pay calculation

o Looping: repeat a set of steps as long as some condition is True, as seen in:

while new data repeat the following

1.3. DESIGNING PROGRAMS AND THE C LANGUAGE 23

e Read or print data from/to peripheral devices. Reading of data by programs is called data
input and writing by programs is called data output. The following steps were used in our
algorithm:

read data
write/print data, individual pay, disbursed pay

Languages that include the above types of constructions are called algorithmic languages
and include such languages as C, Pascal, and FORTRAN.

A program written in an algorithmic language must, of course, be translated into machine
language. A Utility program, called a compiler, translates source programs in algorithmic lan-
guages to object programs in machine language. One instruction in an algorithmic language, called
a statement, usually translates to several machine level instructions. The work of the compiler,
the translation process, is called compilation.

To summarize, program writing requires first formulating the underlying algorithm that will
solve a particular problem. The algorithm is then coded into an algorithmic language by the
programmer, compiled by the compiler, and loaded into memory by the operating system. Finally,
the program is executed by the hardware.

1.3.2 The C Language

In this text, our language of choice for implementing algorithms is C. C was originally developed
on a small machine (PDP-11) by Dennis Ritchie for implementing the UNIX operating system
at Bell Laboratories in Murray Hill, New Jersey (1971-73). C is now used for a wide range of
applications including UNIX implementations, systems programming, scientific and engineering
computation, spreadsheets, and word processing. In fact, the popularity of C has encouraged the
development of a C standard by the American National Institute of Standards (ANSI). This text
adheres to ANSI C. Major differences between ANSI C and “old C” are pointed out in Appendix
B. References at the end of this chapter include books by Kernighan and Ritchie [1, 2], which
define both traditional C and ANSI C as well as a reference to the proposed ANSI C standard by
Harbison and Steele[3].

In keeping with the original intent, C is a small language; however, it features modern control
flow and data structures and a rich set of operators. C provides a wealth of constructs, or state-
ments, which correspond to good algorithmic structures. C uses a standard library of functions to
perform many routine tasks such as input and output and string operations. Since C is oriented
towards the use of a library of functions, programs in C tend to be modular with numerous small
functional modules. It is also possible for users to develop their own libraries of functions to
improve program development.

C is fairly standard; programs written in C are easily moved from one machine to another. Such
portability of programs is a major advantage in that applications developed on one computer can be

24 CHAPTER 1. INTRODUCTION

used elsewhere. This allows one to write clear and algorithmically well structured programs. Such a
structured programming approach is very important in developing complex, error-free applications.

C provides low level logic operations, normally available only in machine language or assembly
language. Low level operations are required for systems programming, such as writing operating
systems and other programs at the system level. Today, many operating systems are written in C.
C is also suitable for writing scientific and engineering programs, for example it provides double
precision computations of real numbers, as well as long integer computation which can be useful
in many applications where a large range of integers is required.

As a first programming language C has some weaknesses; however, they can be overcome by
discipline in writing programs. In the text, we will indicate items that beginning programmers
need to watch out for.

1.4 Summary

In this Chapter we have given a brieft overview of modern computing systems, including both the
hardware and software. We had described how information is represented in these machines, both
data and programs. We have discussed the development of algorithms as the first, and probably
most important step in writing a program. As we shall see, programming is a design process; an
algorithm is written, coded, and tested followed by iteration. Programs are not written in one
step — initial versions are developed and then refined and improved.

One brief note about the organization of chapters in the text. In this chapter (following the
References) are two sections labeled Frercises and Problems. These are very important sections in
learning to program, because the only way to learn and improve programming skills is to program.
The exercises are designed to be done with pencil-and-paper. They test the key concepts and
language constructs presented in the chapter. The problems are generally meant to be computer
exercises. They present problems for which programs should be written. By writing these programs
you will increase your experience in the methods and thought processes that go into developing
ever more complex applications.

With the background of this Chapter, we are ready to begin looking at the specifics of the C

language, so

E ho‘omaka kakou.
(Let’s start).

1.5. REFERENCES 25

1.5 References

[1] Kernighan, Brian W., and Ritchie, Dennis M. The C Programming Language, First Edition,
Englewood Cliffs, N.J.: Prentice-Hall, 1978.

[2] Kernighan, Brian W., and Ritchie, Dennis M. The C Programming Language, Second Edition,
Englewood Cliffs, N.J.: Prentice-Hall, 1988.

[3] Harbison, Samuel P.; and Steele, Guy L. Jr., C: A Reference Manual, Second FEdition, Engle-
wood Cliffs, N.J.: Prentice-Hall, 1987.

2% CHAPTER 1. INTRODUCTION
1.6 Exercises

1. Convert the following binary numbers into decimal values:

0000 0100 0110 1001
0011 0001 0111 1111
0101 0101 0101 0101

2. Convert the following octal numbers into decimal:

000345
000111
000777

3. Convert the following hexadecimal numbers into decimal:

1A
FF
21

4. Convert the following decimal integer values into binary, octal, and hexadecimal:

101
324
129

5. Add the following binary numbers:
0000 0100 0110 1001

0011 0001 0111 1111
0101 0101 0101 0101

6. Add the following octal numbers:
000345
000111
000777

7. Add the following hexadecimal numbers:
1A
FF
21

8. How many distinct binary strings can be formed with n bits?

1.6. EXERCISES 27

9. Find the negative of the following binary numbers in a two’s complement representation:

0000 0100 0110 1001
0011 0001 0111 1111
0101 0101 0101 0101

10. Represent the following in two’s complement form using 16 bits:

-29
165
-100

11. What is the largest positive integer that can be stored in n bits, with one leading bit reserved
for the sign bit? Explain. Negative integer? Assume two’s complement representations.

28 CHAPTER 1. INTRODUCTION

1.7 Problems

1. Develop an algorithm for the calculation of the value of each stock and the total value of a
portfolio of stocks. Draw a structural diagram and write the algorithm using constructions
used in the text.

2. Develop an algorithm for calculating and printing the squares of a set of numbers. Draw a
structural diagram, a flow chart, and write the algorithm.

3. Develop an algorithm for calculation of the grade point ratio for each student, i.e., (total
grade points) / (total credit hours). Each student earns grades (0-4) in a set of courses,
each course with different credit hours (1-3). Grade points in one course are given by the
product of the grade and the credit hours for the course. Draw a structural diagram and a
flow chart.

4. Assume that an “add” operator is available, but not a “multiply” operator in a programming
language. Develop an algorithm that will multiply two positive integers using only the “add”
operator.

5. Assume that you are only able to read the numeric value of each successive digits of a decimal
integer one digit at a time. The objective is to find the overall numeric value of the number.
As each new digit is read, the overall numeric equivalent must be updated to allow for the
new digit. For example, if the digits read are 3,2, and 5, the result printed should be 325.
Extend the algorithm for a number in any specified base.

6. Log in to the computer system available to you. Practice using the text editor available by
entering the following simple program and storing it in a file:

main()

{
printf("hello world\n");

b

7. Compile the program you entered in Problem 6. Note which file have been created during
compilation. Execute the compiled program.

8. Explore the computer you will be using. See what applications may be available to you such
as electronic mail, and news.

Chapter 2

Basic Concepts

Learning to program is a lot like learning to speak a new language. You must learn new vocabulary,
i.e. the words of the language; the syntaz, (also called the grammar); i.e. the form of statements
in the language, as well as the semantics, i.e. the meaning of the words and statements. This
learning process usually begins slowly but often you find that with just a few basic words and
phrases you can begin conversing and getting your thoughts across. In this chapter we present a
few of the basic statements of the C language so that you can write programs from the beginning.

As in spoken languages, the first thing you need is something to say — an idea. In the program-
ming world, this idea is often in the form of a task, i.e. something you would like to have done
by the computer. The task may be described in terms of what information is to be provided to
the computer, what is to be done with this information, and what results should be produced by
the program. A program is often developed in small increments, starting with a relatively simple
version of the task and progressing to more complex ones, adding features until the entire task can
be solved. The focus is always on the task to be performed. The task must be clearly understood
in order to proceed to the next step, the development of an algorithm. As was discussed in the
previous chapter, an algorithm is a step by step description of what must be done to accom-
plish a task. These can be considered to be the most important steps in programming; specifying
and understanding the task (what is to be done), and designing the algorithm (how it is to be
done). We take this approach beginning in this chapter, and we will discuss task development and
algorithm design in more detail in Chapter 3.

Once an algorithm is clearly stated, the next step is to translate the algorithm into a pro-
gramming language. In our case this will be the C language. Using the vocabulary, syntax, and
semantics of the language, we can code the program to carry out the steps in the algorithm. After
coding a program, we must test it by running it on the computer to ensure that the desired task is
indeed performed correctly. If there are bugs, i.e. errors in the program, they must be removed;
in other words an erroneous program must be debugged so it performs correctly. The job of pro-
gramming includes the entire process: algorithm development, and coding, testing and debugging
the program.

At the end of the Chapter, you should know:

29

30 CHAPTER 2. BASIC CONCEPTS

e How to code simple programs in C.
e How a program allocates memory to store data, called variables.
e How variables are used to store and retrieve data, and to make numeric calculations.

e How decisions are made based on certain events, and how a program can branch to different
paths.

e How a set of computations can be repeated any number of times.

e How a program can be tested for errors and how the errors may be removed.

2.1 A Simple C Program

The easiest way to learn programming is to take simple tasks and see how programs are developed
to perform them. In this section we will present present one such program explaining what it does
and showing how it executes. A detailed description of the syntax of the statments used is given
in Section 2.2.

2.1.1 Developing the Algorithm

In the previous chapter we introduced a payroll task which can be summarized as a task to
calculate pay for a number of people employed by a company. Let us assume that each employee
is identified by an id number and that his/her pay is computed in terms of an hourly rate of
pay. We will start with a simple version of this task and progress to more complex versions. The
simplest version of our task can be stated as follows.

Task

PAYO0: Given the hours worked and rate of pay, write a program to compute the pay for a person
with a specified id number. Print out the data and the pay.

The algorithm in this case is very simple:

print title of program;

set the data: set id number, hours worked, and rate of pay;
set pay to the product of hours worked and rate of pay;
print the data and the results;

With this algorithm, it should be possible, without too much trouble, to implement the corre-
sponding program in almost any language since the fundamental constructs of most algorithmic

2.1. A SIMPLE C PROGRAM 31

programming languages are similar. While we will discuss the features of C, similar features are
usually available for most high level languages.

2.1.2 Translating the Algorithm to C

A program in a high level language, such as C, is called a source program or source code.
(Code is a generic term used to refer to a program or part of a program in any language, high or
low level). A program is made up of two types of items: data and procedures. Data is information
we wish to process and is referred to using its name. Procedures are descriptions of the required
steps to process the data and are also given names. In C, all procedures are called functions. A
program may consist of one or more functions, but it must always include a function called main.
This special function, main(), acts as a controller; directing all of the steps to be performed and
is sometimes called the driver. The driver, like a conductor or a coordinator, may call upon other
functions to carry out subtasks. When we refer to a function in the text, we will write its name
followed by parentheses, e.g. main(), to indicate that this is the name of a function.

The program that implements the above algorithm in C is shown in Figure 2.1. Let us first
look briefly at what the statements in the above program do during execution.

Any text between the markers, /* and */ is a comment or an explanation; it is not part of the
program and is ignored by the compiler. However, comments are very useful for someone reading
the program to understand what the program is doing. We suggest you get in the habit of including
comments in your programs right from the first coding. The first few lines between /* and */
are thus ignored, and the actual program starts with the function name, main(). Parentheses are
used in the code after the function name to list any information to be given to the function, called
arguments. In this case, main() has no arguments. The body of the function main () is a number
of statements between braces { and }, each terminated by a semi-colon.

The first two statements declare variables and their data types: id number is an integer type,
and hours worked, rate_of pay, and pay are floating point type. These statements indicate that
memory should be allocated for these kinds of data and gives names to the allocated locations.
The next statement writes or prints the title of the program on the screen.

The next three statements set the variables id_number, hours worked, and rate_of _pay to
some initial values: id_number is set to 123, hours_worked to 20.0, and rate_of pay to 7.5. The
next statement sets the variable pay to the product of the values of hours worked and rate_of_pay.
Finally, the last three statements print out the initial data values and the value of pay.

2.1.3 Running the Program

The program is entered and stored in the computer using an editor and saved in a file called pay0.c.
The above source program must then be compiled, i.e. translated into a machine language object
program using a compiler. Compilation is followed, usually automatically, by a linking process
during which the compiled program is joined with other code for functions that may be defined

32 CHAPTER 2. BASIC CONCEPTS

/* File: pay0O.c
Programmer: Programmer Name
Date: Current Date
This program calculates the pay for one person, given the hours worked
and rate of pay.

*/

main()

{ /* declarations */
int id_number;
float hours_worked,

rate_of_pay,

pay;

/* print title */
printf ("***Pay Calculation***\n\n");

/* initialize variables */
id_number = 123;
hours_worked = 20.0
rate_of_pay = 7.5;

/* calculate pay */
pay = hours_worked * rate_of_pay;

/* print data and results */

printf ("ID Number = %d\n", id_number);

printf ("Hours Worked = %f, Rate of Pay = Jf\n",
hours_worked, rate_of_pay);

prinf ("Pay = %f\n", pay);

Figure 2.1: Code for pay0.c

2.2. ORGANIZATION OF ¢ PROGRAMS — SIMPLE STATEMENTS 33

elsewhere. The C language provides a library of standard functions which are linked to every
program and are available for use in the program. The end result is an erecutable machine
language program also in a file. The executable machine language program is the only one that
can be executed on a machine. We will use the term compilation to mean both compiling and
linking to produce an executable program.

When the above program is compiled and executed on a computer, a sample session produces
the following on the terminal:

k*kPay Calculationx*

ID Number = 123
Hours Worked = 20.000000, Rate of Pay = 7.500000
Pay = 150.000000

Throughout this text, we will show all information printed by the computer in typewriter
style characters. As programs will frequently involve data entry by the user of the program
during execution, in a sample session, all information typed in by the user will be shown in slanted
characters.

2.2 Organization of C Programs — Simple Statements

We will now explain the syntax and semantics of the above program statements in more detail.
Refer back to the source program in Figure 2.1 as we explain the statements in the program.

2.2.1 Comment Statements

As already mentioned, the text contained within /* and */ is called a comment. When the
character pair /* is encountered, all subsequent text is ignored until the next */ is encountered.
Comments are not part of the program; they are private notes that the programmer makes about
the program to help one understand the logic. Comments may appear anywhere in a program but
cannot contain other comments, i.e., they cannot be nested. For example:

/* This is a comment. /* Nested comments are not allowed */ this part
is not in a comment. */

The comment starts with the first /*. When the first matching */ is encountered after the word
allowed, the comment is ended. The remaining text is not within the comment and the compiler
tries to interpret the remaining text as program statement(s), most likely leading to errors.

34 CHAPTER 2. BASIC CONCEPTS

2.2.2 Defining a Function — main()

To define a function in C, the programmer must specify two things: the function header, giving
a name and other information about the function; and the function body, where the variables
used in the function are defined and the statements which perform the steps of the function are
specified.

The Function Header

In C, main() is the function that controls the execution of every program. The program starts
executing with the first statement of main() and ends when main() ends. As we shall soon see,
main() may call upon, i.e. use, other functions to perform subtasks.

The first line of any function is the function header which specifies the name of the function
together with a parenthesized (possibly empty) argument list. In the above case, there is no
argument list. We will discuss the concepts of arguments and argument lists in the next chapter.

The Function Body

The body of the function is contained within braces { and }. In C, a group of statements within
braces is called a block which may contain zero or more statements and which may be nested, i.e.
there may be blocks within blocks. A block is treated and executed as a single unit and is often
called a compound statement. Such a compound statement may be used anywhere a statement
can occur.

A program statement is like a sentence in English, except that it is terminated by a semi-colon.
Statements within a block may be written in free form, i.e. words in programs may be separated by
any amount of white space. (White space consists of spaces, tabs, or newlines (carriage returns)).
Use of white space to separate statements and parts of a single statement makes programs more
readable and therefore easier to understand.

The function body (as for any block) consists of two parts: variable declarations and a list of
statements. Variable declarations will be described in more detail in the next section; however, all
such declarations must occur at the beginning of the block. Once the first executable statement
is encountered, no more declarations may occur for that block.

There are two types of statements used in our example (Figure 2.1); assignment statements
and statements for printing information from the program. These will be discussed more below.
The execution control flow proceeds sequentially in this program; when the function is executed,
it begins with the first statement in the body and each statement is executed in succession. When
the end of the block is reached, the function terminates. As we will soon see, certain control
statements can alter this sequential control flow in well defined ways.

2.2. ORGANIZATION OF ¢ PROGRAMS — SIMPLE STATEMENTS 35

2.2.3 Variable Declarations

A wvariable is a language construct for identifying the data items used within a block. The
declaration statements give names to these data items and specify the type of the item. The first
two statements in our program are such declarations. The information we have in our task is the
employee ID, the number of hours worked by the employee and the rate of pay. In addition, we will
compute the total amount of pay for the employee and must declare a variable for this information.
We have named variables for this information: id_number, hours worked, rate_of_pay, and pay.
We have also specified the type of each; for example, id_number is a whole number which requires
an integer type, so the keyword int is used. The remaining data items are real numbers (they
can have fractional values), so the keyword float is used to specify floating point type.

Variables of appropriate type (int, float, etc.) must be declared at the head of the block in
which they are used. Several variables of the same type may be grouped together in a declaration,
separated by commas.

int id_number;

float hours_worked,
rate_of_pay,
pay;

The names we have chosen for the variables are somewhat arbitrary; however, to make programs
readable and easier to understand, variable names should be descriptive and have some meaning
to the programmer. In programming languages, names are called identifiers and must satisfy
certain rules.

First, identifiers may not be keywords (such as int and float) which have special meaning
in C and are therefore reserved. All of these reserved words are listed in Appendix A. Otherwise,
identifiers may include any sequence of lower and upper case letters, digits, and underscores;
but the first character must be a letter or an underscore (though the use of an underscore as
a first character is discouraged). Examples of legal identifiers include PAD12, pad39, room 480,
etc. Alphabetic letters may be either lower case or upper case which are different; i.e. PAY, Pay,
and pay are distinct identifiers for three different objects. There is no limit to the length of an
identifier, however, there may be an implementation dependent limit to the number of significant
characters that can be recognized by a compiler. (This means that if two identifiers do not differ
in their first n characters, the compiler will not recognize them as distinct identifiers. A typical
value for n might be 31).

The general form for a declaration statement is:
<type_specifier> <identifier>[, <identifier>...];

Throughout this text we will be presenting syntax specifications as shown above. The items
surrounded by angle brackets (<>) are constructs of the language, for example <type_specifier>
is a type specifier such as int or float, and <identifier> is a legal identifier. Items surrounded

36 CHAPTER 2. BASIC CONCEPTS

main()
Size: 2 4 4 4
Type: int float float float
Name: id_.number hours_worked rate_of_pay pay
Addr: 100 102 106 10A
Mem

27 27 27 27
Colls 77 77 77 77

Figure 2.2: Allocation of Memory Cells or Objects

by square brackets ([|) are optional, i.e. they may or may not appear in a legal statement. The
ellipsis (...) indicates one or more repetitions of the preceding item. Any other symbols are
included in the statement exactly as typed. So, in words, the above syntax specification says that
a declaration statement consists of a type specifier followed by an identifier and, optionally, one
or more other identifiers separated by commas, all terminated by a semicolon.

As for the semantics (meaning) of this statement, a declaration statement does two things:
allocates memory within the block for a data item of the indicated type, and assigns a name to
the location. As we saw in Chapter 1, data is stored in the computer in a binary form, and different
types of data require different amounts of memory. Allocating memory for a data item means to
reserve the correct number of bytes in the memory for that type, i.e. choosing the address of the
memory cells where the data item is to be stored.

Figure 2.2 shows memory allocation for the declarations in our program as it might occur on
a 16 bit machine. The outer box shows that these variables have been allocated for the function
main(). For each variable we show the size of the data item (in bytes), its type, name and
assigned address assignment (in hex) above the box representing the cell itself. In the future,
we will generally show only the memory cell and its name in similar diagrams. Note that the
declaration statements do not put values in the allocated cells. We indicate this with the ¢7 in
the boxes.

Memory cells allocated for specific data types are called objects. An object is identified by its
starting address and its type. The type determines the size of the object in bytes and the encoding
used to represent it. A variable is simply a named object which can be accessed by using its name.
An analogy is gaining access to a house identified by the name of the person living there: Smith
house, Anderson house, etc.

2.2. ORGANIZATION OF ¢ PROGRAMS — SIMPLE STATEMENTS 37

main()

Size: 2 4 4 4

Type: int float float float
Name: id_.number hours_worked rate_of_pay pay
Addr: 100 102 106 10A
Mem 123 20.0 75 77
Cells . . —

Figure 2.3: Assignment of Values

Memory is automatically allocated for variables declared in a block when the block is entered
during execution, and the memory is freed when the block is exited. Such variables are called
automatic variables. The scope of automatic variables, i.e. the part of a program during
which they can be used directly by name, is the block in which they are defined.

2.2.4 The Assignment Statement

The next three statements in our program assign initial values to variables, i.e. store initial values
into objects represented by the variables. The assignment operator is =.

id_number = 123;
hours_worked = 20.0;
rate_of_pay = 7.5;

Each of the above statements stores the value of the expression on the right hand side of the
assignment operator into the object referenced by the variable on the left hand side, e.g. the
value stored in id_number is 123 (Figure 2.3). We will say the (current) value of id_number is
123. The value of a variable may change in the course of a program execution; for example, a
new assignment can store new data into a variable. Storing new data overwrites the old data;
otherwise, the value of a variable remains unchanged.

The “right hand side” of these three assignments is quite simple, a decimal constant. (The
compiler will take care of converting the decimal number we use in the source code into its

38 CHAPTER 2. BASIC CONCEPTS

main()

Size: 2 4 4 4

Type: int float float float
Name: id_.number hours_worked rate_of_pay pay
Addr: 100 102 106 10A
Mem 123 20.0 75 150.0
Cells - - -

Figure 2.4: Computation of pay

appropriate binary representation). However, in general the right hand side of an assignment
may be an arbitrary expression consisting of constants, variable names and arithmetic operators
(functions may also occur within expressions). For example, next, we calculate the product of the
value of hours worked and the value of rate of pay, and assign the result to the variable pay.
The multiplication operator is *.

pay = hours_worked * rate_of_pay;

The semantics of the assignment operator is as follows: the expression on the right hand side of
the assignment operator is first evaluated by replacing each instance of a variable by its current
value and the operators are then applied to the resulting operands. Thus, the above right hand
side expression is evaluated as:

20.0 * 7.5

The resulting value of the expression on the right hand side is then assigned to the variable on
the left hand side of the assignment operator. Thus, the value of 20.0 * 7.5, i.e. 150.0, is stored
in pay (Figure 2.4).

The above assignment expression may be paraphrased in FEnglish as follows:
“SET pay TO THE VALUE OF hours_worked * rate_of_pay”

or

2.2. ORGANIZATION OF ¢ PROGRAMS — SIMPLE STATEMENTS 39

“ASSIGN TO pay THE VALUE OF hours_worked * rate_of_pay”

The syntax of an assignment statement is:

<Lvalue>=<expression>;

The class of items allowed on the left hand side of an assignment operator is called an Lvalue,
a mnemonic for left value. Of course, <Lvalue> must always reference an object where a value is
to be stored. In what we’ve see so far, only a variable name can be an <lLvalue>. Later we will
see other ways of referencing an object which can be used as an <Lvalue>.

As we can see from the above discussion, variables provide us a means for accessing information
in our program. Using a variable on the left hand side of an assignment operator allows us to
store a value in its memory cell. Variables appearing elsewhere in expressions cause the current
value of the data item to be read and used in the expression.

In C every expression evaluated during execution results in a value. Assignment is also an
expression, therefore also results in a value. Assignment expressions may be used anywhere ex-
pressions are allowed. The rule for evaluating an assignment expression is: evaluate the expression
on the right hand side of the assignment operator, and assign the value to the variable on the left
hand side. The value of the entire assignment expression is the value assigned to the left hand side
variable. For example, x = 20 assigns 20 to x, and the value of the entire assignment expression
is 20. So if we wrotey = x = 20, the variable y would be assigned the value of the expression x =
20, namely 20. In our programming example we have used assignment expressions as statements
but ignored their values.

Any expression terminated by a semi-colon is a statement. Of course, a statement is typically
written to perform some useful action. Some additional examples of expressions as statements
are:

5 + 10;
z =20 x 5 + 10;

The last statement is an empty statement which does nothing. The expressions in the first two
statements accomplish nothing since nothing is done with their values.

C has a rich set of operators for performing computations in expressions. The common arith-
metic operators and their meanings are shown in Table 2.1. Two types of operators are shown;
unary operators which take one operand, and binary operators which take two operands. The
unary operators, + and - affect the sign of the operand. The binary operators are those you are
familiar with, except possibly %. This is the mod operator, which we will describe below, but
first one other point to make is that for the division operator /, if both operands are type integer,
then integer division is performed, discarding and fractional part with the result also being type

40 CHAPTER 2. BASIC CONCEPTS

Operator Name Example and Comments
+ plus sign 4z

— minus sign —x

+ addition x+y

— subtraction x—y

* multiplication =z %y

/ division z/y

if x, y are both integers,
then x/y is integer,
e.g.,5/31s 1.

% modulus %y
x and y MUST be integers:

result is remainder of

(z/y), e.g., 5%3 is 2.

Table 2.1: Arithmetic Operators

integer. Otherwise, a floating point result is produced for division. The mod operator evaluates
to the remainder after integer division. Specifically, the following equality holds:

(z/y)*y + (z%y) = =.

In words, if x and y are integers, multiplying the result of integer division by the denominator
and adding the result of mod produces the numerator. We will see many more operators in future
chapters.

2.2.5 Generating Output

Writing programs which declare variables and evaluate expressions would not be very useful if
there were no way to communicate the results to the user. Generally this is done by printing (or
writing) messages on the output.

Output of Messages

It is a good practice for a program to indicate its name or title when it is executed to identify the
task which is being performed. The next statement in our program is:

printf ("***Pay Calculation***\n\n");

2.2. ORGANIZATION OF ¢ PROGRAMS — SIMPLE STATEMENTS 41

The statement prints the program title on the terminal. This statement invokes the standard
function printf () provided by every C compiler in a standard library of functions. The function
printf () performs the subtask of writing information to the screen. When this statement is
executed, the flow of control in the program passes to the code for printf (), and when printf ()
has completed whatever it has to do, control returns to this place in the program. These sequence
of events is called a function call.

As can be seen in this case, a function can be called by simply using its name followed by a
(possibly empty) pair of parentheses. Anything between the parentheses is called an argument
and is information being sent to the function. In the above case, printf () has one argument,
a string of characters surrounded by double quotes, called a format string. As we shall soon
see, printf () can have more than one argument; however, the first argument of printf () must
always be a format string. This printf () statement will write the following to the screen:

k*kPay Calculationx*

followed by two newlines. Note that all of the characters inside the double quotes have been
printed (but not the quotes themselves), except those at the end of the string. The backslash
character, ‘\’, in the string indicates an escape sequence. It signals that the next character
must be interpreted in a special way. In this case, "\n’ prints out a newline character, i.e. all
further printing is done on the next line of output. We will encounter other escape sequences in
due time. Two newline escape sequences are used here; the first completes the line where “***Pay
Calculation®**” was written, and the second leaves a blank line in the output.

Output of Data

In addition to printing fixed messages, printf() can be used to print values of expressions by
passing the values as additional arguments separated by commas. We print out values of the initial
data and the result with the statements:

printf ("ID Number = %d\n", id_number);

printf ("Hours Worked = %f, Rate of Pay = Jf\n",
hours_worked, rate_of_pay);

printf("Pay = %f\n", pay);

The first argument of printf () must always be a format string and may be followed by any
number of addition argument expressions (in this case simple variable names). As before, all
regular characters in the format string are printed until the symbol %. The % and the following
character, called a conversion specification, indicate that the value of the next argument is to
be printed at this position in the output. The conversion character following % determines the
format to be printed. The combination %d signals that a decimal integer value is to be printed
at this position. Similarly, %f indicates that a decimal floating point value is to be printed at the

42 CHAPTER 2. BASIC CONCEPTS

indicated position. (To write a % character itself, use %% in the format string). Each conversion
specifier in the format string will print the value of one argument in succession.

The first printf () statement prints the value of id_number in the position where %d is located.
The internal form of the value of id_number is converted to a decimal integer format and printed
out. The output is:

ID Number = 123

The next printf () writes the value of hours worked at the position of the first %f, and the value
of rate_of pay at the position of the second %f. The internal forms are converted to decimal real
numbers (i.e., floating point) and printed. The output is:

Hours Worked = 20.000000, Rate of Pay = 7.500000

Observe that all regular characters in the format string, including the newline, are printed as
before. Only the format conversion specification, indicated by a % followed by a conversion
character d or f, is replaced by the value of the next unmatched argument. The floating point
value is printed with six digits after the decimal point by default.

The final statement prints:

pay = 150.000000

2.3 Testing the Program

As mentioned, the above program must be typed using an editor and saved in a file which we have
called pay0.c. The program in C, a high level language, is called the source program or source
code. It must be translated into the machine language for the particular computer being used.
The machine language program is the only one that can be understood by the hardware.

A special program called a compiler is used to compile, i.e. translate a source program into a
machine language program. The resulting machine language program is called the object code
or object program. The object code may be automatically or optionally saved in a file. The
terms source file and object file refer to the files containing the corresponding source code and
object code.

The compiled object code is usually still not executable. The object code needs to be linked to
machine language code for certain functions, e.g. code for library functions such as printf (), to
create an executable machine language code file. A linker or a link editor is used for this step of
linking disparate object codes. The linking step is usually automatic and transparent to the user.
We will refer to the executable code variously as the object code, the compiled program, or
the load module.

2.3. TESTING THE PROGRAM 43

The executable code is then loaded into memory and run. The loading step is also transparent
to the user; the user merely issues a command to run the executable code.

For many systems, the convention is that the source file name should end in .c as in pay0.c.
Conventions for object file names differ; on some systems object files end in .obj, on others
they end in .o, (Consult your system manuals for details). For compilation and execution, some
systems require separate commands, one to compile a C program and the other to execute a
compiled program. Other systems may provide a single command that both compiles and executes
a program. Check your operating system and compiler manuals for details.

For Unix systems, the cc command, with many available options, is used for compilation.
Examples are:

cc filename.c
cc -o outname filename.c

The first command line compiles the file filename.c and produces an executable file a.out. The
second directs that the executable file is to be named outname. These programs are then run by
typing the executable file name to the shell.

2.3.1 Debugging the Program

A program may have bugs, i.e. errors, in any of the above phases so these bugs must be removed;
a process called debugging. Some bugs are easy to remove; others can be difficult. These bugs
may appear at one of three times in testing the program: compile time, link time, and run time.

When a program is compiled, the compiler discovers syntax (grammar) errors, which occur
when statements are written incorrectly. These compile time errors are easy to fix since the
compiler usually pinpoints them reasonably well. The astute reader may have noticed there are
bugs in the program shown in Figure 2.1. When the file pay0.c is compiled on a Unix C compiler,
the following message is produced:

"payO.c", line 21: syntax error at or near variable name '"rate_of_pay"

This indicates some kind of syntax error was detected in the vicinity of line 21 near the variable
name rate_of _pay. On examining the file, we notice that there is a missing semi-colon at the end
of the previous statement:

hours_worked = 20.0

Inserting the semi-colon and compiling the program again eliminates the syntax error. In another
type of error, the linker may not be able to find some of the functions used in the code so the
linking process cannot be completed. If we now compile our file pay0.c again, we receive the
following message:

44 CHAPTER 2. BASIC CONCEPTS

/bin/1d: Unsatisfied symbols:
prinf (code)

It indicates the linker was unable to find the function prinf which must have been used in our
code. The linker states which functions are missing so link time errors are also easy to fix. This
error is obvious, we didn’t mean to use a function, prinf (), but merely misspelled printf () in
the statement

prinf ("Pay = %f\n", pay);

Fixing this error and compiling the program again, we can successfully compile and link the
program, yielding an executable file. As you gain experience, you will be able to arrive at a program
free of compile time and link time errors in relatively few iterations of editing and compiling the
program, maybe even one or two attempts.

A program that successfully compiles to an executable does not necessarily mean all bugs have
been removed. Those remaining may be detected at run time; i.e. when the program is executed
and may be of two types: computation errors and logic errors. An example of the former is an
attempt to divide by zero. Once these are detected, they are relatively easy to fix. The more
difficult errors to find and correct are program logic errors, i.e. a program does not perform its
intended task correctly. Some logic errors are obvious immediately upon running the program;
the results produced by the program are wrong so the statement that generates those results is
suspect. Others may not be discovered for a long time especially in complex programs where logic
errors may be hard to discover and fix. Often a complex program is accepted as correct if it works
correctly for a set of well chosen data; however, it is very difficult to prove that such a program is
correct in all possible situations. As a result, programmers take steps to try to avoid logic errors
in their code. These techniques include, but are not limited to:

Careful Algorithm Development

As we have stated, and will continue to state throughout this text, careful design of of the algorithm
is perhaps the most important step in programming. Developing and refining the algorithm using
tools such as the structural diagram and flow chart discussed in Chapter 1 before any coding
helps the programmer get a clear picture of the problem being solved and the method used for the
solution. It also makes you think about what must be done before worrying about how to do it.

Modular Programming

Breaking a task into smaller pieces helps both at the algorithm design stage and at the debugging
stage of program development. At the algorithm design stage, the modular approach allows the
programmer to concentrate on the overall meaning of what operations are being done rather than
the details of each operation. When each of the major steps are then broken down into smaller

2.3. TESTING THE PROGRAM 45

steps, again the programmer can concentrate on one particular part of the algorithm at a time
without worrying about how other steps will be done.

At debug time, this modular approach allows for quick and easy localization of errors. When
the code is organized in the modules defined for the algorithm, when an error does occur, the
programmer can think in terms of what the modules are doing (not how) to determine the most
likely place where something is going wrong. Once a particular module is identified, the same
refinement techniques can be used to further isolate the source of the trouble without considering
all the other code in other modules.

Incremental Testing

Just as proper algorithm design and modular organization can speed up the debugging process,
incremental implementation and testing can assist in program development. There are two ap-
proaches to this technique. The first is to develop the program from simpler instances of the task
to more complex tasks as we are doing for the payroll problem in this chapter. The idea is to
implement and test a simplified program and then add more complicated features until the full
specification of the task is satisfied. Thus beginning from a version of the program known to be
working correctly (or at least thoroughly tested), when new features are added and errors occur,
the location of the errors can be localized to added code.

The second approach to incremental testing stems from the modular design of the code. Fach
module defined in the design can be implemented and tested independently so that there is high
confidence that each module is performing correctly. Then when the modules are integrated
together for the final program, when errors occur, again only the added code need be considered
to find and correct them.

Program Tracing

Another useful technique for debugging programs begins after the program is coded, but before it
is compiled and run, and is called a program trace. Here the operations in each statement of the
program are verified by the programmer. In essence, the programmer is executing the program
manually using pencil and paper to keep track changes to key variables. Diagrams of variable
allocation such as those shown in Figures 2.2—2.4 may be used for this manual trace. Another
way of manually tracing a program is shown in Figure 2.5. Here the changes in variables is seen
associated with the statement which caused that change.

Program traces are also useful later in the debug phase. When an error is detected, a selective
manual trace of a portion or module of a program can be very instrumental in pinpointing the
problem. One word of caution about manual traces — care must be taken to update the variables
in the trace according to the statement as written in the program, not according to the intention
of the programmer as to what that statement should do.

Manual traces can become very complicated and tedious (one rarely traces an entire program),

46 CHAPTER 2. BASIC CONCEPTS

/* File: pay0O.c
Programmer: Programmer Name
Date: Current Date
This program calculates the pay for one person, given the
hours worked and rate of pay.

*/
main() PROGRAM TRACE
{ hours_ rate_of_
/* declarations */ id_number worked pay pay
int id_number; iale
float hours_worked, 7
rate_of_pay, 7
pay; ’?
/* print title */
printf ("***Pay Calculation***\n\n");
/* initialize variables */
id_number = 123; 123 7 7 7
hours_worked = 20; 123 20.0 77 7
rate_of_pay = 7.5; 123 20.0 7.5 iale
/* calculate results */
pay = hours_worked * rate_of_pay;
123 20.0 7.5 150.0
/* print data and results */
printf ("ID Number = %d\n", id_number);
printf ("Hours Worked = %f, Rate of Pay = Jf\n",
hours_worked, rate_of_pay);
printf ("Pay = %f\n", pay);
t

Figure 2.5: Program Trace for pay0.c

2.4. INPUT: READING DATA 47

however selective application of this technique is a valuable debugging tool. Later in this chapter
we will discuss how the computer itself can assist us in generating traces of a program.

2.3.2 Documenting the Code

As a programmer, there are several “good” habits to develop for translating an algorithm into
a source code program which support debugging as well as general understanding of the code.
These habits fall under the topic of “coding for readability”. We have already mentioned a few of
these such as commenting the code and good choices of names for variables and functions. With
good naming, the syntax of the C language allows for relatively good self documenting code; i.e.
C source statements which can be read and understood with little effort.

Well documented code includes additional comments which clarify and amplitfy the meaning
or intention of the statements. A good source for comments in your code are the steps of the
algorithm you designed for the program. A well placed comment identifying which statements
implement each step of the algorithm makes for easily understood programs.

Another good habit is to include judicious amounts of white space in your program. The C
compiler would accept your program all written on one line; however, this would be very difficult
for someone to read. Instead, space out your statements, separating groups of statements that
perform logically different operations. It is also good to indent the statements in your program so
that blocks are clearly identified at a glance. You will notice we have done that in Figure 2.1 and
will continue throughout this text. There is no standard for indenting code, so you should choose
a convention that is natural for you, as long as it is clear and you are consistent.

One last point: even though we have concentrated on the documentation of the code at the
end of our discussion on this program, good documentation should be considered throughout the
programming process. A bad habit to get into is to write the code and document it after it is
working. A good habit is to include documentation in the code from the beginning.

In this section we have looked in detail at a C program that solves our simplified version of
the payroll problem. The program in file pay0.c is not very useful since it can only be used to
calculate pay for a specified set of data values because the data values are assigned to variables
as constants in the program itself. If we needed to calculate the pay with some other employee,
we would have to modify the program with new values and recompile and execute the program.
For a program to be useful, it should be flexible enough to use any set of data values. In fact, the
user should be able to enter a set of data during program execution, and the program should read
and use these data values.

2.4 Input: Reading Data

To address the deficiency in our program mentioned above, the next task is to write a program
that reads data typed by the user at the keyboard, calculates pay, and prints out the data and

48 CHAPTER 2. BASIC CONCEPTS

the results. In this case, the program must communicate with the user to get the input data.

Task

PAY1: Same as PAYO0, except that the data values id number, hours worked, and rate_of pay
should be read in from the keyboard.

The algorithm is the same as before except that the data is read rather than set:

print title of program;

read the data for id_number, hours_worked, and rate_of_pay;
set pay to the product of hours worked and rate of pay;
print the data and the results;

In the implementation of the above algorithm, we must read in data from the keyboard. In a
C program, all communication with a user is performed by functions available in the standard
library. We have already used printf () to write on the screen. Similarly, a function, scanf (), is
available to read data in from the keyboard and store it in some object. Printf () performs the
output function and scanf () performs the input function.

The function scanf () must perform several tasks: read data typed at the keyboard, convert
the data to its internal form, and store it into an object. In C, there is no way for any function,
including scanf (), to directly access a variable by its name defined in another function. Recall
that we said the scope of a variable was the block in which it was defined, and it is only within
this scope that a variable name is recognized. But if scanf () cannot directly access a variable in
main(), it cannot assign a value to that variable. So how does scanf () store data into an object?
A function can use the address of an object to indirectly access that object.

Therefore,scanf () must be supplied with the address of an object in which a data value is
to be stored. In C, the address of operator, &, can be used to obtain the address of an object.
For example, the expression &x evaluates to the address of the variable x. To read the id number
from the keyboard and store the value into id number, hours worked and rate_of pay we use
the statements:

scanf ("%d", &id_number);
scanf ("%f", &hours_worked) ;

scanf ("4f", &rate_of_pay);

The first argument of scanf () is a format string as it was for printf (). The conversion specifica-
tion, %d, specifies that the input is in decimal integer form. Scanf () reads the input, converts it to
an internal form, and stores it into an integer object whose address is given by the next unmatched
argument. In this case, the value read is stored into the object whose address is &1d _number, i.e.
the value is stored into id number. The remaining two scanf statements work similarly, except
the conversion specification is %f, to indicate that a floating point number is to be read, converted

2.4. INPUT: READING DATA 49

1| 2| 3 2 10| . |5 |wm

Figure 2.6: Keyboard Buffer

to internal form and stored in the objects whose addresses are &hours worked and &rate_of pay
respectively. The type of the object must match the conversion specification, i.e. an integer value
must be stored into an int type object and a floating point value into a float object.

To better understand how scanf () works, let us look in a little more detail. As a user types
characters at the keyboard they are placed in a block of memory called a buffer (most but not
all systems buffer their input). The function scanf () does not have access to this buffer until
it is complete which is indicated when the user types the newline character, i.e. the RETURN
key. (see Figure 2.6). The function scanf () then begins reading the characters in the buffer one
at a time. When scanf () reads numeric input, it first skips over any leading white space and
then reads a sequence of characters that make up a number of the specified type. For example,
integers may only have a sign (+or—) and the digits 0 to 9. A floating point number may possibly
have a decimal point and the e or E exponent indicators. The function stops reading the input
characters when it encounters a character that does not belong to the data type. For example, in
Figure 2.6, the first scanf () stops reading when it sees the space character after the 3. The data
is then converted to an internal form and stored into the object address specified in the argument.
Any subsequent scanf () performed will begin reading where the last left off in the buffer, in this
case at the space. When the newline character has been read, scanf () waits until the user types
another buffer of data.

At this point we can modify our program by placing the scanf () statements in the code
replacing the assignments to those variables. However, when we compile and execute the new
program, nothing happens; no output is generated and the program just waits. The user does not
know when a program is waiting for input unless the program prompts the user to type in the
desired items. We use printf () statements to print a message to the screen telling the user what
to do.

printf ("Type ID Number: ");
scanf ("%d", &id_number);
printf ("Hours Worked: ");
scanf ("%f", &hours_worked) ;
printf ("Hourly Rate: ");
scanf ("4f", &rate_of_pay);

The prompts are not necessary to read the data, without them, scanf () will read what is typed;
but the user will not know when to enter the required data. We can now incorporate these
statements into a program that implements the above algorithm shown as the file payl.c in
Figure 2.7. When the program is run, here is the sample output:

k*kPay Calculationx*

50 CHAPTER 2. BASIC CONCEPTS

/* File: payl.c
Programmer: Programmer Name
Date: Current Date
This program calculates the pay for one person with the
hours worked and the rate of pay read in from the keyboard.

*/

main()
{
/* declarations */
int id_number;
float hours_worked,
rate_of_pay,

pay;

/* print title */
printf ("***Pay Calculation***\n\n");

/* read data into variables */
printf ("Type ID Number: ");
scanf ("%d", &id_number);
printf ("Hours Worked: ");
scanf ("%f", &hours_worked) ;
printf ("Hourly Rate: ");

scanf ("4f", &rate_of_pay);

/* calculate results */
pay = hours_worked * rate_of_pay;

/* print data and results */

printf ("\nID Number = %d\n", id_number);

printf ("Hours Worked = %f, Rate of Pay = Jf\n",
hours_worked, rate_of_pay);

printf("Pay = %f\n", pay);

Figure 2.7: Code for payl.c

2.5. MORE C STATEMENTS 51

Type ID Number: 123
Hours Worked: 20
Hourly Rate: 7.5

ID Number = 123
Hours Worked = 20.000000, Rate of Pay = 7.500000
Pay = 150.000000

Everything the user types at the keyboard is also echoed to the screen, and is shown here in slanted
characters.

We have now seen two ways of storing data into objects: assignment to an object and reading
into an object. Assignment stores the value of an expression into an object. Reading into an
object involves reading data from the input, converting it to an internal form, and storing it in an
object at a specified address.

The function scanf() can read several items of data at a time just as printf() can print
several items of data at a time. For example,

scanf ("%d %f %f", &id_number, &hours_worked, &rate_of_pay);

would read an integer and store it in id_number, read a float and store it in hours_worked, and
read a float and store it in rate_of pay. Of course, the prompt should tell the user to type the
three items in the order expected by scanf ().

2.5 More C Statements

Our program payl.c is still very simple. It calculates pay in only one way, the product of
hours_worked and rate_of_pay. Our original problem statement in Chapter 1 called for com-
puting overtime pay and for computing the pay for many employees. In this section we will look
at additional features of the C language which will allow us to modify our program to meet the
specification.

2.5.1 Making Decisions with Branches

Suppose there are different pay scales for regular and overtime work, so there are alternate ways of
calculating pay: regular pay and overtime pay. Our next task is to write a program that calculates
pay with work over 40 hours paid at 1.5 times the regular rate.

52 CHAPTER 2. BASIC CONCEPTS

Task

PAY?2: Same as PAY1, except that overtime pay is calculated at 1.5 times the normal rate.

For calculating pay in alternate ways, the program must make decisions during execution; so,
we wish to incorporate the following steps in our algorithm:

1f hours_worked is greater than 40.0,
then calculate pay as the sum of
excess hours at the overtime rate plus
40.0 hours at regular rate;
otherwise, calculate pay at the regular rate.

The program needs to make a decision: is hours_worked greater than 40.07 If so, execute one
computation; otherwise, execute the alternate computation. Each alternate computation is im-
plemented as a different path for program control flow to follow, called a branch. C provides a
feature for implementing this algorithm form as follows:

if (hours_worked > 40.0)
pay = 40.0 * rate_of_pay +
1.5 * rate_of_pay * (hours_worked - 40.0);
else
pay = hours_worked * rate_of_pay;

The above if statement first evaluates the expression within parentheses:
hours_worked > 40.0

and if the expression is True, i.e. hours worked is greater than 40.0, then the first statement is
executed. Otherwise, if the expression is False, the statement following the else is executed. After
one of the alternate statements is executed, the statement after the if statement will be executed.
That is, in either case, the program control passes to the statement after the if statement.

The general syntax of an if statement is:
if (<expression>) <statement> [else <statement>]

The keyword if and the parentheses are required as shown. The two <statement>s shown are
often called the then clause and the else clause respectively. The statements may be any valid
C statement including a simple statement, a compound statement (a block), or even an empty
statement. The else clause, the keyword else followed by a <statement>, is optional. Omitting
this clause is equivalent to having an empty statement in the else clause. An if statement can be
nested, i.e. either or both branches may also be if statements.

2.5. MORE C STATEMENTS 33

True
expression

Y Y

False (optional)

statement statement

Figure 2.8: If statement control flow

The semantics of the if statement are that the expression (also called the condition) is
evaluated, and the control flow branches to the then clause if the expression evaluates to True,
and to the else clause (if any) otherwise. Control then continues with the statement immediately
after the if statement. This control flow is shown in Figure 2.8.

It should be emphasized that only one of the two alternate branches is executed in an if
statement. Suppose we wish to check if a number, z, is positive and also check if it is big, say
greater than 100. Let us examine the following statement:

if (x > 0)
printf("/d is a positive number\n", x);
else if (x > 100)
printf("%d is a big number greater than 100\n", x);

If x is positive, say 200, the first 1f condition is True and the first printf () statement is executed.
The control does not proceed to the else part at all, even though x is greater than 100. The else
part is executed only if the first if condition is False. When two conditions overlap, one must
carefully examine how the statement are constructed. Instead of the above, we should write:

if (x > 0)
printf("/d is a positive number\n", x);
if (x > 100)
printf("%d is a big number greater than 100\n", x);

Each of the above is a separate if statement. If x is positive, the first printf () is executed.
In either case control then passes to the next if statement. If x is greater than 100, a message

54 CHAPTER 2. BASIC CONCEPTS

is again printed. Another way of writing this, since (x > 100) is True only when (x > 0), we
could write:

if (x> 0) {
printf("/d is a positive number\n", x);
if (x > 100)
printf("%d is a big number greater than 100\n", x);

It (x > 0) is true, the compound statement is executed. It prints a message and executes the if
(x > 100) ... statement. Suppose, we also wish to print a message when x is negative. We can
add an else clause to the first if statement since positive and negative numbers do not overlap.

if (x > 0) {
printf("/d is a positive number\n", x);
if (x > 100)
printf("%d is a big number greater than 100\n", x);

}
else if (x < 0)
printf("%d is a negative number\n", x);

Something for you to think about: is there any condition for which no messages will be printed

by the above code?

Returning to our payroll example, suppose we wish to keep track of both regular and overtime
pay for each person. We can write the if statement:

if (hours_worked > 40.0) {
regular_pay = 40.0 * rate_of_pay;
overtime_pay = 1.5 * rate_of_pay * (hours_worked - 40.0);

}

else {
regular_pay = hours_worked * rate_of_pay;
overtime_pay = 0.0;

}

pay = regular_pay + overtime_pay;

Note: both clauses in this case are compound statements; each block representing a branch
is treated as a single unit. Whichever branch is executed, that entire block is executed. If
hours_worked exceeds 40.0, the first block is executed; otherwise, the next block is executed.
Note, both blocks compute regular and overtime pay so that after the if statement the total
pay can be calculated as the sum of regular and overtime pay. Also observe that we have used
consistent data types in our expressions to forestall any unexpected problems. Since variables in
the expressions are float type, we have used floating point constants 40.0, 1.5, and 0.0.

2.5. MORE C STATEMENTS)

Operator Meaning

> greater than

>= greater than or equal to
< less than

<= less than or equal to
== equal to

= not equal to

Table 2.2: Relational Operators
Relational Operators

The greater than operator, >, used in the above expressions is called a relational operator.
Other relational operators defined in C, together with their meanings are shown in Table 2.2 Note
that for those relational operators having more than one symbol, the order of the symbols must
be as specified in the table (>= not =>). Also take particular note that the equality relational
operator is ==, NOT =, which is the assignment operator.

A relational operator compares the values of two expressions, one on each side of it. If the
two values satisfy the relational operator, the overall expression evaluates to True; otherwise,
it evaluates to False. In C, an expression that evaluates to False has the value of zero and
an expression that evaluates to True has a non-zero value, typically 1. The reverse also holds;
an expression that evaluates to zero is interpreted as False when it appears as a condition and
expression that evaluates to non-zero is interpreted as True.

2.5.2 Simple Compiler Directives

In some of the improvements we have made so far to our program for PAY2, we have used numeric
constants in the statements themselves. For example, in the code:

if (hours_worked > 40.0) {
regular_pay = 40.0 * rate_of_pay;
overtime_pay = 1.5 * rate_of_pay * (hours_worked - 40.0);

}

else {
regular_pay = hours_worked * rate_of_pay;
overtime_pay = 0.0;

}

pay = regular_pay + overtime_pay;

we use the constant 40.0 as the limit on the number of regular pay hours (hours beyond this are
considered overtime), and the constant 1.5 as the overtime pay rate (time and a half). Use of

56 CHAPTER 2. BASIC CONCEPTS

numeric constants (sometimes called “magic numbers”) in program code is often considered bad
style because the practice makes the program logic harder to understand and debug. In addition,
the practice makes programs less flexible, since making a change in the values of numeric constants
requires that the entire code be reviewed to find all instances where the “magic number” is used.

C, like many other programming languages, allows the use of symbolic names for constants
in programs. This facility makes use of the C preprocessor and takes the form of compiler
directives. Compiler directives are not, strictly speaking, part of the source code of a program,
but rather are special directions given to the compiler about how to compile the program. The
directive we will use here, the define directive, has syntax:

#define <symbol_name> <substitution_string>

All compiler directives, including define, require a # as the first non-white space character in
a line. (Some older compilers require that # be in the first column of a line but most modern
compilers allow leading white space on a line before #). The semantics of this directive is to define
a string of characters, <substitution_string>. which is to be substituted for every occurrence of the
symbolic name, <symbol_name>, in the code for the remainder of the source file. Keep in mind,
a directive is not a statement in C, nor is it terminated by a semi-colon; it is simply additional
information given to the compiler.

In our case, we might use the following compiler directives to give names to our numeric

constants:
#tdefine REG_LIMIT 40.0
#tdefine OT_FACTOR 1.5

These directives define that wherever the string of characters REG_LIMIT occurs in the source file,
it is to be replaced by the string of characters 40.0 and that the string OT_FACTOR is to be replaced
by 1.5. With these definitions, it is possible for us to use REG_LIMIT and OT_FACTOR in the program
statements instead of numeric constants. Thus our code would become:

if (hours_worked > REG_LIMIT) {
regular_pay = REG_LIMIT * rate_of_pay;
overtime_pay = OT_FACTOR * rate_of_pay * (hours_worked - REG_LIMIT);

}

else {
regular_pay = hours_worked * rate_of_pay;
overtime_pay = 0.0;

}

pay = regular_pay + overtime_pay;

The code is now more readable; it says in words exactly what we mean by these statements. Before
compilation proper, the preprocessor replaces the symbolic constants with strings that constitute

2.5. MORE C STATEMENTS 57

actual constants; the string of characters 40.0 for the string REG_LIMIT and 1.5 for OT_FACTOR
throughout the source program code.

The rules for the symbol names in directives are the same as those for identifiers. A common
practice used by many programmers is to use upper case for the symbolic names in order to
distinguish them from variable names. Remember, define directives result in a literal substitution
without any data type checking, or evaluation. It is the responsibility of the programmer to use
defines correctly. The source code is compiled after the preprocessor performs the substitutions.

The implementation of the PAY2 algorithm incorporating the above defines and other improve-
ments discussed so far is shown in Figure 2.9. Note in the code, when the hours worked do not
exceed REG_LIMIT, the overtime pay is set to zero. A constant zero value in a program code is not
unreasonable when the logic is clear enough.

Here is a sample session from the resulting executable file:

k*kPay Calculationx*

Type ID Number: 456
Hours Worked: 50
Hourly Rate: 10

ID Number = 456

Hours Worked = 50.000000, Rate of Pay = 10.000000
Regular Pay = 400.000000, Overtime Pay = 150.000000
Total Pay = 550.000000

2.5.3 More on Expressions

Expressions used for computation or as conditions can become complex, and considerations must
be made concerning how they will be evaluated. In this section we look at three of these consider-
ations: precedence and associativity, the data type used in evaluating the expression, and logical
operators.

Precedence and Associativity

Some of the assignment statements in the last section included expressions with more than one
operator in them. The question can arise as to how such expressions are evaluated. Whenever there
are several operators present in an expression, the order of evaluation depends on the precedence
and associativity (or grouping) of operators as defined in the programming language. If operators
have unequal precedence levels, then the operator with higher precedence is evaluated first. If
operators have the same precedence level, then the order is determined by their associativity.
The order of evaluation according to precedence and associativity may be overridden by using
parentheses; expressions in parentheses are always evaluated first.

58 CHAPTER 2. BASIC CONCEPTS

/* File: pay2.c
Programmer: Programmer Name
Date: Current Date
This program calculates the pay for one person, given the
hours worked and rate of pay.

x/

#define REG_LIMIT 40.0
#define OT_FACTOR 1.5
main()

{ /* declarations */

int id_number;
float hours_worked,
rate_of_pay,
regular_pay, overtime_pay, total_pay;

/* print title */
printf ("***Pay Calculation***\n\n");

/* read data into variables */
printf ("Type ID Number: ");
scanf ("%d", &id_number);
printf ("Hours Worked: ");
scanf ("%f", &hours_worked) ;
printf ("Hourly Rate: ");

scanf ("4f", &rate_of_pay);

/* calculate results */
if (hours_worked > REG_LIMIT) {
regular_pay = REG_LIMIT * rate_of_pay;
overtime_pay = OT_FACTOR * rate_of_pay *
(hours_worked - REG_LIMIT);

}

else {
regular_pay = hours_worked * rate_of_pay;
overtime_pay = 0.0;

}

total_pay = regular_pay + overtime_pay;

2.5. MORE C STATEMENTS

/* print data and results */

printf ("\nID Number = %d\n", id_number);

printf ("Hours Worked = %f, Rate of Pay = Jf\n",
hours_worked, rate_of_pay);

printf ("Regular Pay = %f, Overtime Pay = %f\n",
regular_pay, overtime_pay);

printf("Total Pay = %f\n", total_pay);

Figure 2.9: Code for pay2.c

Operator Associativity Type

+, - right to left | unary arithmetic
x, /. % left to right | binary arithmetic
+, - left to right | binary arithmetic

<, <=, >, >=| left toright | binary relational

==, = left to right | binary relational

Table 2.3: Precedence and Associativity of Operators

60 CHAPTER 2. BASIC CONCEPTS

Table 2.3 shows the arithmetic and relational operators in precedence level groups separated by
horizontal lines. The higher the group in the table, the higher its precedence level. For example,
the precedence level of the binary operators *, /, and % is the same but it is higher than that of
the binary operator group +, -. Therefore, the expression

X+yx*z

is evaluated as

x + (y * 2)

Associativity is also shown in the table. Left to right associativity means operators with the
same precedence are applied in sequence from left to right. Binary operators are grouped from
left to right, and unary from right to left. For example, the expression

x/y/ z

is evaluated as

x/y)/ z

The precedence of the relational operators is lower than that of arithmetic operators, so if we
had an expression like

X+y>x-y3

it would be evaluated as

(x+y) > (x -y

However, we will often include the parentheses in such expressions to make the program more
readable.

From our payroll example, consider the assignment expression:

overtime_pay = OT_FACTOR * rate_of_pay * (hours_worked - REG_LIMIT);

In this case, the parentheses are required because the product operator, *, has a higher precedence
than the sum operator. If these parentheses were not there, the expression would be evaluated as:

overtime_pay = (((OT_FACTOR * rate_of_pay) * hours_worked) - REG_LIMIT);

2.5. MORE C STATEMENTS 61

where what we intended was:
overtime_pay = ((OT_FACTOR * rate_of_pay) * (hours_worked - REG_LIMIT));

That is, the subtraction to be done first, followed by the product operators. There are several
product operators in the expression; they are evaluated left to right in accordance with their
associativity. Finally, the assignment operator, which has the lowest precedence, is evaluated.

Precise rules for evaluating expressions will be discussed further in Chapter 5 where a complete
table of the precedence and associativity of all C operators will be given. Until then, we will point
out any relevant rules as we need them and we will frequently use parentheses for clarity.

Data Types in Expressions

Another important consideration in using expressions is the type of the result. When operands of
a binary operator are of the same type, the result is of that type. For example, a division operator
applied to integer operands results in an integer value. If the operands are of mixed type, they are
both converted to the type which has the greater range and the result is of that type; so, if the
operands are int and float, then the result is floating point type. Thus, 8/5 is 1 and 8/5.0 is 1.6.
The C language will automatically perform type conversions according to these rules; however,
care must be taken to ensure the intent of the arithmetic operation is implemented. Let us look
at an example.

Suppose we have a task to find the average for a collection of exam scores. We have already
written the code which sums all the the scores into a variable total_scores and counted the
number of exams in a variable number_exams. Since both of these data items are integer values,
the variables are declared as type int. The average, however is a real number (has a fractional
part) so we declared a variable average to be of type float. So we might write statements:

int total_scores, number_exams;
float average;

average = total_scores / number_exams;

in our program. However, as we saw above, since total scores and number exams are both
integers, the division will be done as integer division, discarding any fractional part. C will then
automatically convert that result to a floating point number to be assigned to the variable average.
For example, if total_scores is 125 and number_exams is 10, the the right hand side evaluates
to the integer 12 (the fractional part is truncated) which is then converted to a float, 12.0 when
it is assigned to average. The division has already truncated the fractional part, so our result
will always have 0 for the fractional part of average which may be in error. We could represent
either total_scores or number_exams as float type to force real division, but these quantities

62 CHAPTER 2. BASIC CONCEPTS

Logical C
AND &&
OR |
NOT !

Table 2.4: Logical Operator Symbols in C

are more naturally integers. We would like to temporarily convert one or both of these values to
a real number, only to perform the division. C provides such a facility, called the cast operator.
In general, the syntax of the cast operator is:

(<type-specifier>) <expression>

which converts the value of <expression> to a type indicated by the <type-specifier>. Only the
value of the expression is altered, not the type or representation of the variables used in the
expression. The average is then computed as:

average = (float) total_scores / (float) number_exams;

The values of the variables are first both converted to float (e.g. 125.0 and 10.0), the division
is performed yielding a float result (12.5) which is then assigned to average. We cast both
variables to make the program more understandable. In general, it is good programming practice
to cast variables in an expression to be all of the same type. After all, C will do the cast anyway,
the cast is simply making the conversion clear in the code.

Logical Operators

It is frequently necessary to make decisions based on a logical combination of True and False values.
For example, a company policy may not allow overtime pay for highly paid workers. Suppose only
those workers, whose rate of pay is not higher than a maximum allowed value, are paid overtime.
We need to write the pay calculation algorithm as follows:

if ((hours_worked > REG_LIMIT) AND (rate_of_pay <= MAXRATE))
calculate regular and overtime pay

else
calculate regular rate pay only, no overtime.

If hours worked exceeds the limit, REG_LIMIT, AND rate of pay does not exceed MAXRATE,
then overtime pay is calculated; otherwise, pay is calculated at the regular rate. Such logical
combinations of True and False values can be performed using logical operators. There are three
generic logical operators: AND, OR, and NOT. Symbols used in C for these logical operators are

2.5. MORE C STATEMENTS 63

el && e2 el || e2

== R
SIS] e
CECNCES

== e

T
T
T
F

Table 2.5: Truth Table for Logical Combinations

shown in Table 2.4 Table 2.5 shows logical combinations of True and False values and the resulting
values for each of these logical operators. We have used T and F for True and False in the table.
From the table we can see that the result of the AND operation is True only when the two
expression operands are both True; the OR operation is True when either or both operands are
True; and the NOT operation, a unary operator, is True when its operand is False.

We can use the above logical operators to write a pay calculation statement in C as follows:

if ((hours_worked > REG_LIMIT) && (rate_of_pay <= MAXRATE)) {
regular_pay = REG_LIMIT * rate_of_pay;
overtime_pay = OT_FACTOR * rate_of_pay *
(hours_worked - REG_LIMIT);

}

else {
regular_pay = hours_worked * rate_of_pay;
overtime_pay = O;

}

(We assume that MAXRATE is defined using a define directive). We use parentheses to ensure
the order in which expressions are evaluated. The expressions in the innermost parentheses are
evaluated first, then the next outer parentheses are evaluated, and so on. If (hours_worked >
REG LIMIT) is True AND (rate_of pay <= MAXRATE) is True, then the whole if expression is
True and pay is calculated using the overtime rate. Otherwise, the expression is False and pay is
calculated using regular rate.

In C, an expression is evaluated for True or False only as far as necessary to determine the result.
For example, if (hours_ worked > REG_LIMIT) is False, the rest of the logical AND expression need
not be evaluated since whatever its value is, the AND expression will be False.

A logical OR applied to two expressions is True if either expression is True. For example, the
above statement can be written in C with a logical OR operator, ||.

if ((hours_worked <= REG_LIMIT) || (rate_of_pay > MAXRATE)) {
regular_pay = hours_worked * rate_of_pay;
overtime_pay = O;

64 CHAPTER 2. BASIC CONCEPTS

else {
regular_pay = REG_LIMIT * rate_of_pay;
overtime_pay = OT_FACTOR * rate_of_pay *
(hours_worked - REG_LIMIT);

It either hours worked does not permit overtime OR the rate exceeds MAXRATE for overtime,
calculate regular rate pay; otherwise, calculate regular and overtime pay. Again, if (hours_worked
<= REG.LIMIT) is True, the logical OR expression is not evaluated further since the result is
already known to be True. Precedence of logical AND and OR operators is lower than that
of relational operators so the parentheses in the previous two code fragments are not required;
however, we have used them for clarity.

Logical NOT applied to a True expression results in False, and vice versa. We can rewrite the
above statement using a logical NOT operator, !, as follows:

if ((hours_worked > REG_LIMIT) && '(rate_of_pay > MAXRATE)) {
regular_pay = REG_LIMIT * rate_of_pay;
overtime_pay = OT_FACTOR * rate_of_pay *
(hours_worked - REG_LIMIT);

}

else {
regular_pay = hours_worked * rate_of_pay;
overtime_pay = O;

}

It hours worked exceed REG_LIMIT, AND it is NOT True that rate of pay exceeds MAXRATE, then
calculate overtime pay, etc. The NOT operator is unary and its precedence is higher than binary
operators; therefore, the parentheses are required for the NOT expression shown.

2.5.4 A Simple Loop — while

Our latest program, pay2.c, still calculates pay for only one individual. If we have 50 people on
the payroll, we must run the above program separately for each person. For our program to be
useful and flexible, we should be able to repeat the same logical process of computation as many
times as desired; i.e. it should be possible to write a program that calculates pay for any number
of people.

Task

PAY3: Same as PAY2, except that the program reads data, computes pay, and prints the data
and the pay for a known number of people.

2.5. MORE C STATEMENTS 65

Let us first see how to repeat the process of reading data, calculating pay, and printing the
results a fixed number, say 10, times. To repeatedly execute an identical group of statements, we
use what is called a loop. To count the number of times we repeat the computation, we use an
integer variable, count. The logic we wish to implement is:

set count to O
repeat the following as long as count is less than 10
read data
calculate pay
print results
increase count by 1

Initially, we set count to zero and we will repeat the process as long as count is less than 10.
Each time we execute the loop, we increment count so that for each value of count (0, 1, 2, ...,
9), one set of data is processed. When count is 10, i.e. it is NOT less than 10, the repeating or
looping is terminated.

The C language provides such a control construct; a while statement is used to repeat a
statement or a block of statements. The syntax for a while statement is:

while (<expression>) <statement>

The keyword while and the parentheses are required as shown. The <expression>> is a condition as
it was for the if statement, and the <statement> may be any statement in C such as an empty
statement, a simple statement, or a compound statement (including another while statement).

The semantics of the while statement is as follows. First, the while expression or condition,
<expression>, is evaluated. If True, the <statement>> is executed and the <expression> is evaluated
again, etc. If at any time the <expression> evaluates to False, the loop is terminated and control
passes to the statement after the while statement. This control flow for a while statement is
shown in Figure 2.10.

To use the while statement to implement the algorithm above, there are several points to note
about loops. The loop variable(s), i.e. variables used in the expression, must be initialized prior
to the loop; otherwise, the loop expression is evaluated with unknown (garbage) value(s) for the
variable(s). Second, if the loop expression is initially True, the loop variable(s) must be modified
within the loop body so that the expression eventually becomes False. Otherwise, the loop will be
an infinite loop, i.e. the loop repeats indefinitely. Therefore, a proper loop requires the following
steps:

initialize loop variable(s)
while (<expression>) {

update loop variable(s)

66 CHAPTER 2. BASIC CONCEPTS

) False
expression

True

statement

Figure 2.10: Control Flow for while statement

Keeping this syntax and semantics in mind, the code for the above algorithm fragment using
a while loop is shown in Figure 2.11.

First, count is initialized to zero and tested for loop termination. The while statement will
repeat as long as the while expression, i.e. (count < 10),is True. Since count is 0, the condition
is true, so the body of the loop is executed. The loop body is a block which reads data, calculates
pay, prints results, and increases the value of count by one. Except for updating count, the
statements in the loop body are the same as those in the previous program in Figure 2.9. The
count is updated by the assignment statement:

count = count + 1;

In this statement, the right hand side is evaluated first, i.e. one is added to the current value
of count, then the new value is then stored back into count. Thus, the new value of count is
one greater than its previous value. For the first iteration of the loop, count is incremented
from 0 to 1 and the condition is tested again. Again (count < 10) is True, so the loop body
is executed again. This process repeats until count becomes 10, (count < 10) is False, and the
while statement is terminated. The program execution continues to the next statement, if any,
after the while statement.

The above while loop is repeated ten times, once each for count = 0, 1, 2, ..., 9. We can also
count the number of iterations to be performed as follows:

count = 10;
while (count > 0) {

count = count - 1;

2.5. MORE C STATEMENTS

count = 0;

while (count < 10) {
/* read data into variables */
printf ("Type ID Number: ");
scanf ("%d", &id_number);
printf ("Hours Worked: ");
scanf ("%f", &hours_worked) ;
printf ("Hourly Rate: ");
scanf ("4f", &rate_of_pay);

/* calculate results */
if (hours_worked > REG_LIMIT) {
regular_pay = REG_LIMIT * rate_of_pay;
overtime_pay = OT_FACTOR * rate_of_pay *
(hours_worked - REG_LIMIT);

}

else {
regular_pay = hours_worked * rate_of_pay;
overtime_pay = O;

}

total_pay = regular_pay + overtime_pay;

/* print data and results */

printf ("\nID Number = %d\n", id_number);

printf ("Hours Worked = %f, Rate of Pay = Jf\n",
hours_worked, rate_of_pay);

printf ("Regular Pay = %f, Overtime Pay = %f\n",
regular_pay, overtime_pay) ;

printf("Total Pay = %f\n", total_pay);

/* update the count */
count = count + 1;

Figure 2.11: Coding a While Loop

67

68 CHAPTER 2. BASIC CONCEPTS

The initial value of count is 10 and the loop executes while (count > 0). Each time the loop
is processed, the value of count is decremented by one. Eventually, count becomes 0, (count >
0) is False, and the loop terminates. Again, the loop is executed ten times for values of count =

10,9, 8, ..., 1.

We can easily adapt the second approach to process a loop as many times as desired by the
user. We merely ask the user to type in the number of people, and read into count. Here is the
skeleton code.

printf ("Number of people: ");
scanf ("%d", &count);
while (count > 0) {

count = count - 1;

We use the latter approach to implement the program for our task. The entire program for pay3.c
is shown in Figure 2.12 A sample session from the execution of this program is shown below.

k*kPay Calculationx*
Number of people: 2

Type ID Number: 123
Hours Worked: 20
Hourly Rate: 7.5

ID Number = 123

Hours Worked = 20.000000, Rate of Pay = 7.500000
Regular Pay = 150.000000, Overtime Pay = 0.000000
Total Pay = 150.000000

Type ID Number: 456
Hours Worked: 50
Hourly Rate: 10

ID Number = 456

Hours Worked = 50.000000, Rate of Pay = 10.000000
Regular Pay = 400.000000, Overtime Pay = 150.000000
Total Pay = 550.000000

2.5. MORE C STATEMENTS

/* File: pay3.c
Programmer: Programmer Name
Date: Current Date
This program reads in hours worked and rate of pay and calculates
the pay for a specified number of persons.

*/

#define REG_LIMIT 40.0
#define OT_FACTOR 1.5
main()

{

/* declarations */

int id_number, count;

float hours_worked, rate_of_pay,
regular_pay, overtime_pay, total_pay;

/* print title */
printf ("***Pay Calculation***\n\n");

printf ("Number of people: ");

scanf ("%d", &count);

while (count > 0) {
/* read data into variables */
printf ("\nType ID Number: ");
scanf ("%d", &id_number);
printf ("Hours Worked: ");
scanf ("%f", &hours_worked) ;
printf ("Hourly Rate: ");
scanf ("4f", &rate_of_pay);

/* calculate results */
if (hours_worked > REG_LIMIT) {
regular_pay = REG_LIMIT * rate_of_pay;
overtime_pay = OT_FACTOR * rate_of_pay *
(hours_worked - REG_LIMIT);

}

else {
regular_pay = hours_worked * rate_of_pay;
overtime_pay = 0.0;

}

total_pay = regular_pay + overtime_pay;

69

70 CHAPTER 2. BASIC CONCEPTS

/* print data and results */

printf ("\nID Number = %d\n", id_number);

printf ("Hours Worked = %f, Rate of Pay = Jf\n",
hours_worked, rate_of_pay);

printf ("Regular Pay = %f, Overtime Pay = %f\n",
regular_pay, overtime_pay) ;

printf("Total Pay = %f\n", total_pay);

/* update the count */
count = count - 1;

Figure 2.12: Code for pay3.c
2.5.5 Controlling Loop Termination

The program in the last section illustrates one way to control how many times a loop is executed,
namely counting the iterations. Rather than build the number of iterations into the program
as a constant, pay3.c requires the user to type in the number of people for whom pay is to be
computed. That technique may be sufficient sometimes, but the user may not be happy if each
time a program is used, one has to count tens or hundreds of items. It might be more helpful to
let the user signal the end of data input by typing a special value for the data. For example, the
user can be asked to type a zero for the id number of the employee to signal the end of data (as
long as zero is not an otherwise valid id number). This suggests another refinement to our task:

Task

PAY4: Same as PAY3, except that pay is to be calculated for any number of people. In addition,
we wish to keep a count of the number of people, calculate the gross total of all pay disbursed,
and compute the average pay. The end of data is signaled by a negative or a zero id number.

Logic for the while loop is quite simple. The loop repeats as long as id_number is greater than
0. This will also require us to initialize the id_number to some value before the loop starts and to
update it within the loop body to ensure loop termination. For our task, we must also keep track
of the number of people and the gross pay. After the while loop, we must calculate the average
pay by dividing gross pay by the number of people. Here is the algorithm logic using the while
loop construct.

set gross pay and number of people to zero
prompt user and read the first id number
while (id number > 0) {

2.5. MORE C STATEMENTS 71

read remaining data, compute pay, print data
update number of people

update gross pay

prompt user and read next id number

by
set average pay to (gross pay / number of people)

Values of gross pay and number of people must be kept as cumulative values, i.e. each time pay
for a new person is computed, the number of people must be increased by one, and gross pay must
be increased by the pay for that person. Cumulative sum variables must be initialized to zero
before the loop, similar to our counting variable in the last example; otherwise those variables
will contain garbage values which will then be increased each time the loop is processed. Our
algorithm is already “code like”, and its implementation should be straightforward, but first let
us consider the debugging process for the program.

As programs get more complex, manual program tracing becomes tedious; so let’s let the
program itself generate the trace for us. During program development, we can introduce printf ()
statements in the program to trace the values of key variables during program execution. If
there are any bugs in program logic, the program trace will alert us. Such printf() statements
facilitating the debug process are called debug statements. Once the program is debugged, the
debug statements can be removed so that only relevant data is output. In our example, we will
introduce debug statements to print values of gross pay and number of people.

In the program, we should not only prompt the user to type in an ID number but should
also inform him/her that typing zero will terminate the data input. (Always assume that users
do not know how to use a program). Prompts should be clear and helpful so a user can use a
program without any special knowledge about the program. Figure 2.13 shows the program that
implements the above algorithm.

Much of the code is similar to our previous program. We have introduced two additional
variables, number, an integer counting the number of employees processed, and gross, a float
to hold the cumulative sum of gross pay. Before the while loop, these variables are initialized to
zero; otherwise only garbage values will be updated. Fach time the loop body is executed, these
values are updated: number by one, and gross by the new value of total_pay.

A debug statement in the while loop prints the updated values of gross and number each
time the loop is executed. The output will begin with the word debug just to inform us that
this is a debug line and will be removed in the final version of the program. Enough information
should be given in debug lines to identify what is being printed. (A debug print out of line after
line of only numbers isn’t very useful for debugging). The values can alert us to possible bugs
and to probable causes. For example, if we did not initialize gross to zero before the loop, the
first iteration will print a garbage value for gross. It would instantly indicate to us that gross
is probably not initialized to zero. We have also not indented the debug printf () statement to
make it stand out in the source code.

Once the while loop terminates, the average pay must be computed as a ratio of gross and
number. We have added another declaration at the beginning of the block for average and the

72 CHAPTER 2. BASIC CONCEPTS

/* File: pay4d.c
Programmer: Programmer Name
Date: Current Date
This program reads in hours worked and rate of pay and calculates
the pay for several persons. The program also computes the gross pay
disbursed, number of people, and average pay. The end of data is
signaled by a negative or a zero id number.

*/

#define REG_LIMIT 40.0
#define OT_FACTOR 1.5
main()

{

/* declarations */

int id_number, number;

float hours_worked, rate_of_pay,
regular_pay, overtime_pay, total_pay,
gross, average;

/* print title */
printf ("***Pay Calculation***\n\n");

/* initialize cumulative sum variables */
number = 0;

gross = 0;

/* initialize loop variables */

printf ("Type ID Number, O to quit: ");
scanf ("%d", &id_number);

while (id_number > 0) {
/* read data into variables */
printf ("Hours Worked: ");
scanf ("%f", &hours_worked) ;
printf ("Hourly Rate: ");
scanf ("4f", &rate_of_pay);

/* calculate results */
if (hours_worked > REG_LIMIT) {
regular_pay = REG_LIMIT * rate_of_pay;
overtime_pay = OT_FACTOR * rate_of_pay *
(hours_worked - REG_LIMIT);
}
else {
regular_pay = hours_worked * rate_of_pay;
overtime_pay = O;

2.5. MORE C STATEMENTS 73

total_pay = regular_pay + overtime_pay;

/* print data and results */

printf ("\nID Number = %d\n", id_number);

printf ("Hours Worked = Jf, Rate of Pay = $J/f\n",
hours_worked, rate_of_pay);

printf ("Regular Pay = $/if, Overtime Pay = $/f\n",
regular_pay, overtime_pay) ;

printf("Total Pay = $/%f\n", total_pay);

/* update cumulative sums */
number = number + 1;
gross = gross + total_pay;
/* debug statements, print variable values */
printf ("\ndebug: gross = }f, number =)d\n", gross, number) ;
/* update loop variables */
printf ("\nType ID Number, O to quit: ");
scanf ("%d", &id_number);
by
if (number > 0) {
average = gross / (float) number;
printf ("\n***Summary of Payroll**x\n");
printf ("Number of people = Jd, Gross Disbursements = $/f\n",
number, gross);
printf ("Average pay = $4if\n", average);

Figure 2.13: Code for pay4.c

appropriate assignment statement to compute the average at the end. Note we have used the cast
operator to cast number to a float for the division. This is not strictly necessary; the compiler
will do this automatically; however, it is good practice to cast operands to like type in expressions
so that we are aware of the conversion being done.

It is possible that no data was entered at all, i.e. the user enters 0 as the first id, in which case
number is zero. If we try to divide gross by number, we will have a “divide by zero” run time
error. Therefore, we check that number is greater than zero and only calculate the average and
print the result when employee data has been entered.

With all of these changes made as shown in Figure 2.13, the program is compiled, and run
resulting in the following sample session:

k*kPay Calculationx*

74 CHAPTER 2. BASIC CONCEPTS

Type ID Number, 0 to quit: 123
Hours Worked: 20
Hourly Rate: 7.5

ID Number = 123

Hours Worked = 20.000000, Rate of Pay = $7.500000
Regular Pay = $150.000000, Overtime Pay = $0.000000
Total Pay = $150.000000

debug: gross = 150.000000, number = 1

Type ID Number, 0 to quit: 456
Hours Worked: 50
Hourly Rate: 10

ID Number = 456

Hours Worked = 50.000000, Rate of Pay = $10.000000
Regular Pay = $400.000000, Overtime Pay = $150.000000
Total Pay = $550.000000

debug: gross = 700.000000, number = 2
Type ID Number, O to quit: 0

*kkSummary of Payroll**
Number of people = 2, Gross Disbursements = $700.000000
Average pay = $350.000000

The debug lines show the changes in gross and number each time the loop is executed. The
first such line shows the value of gross the same as that of the total pay and the value of number
as 1. The next pass through the loop shows the variables are updated properly. The program
appears to be working properly; nevertheless, it should be thoroughly tested with a variety of data
input. Once the program is deemed satisfactory, the debug statements should be removed from
the source code and the program recompiled.

2.5.6 More Complex Loop Constructs — Nested Loops

As we mentioned above, the <statement> that is the body of the loop can be any valid C statement
and very often it is a compound statement. This includes a while statement, or a while statement
with the block. Such a situation is called a nested loop. Nested loops frequently occur when
several items in a sequence are to be tested for some property, and this testing itself requires
repeated testing with several other items in sequence. To illustrate such a process, consider the
following task:

2.5. MORE C STATEMENTS 75

Task

Find all prime numbers less than some maximum value.

The problem statement here is very simple; however, the algorithm may not be immediately
obvious. We must first understand the problem.

A prime number is a natural number, i.e. 1, 2, 3, 4, etc., that is not exactly divisible by any
other natural number, except 1 and itself. The number 1 is a prime by the above definition. The
algorithm must find the other primes up to some maximum. One way to perform this task is to
use a process called generate and test. In our algorithm, we will generate all positive integers
in the range from 2 to a maximum (constant) value PRIME LIM. Each generated integer becomes a
candidate for a prime number and must be tested to see if it is indeed prime. The test proceeds as
follows: divide the candidate by every integer in sequence from 2 up to, but not including itself.
If the candidate is not divisible by any of the integers, it is a prime number; otherwise it is not.

The above approach involves two phases: one generates candidates and the other tests each
candidate for a particular property. The generate phase suggests a loop, each iteration of which
performs the test phase, which is also a loop; thus we have a nested loop. Here is the algorithm.

set the candidate to 2

while (candidate < PRIME_LIM) {
test the candidate for prime property
print the result if a prime number
generate the next candidate

In testing for the prime property, we will first assume that the candidate is prime. We will
then divide the candidate by integers in sequence. If it is divisible by any of the integers excluding
itself, then the candidate is not prime and we may generate the next candidate. Otherwise, we
print the number as prime and generate the next candidate.

We need to keep track of the state of a candidate: it is prime or it is not prime. We can use
a variable, let’s call it prime which will hold one of two values indicating True or False Such a
state variable is often called a flag. For each candidate, prime will be initially set to True. If
the candidate is found to be divisible by one of the test integers, prime will be changed to False.
When testing is terminated, if prime is still True, then the candidate is indeed a prime number
and can be printed. This testing process can be written in the following algorithm:

set prime flag to True to assume candidate is a prime
set test divisor to 2
while (test divisor < candidate) {
if remainder of (candidate/test divisor) == 0
candidate is not prime
else get the next test divisor in sequence

76 CHAPTER 2. BASIC CONCEPTS

We will use the modulus (mod) operator, % described earlier, to determine the remainder of
(candidate / divisor). Here is the code fragment for the above algorithm:

prime = TRUE;
divisor = 2;
while (divisor < candidate) {
if ((candidate % divisor) == 0)
prime = FALSE;
else
divisor = divisor + 1;

where TRUE and FALSE are symbolic constants defined using the define compiler directive. The
complete program is shown in Figure 2.14.

The program follows the algorithm step by step. We have defined symbols TRUE and FALSE to
be 1 and 0, respectively. The final if statement uses the expression (prime) instead of (prime
== TRUE); the result is the same. The expression (prime) is True (non-zero) if prime is TRUE,
and False (zero) if prime is FALSE. Of course, we could have written the if expression as (prime
== TRUE), but it is clear, and maybe more readable, as written.

We have included a debug statement in the inner loop to display the values of candidate,
divisor, and prime. Once the we are satisfied that the program works correctly, the debug
statement can be removed.

Here is a sample session with the debug statement and PRIME_LIM set to 8:

***Prime Numbers Less than 8%*x*

1 is a prime number
2 is a prime number
debug: candidate = 3, divisor = 2 prime = 1
3 1s a prime number

debug: candidate = 4, divisor = 2 prime = 1
debug: candidate = 4, divisor = 3 prime = 0
debug: candidate = 5, divisor = 2 prime = 1
debug: candidate = 5, divisor = 3 prime = 1
debug: candidate = 5, divisor = 4 prime = 1
5 is a prime number

debug: candidate = 6, divisor = 2 prime = 1
debug: candidate = 6, divisor = 3 prime = 0
debug: candidate = 6, divisor = 4 prime = 0
debug: candidate = 6, divisor = 5 prime = 0
debug: candidate = 7, divisor = 2 prime = 1
debug: candidate = 7, divisor = 3 prime = 1
debug: candidate = 7, divisor = 4 prime = 1

2.5. MORE C STATEMENTS

/* File: prime.c
Programmer: Programmer Name
Date: Current Date
This program finds all prime numbers less than PRIME_LIM.

*/
#define PRIME_LIM 20
#define TRUE 1

#define FALSE

main()
{ int candidate, divisor, prime;

printf ("***Prime Numbers Less than %d***\n\n", PRIME_LIM);
printf("/d is a prime number\n", 1); /* print 1 */

candidate = 2; /* start at candidate == 2 */

while (candidate < PRIME_LIM) { /* stop at candidate == 20 */

prime = TRUE; /* for candidate, set prime to True */
divisor = 2; /* initialize divisor to 2 */
/* stop when divisor == candidate */

while (divisor < candidate) {
printf("debug: candidate = %d, divisor = Jd prime = %d\n",
candidate, divisor,prime);

/* if candidate is divisible by divisor, */
/* candidate is not prime, set prime to False */

if (candidate Y% divisor == 0)
prime = FALSE;
divisor = divisor + 1; /% update divisor */
by
if (prime) /* if prime is set to True, */
/* print candidate. */
printf("/d is a prime number\n", candidate);
candidate = candidate + 1; /* update candidate */

Figure 2.14: Code for prime.c

77

78 CHAPTER 2. BASIC CONCEPTS

debug: candidate = 7, divisor = 5 prime
debug: candidate

1}
=

7, divisor = 6 prime

7 1s a prime number

We have shown part of a sample session with debug printing included. Notice, that the values
printed for prime are 1 or 0; remember, TRUE and FALSE are symbolic names for 1 and 0 used
in the source code program only. In this output the nested loops are shown to work correctly.
For example, for candidate 5, divisor starts at 2 and progresses to 4; the loop terminates and the
candidate is a prime number. A sample session without the debug statement is shown below.

***Prime Numbers Less than 20%%x*

1 is a prime number
2 is a prime number
3 1s a prime number
5 is a prime number
7 1s a prime number
11 is a prime number
13 1s a prime number
17 1s a prime number
19 1s a prime number

In looking at the debug output, you might see that the loop that tests for the prime property
of a candidate is not an efficient one. For example, when candidate is 6, we know that it is not
prime immediately after divisor 2 is tested. We could terminate the test loop as soon as prime
becomes false (if it ever does). In addition, it turns out that a candidate needs to be tested for an
even more limited range of divisors. The range of divisors need not exceed the square root of the
candidate. (See Problem 6 at the end of the chapter).

2.6 Common Errors

In this section we list some common problems and programming errors that beginners often make.
We also suggest steps to avoid these pitfalls.

1. Program logic is incorrect. This could be due to an incorrect understanding of the problem
statement or improper algorithm design. To check what the program is doing, manually
trace the program and use debug statements. Introduce enough debug statements to narrow
down the code in which there is an error. Once an error is localized to a critical point in the
code or perhaps to one or two statements, it is easier to find the error. Critical points in the
code include before a loop starts, at the start of a loop, at the end of a loop and so forth.

2. Variables are used before they are initialized. This often results in garbage values occurring
in the output of results. For example:

2.6. COMMON ERRORS 79
int x, y;

X = X % y;

There is no compiler error, x and y have unknown, garbage values. Be sure to initialize all
variables.

3. The assignment operator, =, is used when an “equal to” operator., ==, is meant, e.g.:
2 2 2 2 2

while (x = y)

if (x =y)
printf("x is equal to y\n");

There will be no compiler error since any valid expression is allowed as an if or while
condition. The expression is True if non-zero is assigned, and False if zero is assigned.
Always double check conditions to see that a correct equality operator, ==, is used.

4. Object names are passed, instead of addresses of objects, in function calls to scanf ():
scanf ("%d", n); /* should be &n */

Again this is not a compile time error; the compiler will assume the value of n is the address
of an integer object and will attempt to store a value in it. This often results in a run time
addressing error. Make sure the passed arguments in scanf () calls are addresses of the
objects where data is to be stored.

5. Loop variables are not initialized:

while (i < n)

i is garbage; the while expression is evaluated with unknown results.

6. Loop variables are not updated:

i=0;
while (i < n) {

i is unchanged within the loop; it is always 0. The result is an infinite loop.

7. Loop conditions are in error. Suppose, a loop is to be executed ten times:

80

CHAPTER 2. BASIC CONCEPTS

n = 10;
i=0;
while (1 <= n) {

(1 <= n) will be True for 1 = 0, 1, ..., 10, i.e. 11 times. The loop is executed one more
time than required. Loop expressions should be examined for values of loop variables at the
boundaries. Suppose n is zero; should the loop be executed? Suppose it is 1, suppose it is
10, etc.

. User types in numbers incorrectly. This will be explained more fully in Chapter 4. Consider

the loop:

while (x '= 0) {

scanf ("%d", &x);

Suppose a user types: 23r. An integer is read by scanf () until a non-digit is reached, in this
case, until r is reached. The first integer read will be 23. However, the next time scanf ()
is executed it will be unable to read an integer since the first non-white space character is a
non-digit. The loop will be an infinite loop.

. Expressions should use consistent data types. If necessary, use a cast operator to convert

one data type to another.

int sum, count;
float avg;

avg = sum / count;

Suppose sum is 30 and count is 7. The operation sum / count will be the integer value of
30 / 7, i.e. 4; the fractional part is truncated. The result 4 is assigned to a float variable
avg as 4.0. If a floating point value is desired for the ratio of sum / count, then cast the
integers to float:

avg = (float) sum / (float) count;

Now, the expression evaluates to 30.0 / 7.0 whose result is a floating point value 4.285
assigned to avg

2.7. SUMMARY 81

2.7 Summary

In this chapter we have begun looking at the process of designing programs. We have stressed the
importance of a correct understanding of the problem statement, and careful development of the
algorithm to solve the problem. This is probably the most important, and sometimes the most
difficult part of programming.

We have also begun introducing the syntaz and semantics of the C language. We have seen how
to define the special function, main() by specitying the function header followed by the function
body, a collection of statements surrounded by brackets, { and }. The function body begins with
variable declarations to allocate storage space and assign names to the locations, followed by the
executable statements. Variable declarations take the form:

<type_specifier> <identifier>[, <identifier>...];

where <type_spec> may be either int or float for integers or floating point variables, respectively.
(We will see other type specifiers in later chapters). We gave rules for valid <identifier>s used as
variable names.

We have discussed several forms for executable statements in the language. The simplest
statement is the assignment statement:

<Lvalue>=<expression>;

where (for now) <Lvalue> is a variable name and <expression> consists of constants, variable
names and operators. We have presented some of the operators available for arithmetic computa-
tions and given rules for how expressions are evaluated. The assignment statement evaluates the
expression on the right hand side of the operator = and stores the result in the object referenced
by the <Lvalue>. We pointed out the importance of variable type in expressions and showed the
cast operator for specitying type conversions within them.

(<type-specifier>) <expression>

We also described how the library function printf () can be used to generate output from the
program, as well as how information may be read by the program at run time using the scanf ()
function.

We next discussed two program control constructs of the language: the if and while state-
ments. The syntax for if statements is:

if (<expression>) <statement> [else <statement>]

where the <expression> is evaluated and if the result is True (non-zero) then the first <statement>
(the “then” clause) is executed; otherwise, the <statement> after the keyword else (the “else”
clause) is executed. For a while statement, the syntax is:

82 CHAPTER 2. BASIC CONCEPTS

while (<expression>) <statement>
where the <expression> is evaluated, and as long as it evaluates to True, the <statement> is
repeatedly executed.

In addition we discussed one of the simple compiler directives:
#define <symbol_name> <substitution_string>

which can be used to define symbolic names to character strings within the source code; used here
for defining constants in the program.

With these basic tools of the language you should be able to begin developing your own
programs to compile, debug and execute. Some suggestions are provided in the Problems Section
below. In the next chapter, we will once again concentrate on the proper methods of designing
programs, and in particular modular design with user defined functions.

2.8. EXERCISES

2.8 Exercises

Given the following variables and their initializations:

int a, x, y, Z;
float b, u, v, w;

x = 10; y= 20; z = 30;
4.0, v =10.0;

o
1]

What are the values of the expressions in each of the following problems:

1. (a) a=x-y - z;
(b) a=x+7y* z;
(c) a=z/y+y;
d a=x/y/ z;
(e) a=xhythz
2. (a) a= (int) (u / v);
(®) a= {nt) (v / w;
(¢) b=v - u;
(d) b=v /u/ w;

3. What are the results of the following mod operations:

(a) 5 % 3
() -5 % 3
(¢) 5 % -3
(d) -5 % -3
\item
\begin{verbatim}

(a) (x <=y && x >= z)
() <=y Il x> z)
(c) (x <=y & '(x >= 2))
@ E=y&&z>y)

(e) (x==y && z > y)

4. Under what conditions are the following expressions True?

(a) (x=y&&y=2)

(b)) (x == y && y == z)
(c) x==y3 Il y==2)
@) & »>=y && x <= z)

(e) (x >y && x < z)

84 CHAPTER 2. BASIC CONCEPTS

5. Make required corrections in the following code.

(a)
main()
{ int n;
scanf ("%d", n);
+
(b)
main()
{ float n;
printf ("/4d", n);
+
(c)
main()

{ int nl, n2;

if (nl = n?2)
printf ("Equal\n");
else

printf ("Not equall\n");
}

6. Find and correct errors in the following program that is supposed to read ten numbers and
print them.

main()
{ int n, count;

scanf ("%d", &n);

while (count < 10) {
printf("%d\n", n);
scanf ("%d", &n);

b

7. We wish to print integers from 1 through 10. Check if the following loop will do so correctly.

i=1;

while (i < 10) {
printf("%d\n", 1i);
i= 1+1;

2.8. EXERCISES 89

8. Suppose a library fine for late books is: 10 cents for the first day, 15 cents per day thereafter.

Assume that the number of late days is assigned to a variable late_days. Check if the
following will compute the fine correctly.

if (late_days == 1)
fine = 0.10;
else

fine = late_days * 0.15;

86 CHAPTER 2. BASIC CONCEPTS

2.9 Problems

1. Write a program that reads three variables x, y, and z. The program should check if all
three are equal, or if two of the three are equal, or if none are equal. Print the result of the
tests. Show the program with manual trace.

2. Velocity of an object traveling at a constant speed can be expressed in terms of distance
traveled in a given time, If distance, s, is in feet and time, ¢, is in seconds, the velocity in
feet per second is:

v=d/t

Write a program to read distance traveled and time taken, and calculate the velocity for a
variety of input values until distance traveled is zero. Print the results for each case. Show
a manual trace.

3. Acceleration of an object due to gravity, ¢, is 32 feet per second per second. The velocity of
a falling body starting from rest at time, ¢, is given by:

v=g*1
The distance traveled in time, ¢, by a falling body starting from rest is given by:
d=gxtx*xt/2

Write a program that repeatedly reads experimental values of time taken by a body to hit
the ground from various heights. The program calculates for each case: the height of the
body and the velocity of the body when it hits the ground.

4. Write a program that reads a set of integers until a zero is entered. Excluding zero, the
program should print a count of and a sum of:
(a) positive numbers
negative numbers
even numbers
odd numbers
positive even numbers
negative odd numbers.

all numbers
Use debug statements to show cumulative sums as each new number is read and processed.

5. We wish to convert miles to kilometers, and vice versa. Use the loose definition that a
kilometer is 5.0 / 8.0 of a mile. Write a program that generates two tables: a table for
kilometer equivalents to miles for miles 1 through 10, and a table for mile equivalents of
kilometers for kilometers from 1 to 20.

6. Improve the program prime.c of Section 2.5.6 in the following ways:

2.9. PROBLEMS 87

10.

(a) Terminate the inner loop as soon as it is detected that the number is not prime.
(b) Test each candidate only while (divisor * divisor <= candidate).
(c¢) Test only candidates that are odd numbers greater than 3.

For each of these improvements, how many times is the inner loop executed when PRIME_LIM
is 207 How does that compare to our original program?

. Write a program to generate Fibonacci numbers less than 100. Fibonacci numbers are 1,

1, 2, 3, 5, 8, 13, 21, etc. The first two Fibonacci numbers are 1 and 1. All other numbers
follow the pattern: a Fibonacci number is the sum of previous two Fibonacci numbers in the
sequence. In words, the algorithm for this problem is as follows:

We will use two variables, prevl and prev2, such that prevl is the last fibonacci number
and prev2 is the one before the last. Print the first two fibonacci numbers, 1 and 1; and
initialize prevl and prev2 as 1 and 1. The new fib_number is the sum of the two previous
numbers, prevl and prev2; the new £ib_number is now the last fibonacci number and previ
is the one before the last. So, save prevl in prev2 and save fib_number in prevl. Repeat
the process while fib_number is less than 100.

(Optional) Write a program to determine the largest positive integer that can be stored in
an int type variable. An algorithm to do this is as follows:

Initialize a variable to 1. Multiply by 2 and add 1 to the variable repeatedly until a negative
value appears in the variable. The value of the variable just before it turned negative is the
largest positive value.

The above follows from the fact that multiplying by 2 shifts the binary form to the left by
one position. Adding one to the result makes all ones in the less significant part and all zeros
in the more significant part. Eventually a 1 appears in the leading sign bit, i.e. a negative
number appears. The result just before that happens is the one with all ones except for the
sign bit which is 0. This is the largest positive value.

(Optional) Write a program to determine the negative number with the largest absolute
value.

Write a program that reads data for a number of students and computes and prints their
GPR. For each student, an id number and transcript data for a number of courses is read.
Transcript data for each course consists of a course number (range 100-900), number of
credits (range 1-6), and grade (range 0-4). The GPR is the ratio of number of total grade
points for all courses and the total number of credits for all courses. The number of grade
points for one course is the product of grade and credits for the course. The end of transcript
data is signaled by a zero for the course number; the end of student data is signaled by a
zero id number.

88

CHAPTER 2. BASIC CONCEPTS

Chapter 3

Designing Programs Top Down

As program tasks become more complex, it is easier to think about the problem and design the
algorithm for the task at hand by breaking the complex task into smaller and simpler subtasks
and then solve each of the subtasks independently. We do this all the time in everyday life, for
example, suppose you need milk for your kid’s dinner. A complete algorithm for solving this
problem might begin:

find the car keys

go to the garage

get in the car

put the key in the ignition
start the car

back the car out of the driveway

However; when we are worried about feeding the kids, we do not plan our algorithm in such detail.
Instead our algorithm might be:

drive to the store
buy milk
drive home

where each of the steps in this algorithm is a subtask that may involve many steps itself.

We can do the same kind of modular design for our programming tasks: begin by thinking at a
more abstract level about the major steps to be done, and then for each of these subtasks, design a
separate algorithm to solve it. Each program subtask may then be implemented either by a set of
statements or by a separate function. The advantages of a function are that it hides details of the
actual computations from the main body of the code, and it can even be called upon to perform
a subtask repeatedly by one or more other functions. In particular, well designed functions can

89

90 CHAPTER 3. DESIGNING PROGRAMS TOP DOWN

Payroll
Task
Y y
(loop) print
proc 1 empl. pay disbursed
/ Y Y Y
read calculate update print
data pay cum. total pay

Figure 3.1: Structural Diagram for Payroll Task

be used in a variety of programs. (An example from the above might be driving; it is the same
operation in the first and last steps of our algorithm; only the start and destination are different).

In this chapter we will discuss this method of modular design of algorithms and the programs
that implement them. We will see how functions may be used in a C program, and how new
functions may be defined in the program. As usual, we will look at both the syntax and semantics
of this programming construct. Next we will look in more detail at the macro facilities provided by
the C preprocessor (briefly discussed in Chapter 2) and how these can be used to make programs
more readable. The we describe how your programs can interact with the Operating System to
perform I/0. Finally we continue our discussion of guidelines for debugging and common errors.

3.1 Designing the Algorithm with Functions

As mentioned above, for complex problems our goal is to divide the task into smaller and simpler
tasks during algorithm design. We have seen this technique already in Chapter 1 in our use of
a structural diagram while developing the algorithm. Figure 3.1 repeats the structural diagram
for our payroll task. Here we have divided the payroll task at first into 2 subtasks: processing
employees one at a time in a loop, and printing the results. The “processing one employee” subtask
is then further divided into four steps: reading data, calculating pay, updating the cumulative total,
and printing the pay. In the final implementation of our algorithm, pay4.c, we implemented each
step using a sequence of statements. The resulting code grew to be rather large, especially for
the “calculate pay” step where we had to consider details such as overtime and regular pay. Such
details are not important to our understanding of the overall logic of the program. However it is
to be done, all that we want to do in that step is calculate the pay for one employee as is simply
and clearly stated in the algorithm. Calculating pay is an ideal candidate for being implemented
as a function.

3.1. DESIGNING THE ALGORITHM WITH FUNCTIONS 91

We will show how to do this shortly, but first it should be pointed out that we have already
been using functions to hide the details of tasks in the code we have written. For both the “read
data” and “print pay” blocks in the diagram (and the corresponding steps in the algorithm) we
have used the built-in library functions, scanf () and printf (). Many operations are involved in
reading the user’s typed in data, converting it to its internal representation, and storing it in a
variable; however all of this processing is hidden by the function scanf (). At this point, we do
not need to know (and maybe don’t care) how it is done, just that it is done correctly.

The important thing here is that top level program logic can use functions without regard to
their details. At the next lower level, each function used in the top level program logic can be
written in terms of yet lower level functions, and so on. The goal is to arrive at subtasks that
are simple to implement with relatively few statements. This approach is called the top down
approach or modular programming. A top down approach is an excellent aid to program
development. If the subtasks are simple enough, it also helps produce bug-free reliable programs.

3.1.1 Implementing the Program with Functions

Abstractly, a function can be viewed a a piece of code which, when given sufficient information,
performs some subtask and returns the result, a value. Returning to our example, if a function,
calc_pay(),is used to calculate pay, it will need enough information to perform the computation.
In this case the data it needs is the number of hours worked and the rate of pay. As we have stated
before, variables, such as hours worked and rate_of pay, defined in a block are only krown, i.e.
can be accessed, within that block. So we cannot give calc_pay () direct access to variables defined
in other functions, in this case main(). However, calc_pay() does not need direct access to the
variables, it only needs the values to be used for the computation. So we can give a function the
values it needs by passing them as arguments. We can do this by writing an expression, called a
function call, giving the name of the function and expressions for the values of the arguments,

e.g.:
calc_pay(hours_worked, rate_of_pay)

The arguments passed are the values of hours worked as the first argument, and rate_of pay as
the second argument. Given this data we know (or at this point simply believe) that the function
does the right thing and returns with a value, the total pay. We say that the function call evaluates
to a value just as any other expression. The function calc pay() can now be used in main() as
follows:

total_pay = calc_pay(hours_worked, rate_of_pay);

In summary, the function main() calls calc_pay() to perform a task using a set of values. The
values are passed as a parenthesized list of data items (which can be any valid expressions) sepa-
rated by commas. The expressions that appear in such a statement calling the function are called
arguments. The values of these arguments are received by the called function, calc_pay (), which

92 CHAPTER 3. DESIGNING PROGRAMS TOP DOWN

uses them to perform the desired subtask. Finally, calc_pay() returns the value of total pay to
the calling function, main(), where it is assigned to the variable, total_pay.

The value returned by calc_pay () will be the total pay calculated using the values of arguments
passed to it. Here are a few additional examples of function calls used in an assignment expression:

total_pay = calc_pay(30.0, 10.0); /* calc_pay() returns 300.0, */
/* which is stored in total_pay. */
total_pay = calc_pay(20.0, 10.0); /* total_pay is assigned 200.0. */

A function call is an expression and has a value. Just as we had to declare the data types of
variables to the compiler, we must also declare the data type of a function. This declaration also
includes the number of arguments the function requires and their types. For example, here is a
declaration for calc_pay():

float calc_pay(float hours, float rate);

The declaration states that calc_pay() is a function because the identifier calc_pay is followed
by a parenthesized list of arguments, that it requires two float arguments, and that it is of
float type, i.e. it returns a float value. This declaration statement for a function (notice it
is terminated by a semi-colon) is called a prototype statement because it gives the prototype
(or the form) for calls to the function. In general, we will refer to the list of data expected to be
passed to a function as specified in the prototype statement as a parameter list and an individual
data item in this list as a parameter. (Sometimes, however, the terms parameter and argument
are used interchangeably). The names of the parameters in a prototype statment are optional;
but including well chosen names for parameters can make the declaration more meaningful. These
parameter names are dummy names which have no relation to the names of arguments in a function
call or parameters in the function definition (described in the next section).

Let us implement the top level program logic using the function calc_pay() to calculate pay.
The code is shown in Figure 3.2 and for simplicity, we have not included calculation of gross and
average pay.

Figure 3.3 shows the behavior of the function call pictorially. The box labeled main() rep-
resents the function main() in our program and contains memory cells for variables declared in
main() labeled with their names (e.g. hours_worked). The box labeled calc_pay() represents
the function calc_pay(). At this point we do not know anything about the internals of this box
such as what variables are declared, and what statements will be executed; but at this point we
do not need to know this information. The box shows all of the information we need to know;
namely that the function expects two float type arguments to be passed and will return a float
type result. The dashed lines in the figure show that, for the call we have written in main():

total_pay = calc_pay(hours_worked, rate_of_pay);

3.1. DESIGNING THE ALGORITHM WITH FUNCTIONS 93

/* File: payb.c
Programmer: Programmer Name
Date: Current Date
The program gets payroll data, calculates pay, and prints out
the results for a number of people. A separate function is used
to calculate total pay.

*/
#define REG_LIMIT 40.0
#define OT_FACTOR 1.5
main()
{
/* declarations */
int id_number;
float hours_worked, rate_of_pay, total_pay;
float calc_pay(float hours, float rate);
/* print title */
printf ("***Pay Calculation***\n");
/* initialize loop variables */
printf ("\nType ID Number, zero to quit: ");
scanf ("%d", &id_number);
while (id_number > 0) {
/* read data into variables */
printf ("Hours Worked: ");
scanf ("%f", &hours_worked) ;
printf ("Hourly Rate: ");
scanf ("4f", &rate_of_pay);
/* calculate pay */
total_pay = calc_pay(hours_worked, rate_of_pay);
/* print data and results */
printf ("\nID Number = %d\n", id_number);
printf ("Hours Worked = Jf, Rate of Pay = $J6.2f\n",
hours_worked, rate_of_pay);
printf("Total Pay = $/10.2f\n", total_pay);
/* update loop variables */
printf ("\nType ID Number, zero to quit: ");
scanf ("%d", &id_number);
t
t

Figure 3.2: Code for payh.c driver

94 CHAPTER 3. DESIGNING PROGRAMS TOP DOWN

main()
id_number hours_worked rate_of_pay total_pay
- - - - ----n
| 5
1 ! |
Y Y !
calc_pay(float float) .
E float :
L e e e e e e e e e e e e, e e, e, e e, e, e e e, m——m - - - - .

Figure 3.3: Function Call to calc_pay()

the first argument, the value of hours_worked, is passed to the first parameter of calc_pay(), and
the second argument, the value of rate of pay, is passed to the second parameter. The return
value from calc_pay() is placed in the variable total pay by main().

In summary, the function main() represents the overall logic of the program. The details of
how pay is actually computed does not change the overall logic. Of course, the program in Figure
3.2 is not yet complete since we have not written the function calc_pay (). If an attempt is made
to compile the program at this point, there will be a linker error message stating that the function
calc_pay() cannot be found. Only when the function is written is the program complete and may
be compiled and executed.

3.2 Defining Functions

A function is defined by writing the source code for it. Just as for main(), defining the function
consists of giving a function header and a function body. The code for calc_pay() is shown in
Figure 3.4. (It is included in the same source file as the code in Figure 3.2). Let us look at the
function header first.

3.2. DEFINING FUNCTIONS 95

/* File: pay5.c - continued */

/* Function calculates and returns total pay */
float calc_pay(float hours, float rate)

{ float regular, overtime, total;

printf ("\ndebug:entering calc_pay(): hours = }f, rate = %f\n",
hours, rate);

if (hours > REG_LIMIT) {
regular = REG_LIMIT * rate;
overtime = OT_FACTOR * rate * (hours - REG_LIMIT);

iy

else {
regular = hours * rate;
overtime = 0;

iy

total = regular + overtime;
printf("debug:returning from calc_pay(): %f\n", total);
return total;

b

Figure 3.4: Code for calc_pay()

float calc_pay(float hours, float rate)

The header specifies that the name of the function is calc_pay, and that the function returns
a float value. It also lists the parameters and their types, in this case there are two formal
parameters, hours and rate, each of type float. Notice that the function header is very similar
to the prototype statement for the function, with two notable exceptions. First, there is no semi-
colon at the end, indicating that this is the definition of the function, not a declaration. Second, in
the function header, the variable names in the parameter list are required, and this list is sometimes
called the formal parameter list. These formal parameters act as variable declarations for the
function with the additional feature that they receive initial values from the arguments when the
function is called; the first parameter gets the value of the first argument, the second parameter
the value of second argument, and so on. The formal parameters in a function definition behave
in the same manner as automatic variables, and their scope is limited to the function itself. The
names in this list are the names used within the function body to access these values

The body of the function is defined, as with main(), within brackets, { and } and consists
of the variable declarations for the block followed by the executable statements to perform the
subtask of the function. In our case, we declare variables regular, overtime, and total which
are called local variables because their scope is local, i.e. limited to within the function. We
then calculate regular pay, overtime pay and total pay as before, but we use the formal parameter
names and the names of the local variables in our computations. Finally, since a function can

96 CHAPTER 3. DESIGNING PROGRAMS TOP DOWN

return only one value, we return only the value of total pay:
return total;

The above return statement returns the value of the variable, total, to the calling function. In
general, a return statement can be used to return the value of any expression. When the return
statement is executed, the program control returns immediately to the calling function where the
function call evaluates to the returned value.

When a function is first written, it is a good practice to include debug statements in the function
definition showing the name of the function entered, the values of the parameters received, and the
value returned by the function. When the program is run, these debug statements will produce a
trace of all function calls and returns and as such are invaluable for debugging, particularly when
a program uses many functions. We have included printf () statements for this purpose in the
code for calc_pay() shown in the figure.

The above function, together with main() in the file pay5.c, forms a complete program which
may be compiled and executed. A sample session shown below is similar to the one for pay4.c.
The only change is that calc_pay() calculates and returns total pay, whereas in pay4.c total pay
was calculated in main().

k*kPay Calculationx*

Type ID Number, zero to quit: I[23
Hours Worked: 20
Hourly Rate: 7.5

debug:entering calc_pay(): hours = 20.000000, rate = 7.500000
debug:returning from calc_pay(): 150.000000

ID Number = 123
Hours Worked = 20.000000, Rate of Pay = $ 7.50
Pay = $ 150.00

Type ID Number, zero to quit: 0

The debug printing clearly shows argument values at entry to calc_pay() and the returned value.
If there are any bugs in a function, such debug printing helps detect and remove them.

3.2.1 Passing Data to and from Functions

As we can see from the above description, and also in Figure 3.5, information is passed to a
function as arguments specified in the calling expression. This information is received by the
function in the cells reserved for the formal parameters. In our case, the values of hours_worked

3.2. DEFINING FUNCTIONS 97

main()

id_number hours_worked rate_of_pay total_pay
123 20.0 7.5 150.0 f----; S
| |
calc_pay(float [990 float 7t5) :
hours rate |
regular overtime total :
150.0 0.0 150.0 :
return value :
150.0 |
+ float |

Figure 3.5: Function Call Trace

and rate_of pay (the arguments of the call) are copied to the cells called hours and rate within
the function calc_pay(). Remember, these names are only known internally to the function. All
that main() sees of the function is a black box as was shown in Figure 3.3.

The names of the formal parameters are arbitrary. For example, calc_pay() may be defined
with any names for formal arguments:

float calc_pay(float x, float y)

{
if (x > REG_LIMIT) ...
+

or

float calc_pay(float hours_worked, float rate_of_pay)
{

98 CHAPTER 3. DESIGNING PROGRAMS TOP DOWN

if (hours_worked > REG_LIMIT)

Aslong as the function uses the formal parameters names internally for computations, the function
definitions behave the same. In the last case, even though the formal parameters have the same
names as variables defined in main(), they represent distinctly different variables, as shown in
Figure 3.5. In summary, the scope of automatic variables defined in a block is local to that block,
i.e. the objects can be directly accessed by name only within that block and in blocks nested
within it.

As we stated earlier, the arguments in a function call can be any valid expressions. Only the
values of the argument expressions are passed to the called function. For example, these are valid
function calls:

printf("Pay = %f\n", hours_worked * rate_of_pay);

printf("Pay = %f\n", calc_pay(hours_worked, rate_of_pay));

calc_pay(hours_worked, rate_of_pay * 1.10);

The argument in the first printf() call is a product expression. The result of evaluating that
expression is passed to printf (). The second statement uses an argument that is itself a function
call. The function call evaluates to a value which is then passed to printf (). The second argument
in the last statement is an expression whose value is passed to calc_pay().

Information is returned from a function using the return statement which can also return the
value of any valid expression. The syntax of the return statement is:

return <expression>;

For example, we could have combined the last two statements in the function definition of
calcpay():

return regular + overtime;

where calc_pay() would then return the value of the expression regular + overtime.

When writing functions, tools such as shown in Figure 3.5 can be very useful in tracing the
behavior of the function. Another way to check a function for bugs is to manually trace its
execution with representative values for the formal parameters. Figure 3.6 shows such a trace for
calcpay(). Note: the variables hours and rate (the formal parameters) receive values during
the function calls. Other local variables get values as the function is executed.

In our payroll program, the overall logic can be made even more apparent if functions are used
to get the input data and to print the results. The driver, i.e. main(), can then follow the overall
logic and use function call statements to get the data, calculate the pay, and print the results. A
function that prints data is simple to write. Writing a function that reads data is somewhat more
involved. We will delay writing such functions until Chapter 6.

3.2. DEFINING FUNCTIONS 99

hours rate regular overtime total
float calc_pay(float hours, float rate) 20.0 7.5 ?7 ?7 ?7
{ float regular, overtime, total;

printf(""debug:entering calc_pay(): hours = f, rate = %f\n",
hours, rate);
if (hours > REG_LIMIT) {
regular = REG_LIMIT * rate;
overtime = OT_FACTOR * rate *
(hours - REG_LIMIT);

iy
else {
regular = hours * rate; 20.0 7.5 150.0 77 77
overtime = 0; 20.0 7.5 150.0 0.0 77
iy
total = regular + overtime; 20.0 7.5 150.0 0.0 150.0

printf("debug:returning from calc_pay(): %f\n", total);
return total;

b

Figure 3.6: Trace for calc_pay()

3.2.2 Call by Value and Local Variables

This section reviews and formalizes several features of variables that we have already encountered.
We know that direct access of objects is performed by using variable names in expressions. The
use of a variable on the left side of an assignment operator stores a new value in that object; the
use of a variable anywhere else retrieves the value of the object. Objects defined in one function
are not directly accessible to other functions. A calling function passes values of arguments to
a called function. Only the values of these arguments, and NOT the arguments themselves, are
available to the called function. The values of the arguments are stored in the parameters, and
only the called function has access to these parameters. When called functions have access only to
argument values, and not to arguments themselves, the function calls are termed call by value.
In C, all function calls are call by value. It is impossible for a called function to have direct access
to an object defined in the calling function. Let us examine the implications. Consider a program
that uses a function to increment the value of an argument.

/* File: incr.c Program Trace
Program demonstrates call by value. X

*/

#include <stdio.h>

main()

{ int x; ?7?

int incr{(int n);

100 CHAPTER 3. DESIGNING PROGRAMS TOP DOWN

printf ("***Call by Value***\n'");

X = 7; 7
printf("Original value of x is %d\n", x); 7
printf("Value of incr(x) is %d\n", incr(x)); 7

printf("The value of x is %4d\n", x); 7
b
/* Function increments n */ n
int incr(int n) 7
{

n=mn+1; 8

return n; 8
b

Compiling and executing this programs gives the following sample session:

***xCall by Valuex*x*
Original value of x is 7
Value of incr(x) is 8
The value of x is 7

The program trace shows that x in main() is assigned a value of 7 prior to a function call to
incr() which increments its parameter to 8 and returns that value. After the function call, the
value of x in main() is still 7, unchanged because only the value of x is passed to incr(). It was
the cell, n, in incr() that was incremented as seen in Figure 3.7

We see that a called function cannot directly change the value of an object defined in the calling
function. This is true even if the formal parameter in incr() were called x. Formal parameters
represent new and distinct objects unrelated to any other objects defined elsewhere.

The variables declared at the beginning of a block (e.g. a function body) have all been of
a storage class called automatic. This means that these variables are automatically created
and destroyed each time the function is executed. When the execution of a function begins,
the variables declared at the beginning of the function block as well as the formal parameters
are created, i.e. memory cells for these variable names are allocated. When the execution of a
function is completed (e.g. when a return statement is executed), the memory allocated for these
variables is freed, i.e. these variables and their values no longer exist.

Automatic variables can be defined at the beginning of any block within the primary function
block and exist only in the block in which they are defined. Memory for automatic variables
declared in a block is allocated when the block is entered, and freed when the block is exited.

3.2. DEFINING FUNCTIONS 101

main()
X
7 4= - =-=-- L
L i :
incr(int [g g) :
n :
return value :
8 i
' int |
L e e 3

Figure 3.7: Call by value variable allocation

The scope of a variable is that part of the program where the variable is visible, i.e. where
the variable can be accessed directly by name. The scope of automatic variables is local to the
block in which they are defined as well as any blocks nested within it. Automatic variables are
frequently referred to as local variables, since their scope is local.

A variable of automatic storage class can be explicitly defined in a declaration by preceding it
with the keyword auto. Thus, the following declarations declare automatic variables:

auto int x, y;
auto float r;

If no storage class is specified in a declaration, automatic storage class is assumed by default. In
all of our programs, so far, declarations have been for automatic variables by default. In general,
most variables used in programs are automatic, and the default declaration without the keyword
auto is a standard practice. Other storage classes will be discussed in Chapter 14. Until then, we
will use only automatic variables.

102 CHAPTER 3. DESIGNING PROGRAMS TOP DOWN

As we stated before, a declaration only allocates a memory cell and associates the name with
the cell; the value in that cell is, in general, unknown. However, it is possible to specify initial
values of automatic variables in the declaration statements. Examples include:

int x 5 % 2;
int y = isquare(2 * x);

float z = 2.8;

The first declaration initializes x to 10, and the second initializes y to the value returned by the
function call isquare(2 * x). If the function isquare() returns the square of its argument, then
y in this case, is initialized to 400, i.e. the square of 2 * x. Finally, the last declaration initializes
the variable z to the value 2.8.

The syntax for a declaration statement with initialization is:
<type_specifier><var_name> [=<init_expr>]|, <var_name> [=<init_expr>]...];

The declaration allocates memory for each <var_name> of a type indicated by <type_specifier>,
and initializes the variable to the value of the initializer expression, <init-expr>. The initializer
expression can be any C expression including function calls.

Consider the following example in which automatic variables are declared in nested blocks:

/* File: auto.c
Program shows declarations of automatic variables in nested
blocks. Scope of automatic variables is the block in which they
are defined.
*/
main()
{ /* outer block */
auto int x = 10, z = 15; /* x and z are allocated and initialized */

printf ("**xAutomatic Variables and Scope***\n\n'");
{ /* inner block */
int x = 20, y = 30; /* new variables x and y are allocated */
/* only the new x can be accessed */
printf("In the inner block: \n");
printf("x = ¥d, y = %d, z = %d\n",
X, ¥V, 2); /* new x and y, and z are printed */
+ /* new x and y are freed */
printf("In the outer block:\n");
printf("x = ¥d, z = %d\n", x, z); /* only the old x can be */
/* accessed in the outer block.*/
/* printf("y = %d\n", y); error: y is not visible here. */

3.2. DEFINING FUNCTIONS 103

main()

10 15

20 30

Figure 3.8: Local Variables in Blocks

The program contains an outer block, which is the function body for main(), and an inner block.
The scope rules say that an inner block can access variables declared within it plus any variables
declared in an enclosing block. However, if the same variable name is used in an inner and an outer
block, the local variable in the inner block is accessed. The outer block cannot access variables
defined in an inner block.

In the example, variables x and z are declared in the outer block and assigned values. The
outer block can access only these variables. Variables x and y are declared in the inner block and
assigned values. The inner block can access the variables z, y, and that x which is defined in the
inner block. As shown in a comment, if the outer block tried to access y, a compile time error
would occur. This behavior can be seen in Figure 3.8. The allocation of storage is shown when
the program is executing within the inner block as can be seen by the nested box containing x
and y. When this block is completed, the inner box, and all variables inside, is freed. A sample
output of the program shows the results:

*kkAutomatic Variables and Scope**x*

In the inner block:

x =20, y =30, z =15
In the outer block:

x = 10, z = 15

It is also possible to qualify an automatic variable as a constant using the keyword const. A
const qualifier allows initialization of a variable but the variable may not be otherwise changed
within the program. Here is an example:

const int x = 100;

104 CHAPTER 3. DESIGNING PROGRAMS TOP DOWN

In the above case, x is initialized to 100 and qualified as a constant. Its value may not be changed
elsewhere in the program, e.g. in an assignment statement. Constant qualifiers are used to ensure
that certain variable values are not altered by oversight.

Let us consider a somewhat more meaningful example that declares a variable in an inner
block. The task is to swap values of two objects, x and y. We need a temporary variable to save
one of the values; otherwise, assigning the value of y to x would overwrite the original value of x.
We can declare the temporary value in an inner block.

/* File: swap.c
This program swaps values of two objects. It defines and uses a
temporary variable in an inner block.

*/

#include <stdio.h>

main()

{ int x = 10, y = 20;

printf ("***Swap Values***\n\n");
printf("Original values: x = %d, y = %d\n", x, y);
{ int temp;

temp = Xx;
X =y,
y = temp;

by
printf ("Swapped Values: x = %d, y = %d\n", x, y);

Here is the output of the program:

*kxSwap Values***

Original values: x = 10, y = 20
Swapped Values: x = 20, y = 10

Defining variables in blocks other than a primary function block is not recommended unless
there are good reasons for it. In the above example, a temporary variable is declared closest to
its use and has no logical role in the rest of the program. When a function uses many variables,
declaring variables closest to their use may make it easier to understand the program behavior.
For the most part, we will declare all variables at the beginning of primary function blocks.

The formal parameters of a function are also variables that are automatically allocated during
a function call, and into which the argument values are passed. Their values, just like those of
any other variables, may be changed in the function. The scope of the formal parameters is the
body of the function, i.e. the scope is local to the function body

3.3. CODING PROGRAMS FOR READABILITY 105

3.3 Coding Programs for Readability

In the previous sections we have seen how to organize programs modularly, beginning with the
algorithm, and carrying that organization into the code using functions. This is a form of in-
formation hiding, i.e. the details of performing a particular operation are hidden from the more
abstract steps of the algorithm. Here we are hiding ideas or abstractions at the algorithm level.
Another form of information hiding at the source code level is described in this section; namely
hiding the details of the syntaz of the language in order to make the source code more readable.

3.3.1 The C Preprocessor

We have already seen that in order for a program to be run, it must be compiled, i.e. translated
from the C language to the machine language of the computer being used. This compilation process
takes place in several steps; the source code is read from the file, checked for proper syntax, and
analyized for the meaning of the statements in the code. The proper machine language steps
to perform these statements can then be generated (and optimized) and then linked with other
functions to produce the executable file. At the beginning of this entire process, standard C
compilers provide an additional step called the preprocessor. The source code is read from the
file and given to the preprocessor where it is translated into a modified source code file which
is then given to the compiler proper for translation to machine language. The transformations
performed by the preprocessor are directed by lines in the original source file called compiler
directives. All such lines begin with the # character as the first non-white space character on the
line and are of one of three types of directives: macro definitions, file inclusion, and conditional
compilation. Each of these are discussed in the following sections.

3.3.2 DMacros

In Chapter 2 we introduced the define compiler directive which defines symbolic names for strings
of characters. Such a string of characters can be arbitrary, for example a sequence of characters
representing a numeric constant. These names can then be used anywhere in the program instead
of the string itself. The C preprocessor replaces these symbolic names with the specified strings
prior to compiling the program. We have seen examples where using names for arbitrary strings
makes it easy to change all occurrences of these names by merely changing the definitions. It also
makes for easier reading and debugging of programs by allowing the programmer to use a name
which has some meaning rather than some “magic number”.

The definition is called a macro and the preprocessor performs a macro expansion when it
substitutes the string for the name. A macro definition takes the form:

#define <symbol_name> <substitution_string>

The macro names follow the same rules as identifiers, however, a common convention observed

106 CHAPTER 3. DESIGNING PROGRAMS TOP DOWN

by most C programmers is to name macros in all upper case to distinguish them from program
variables. No quotation marks are used to delimit the string, nor is the directive terminated by a
semi-colon. Instead, the string extends to the end of the line (an escape character, \, can be used
to continue the string on the next line). For example, the following are macro definitions:

#define PI 3.14159

#define SIZE 1000

#define RSQUARED radius * radius

#define AREA PI * RSQUARED

#define LONG This is a very long macro \

definition we continued to the next line

When directives such as these appear in the source file, then the macros are said to have been
defined. We have defined macros for the symbols PI, SIZE, RSQUARED, AREA and LONG. With
the above definitions, the defined names may be used anywhere in program statements. The
preprocesser generates the expanded source code by string replacement, for example:

Original code Expanded code after preprocessing
circum = 2 * PI * radius; circum = 2 * 3.14159 * radius;
y = x + SIZE; y = x + 1000;
printf ("SIZE = ",SIZE); printf ("SIZE = ",1000);
AREA ; 3.14159 * radius * radius;

As can be seen, the preprocessor replaces the macro name with the specified replacement string
in the entire source file following the definition. The substitution is not made if a macro name,
occurs in double quotes as in the format string in the printf () statement shown above.

The scope of the macro definition is the entire source file following the definition line. The

definitions may be removed at any point in the program by a directive #undef, for example:

#undef SIZE

The above directive makes the preprocessor “forget” the previous definition for SIZE. If desired,
a new definition may be specified for SIZE at this point. It is a common practice to put macro
definitions at the top of the source file, unless the old definitions are removed at some point in the
source file and new definitions are specified:

#define SIZE 40 /* SIZE is define to be the string 40 */

#undef SIZE /* SIZE is undefine */
#define SIZE 100 /* SIZE is defined to be 100 */

3.3. CODING PROGRAMS FOR READABILITY 107

Identical definitions for identifiers may appear in a file without causing any problems; however,
two different definitions for an identifier represent an error.

#define SIZE 40
#define SIZE 40 /* 0K */
#define SIZE 100 /* ERROR */

The only way to make a new definition for an identifier is to first undefine it, i.e. remove its first
definition.

Macros with Arguments

Macro definitions may also have formal parameters which are replaced by the actual arguments
given in the macro call. This is similar to parameters in function calls; however, macro arguments
are treated as strings of characters and are substituted for parameters by the preprocessor; no
evaluation takes place. Consider the example:

#define READ_FLT(fvar) scanf ("%f", &fvar)

The macro encapsulates the expression for reading a float number, i.e. a macro call is replaced
by a string that represents a correct scanf () function call to read a float number into an object
passed to the macro. The actual argument in a macro call replaces fvar in the replacement string.
In other words, every time the macro is called, the expanded code is substituted literally except
that fvar in the definition is replaced by the argument given in the actual call. Here are some
examples of macro calls with parameters together with the expanded code:

macro call Expanded Code
READ_FLT(x); scanf ("%E", &x);
READ_FLT(rate); scanf ("%f", &rate);

Macro calls in these cases expand to C statements. Such calls are said to expand to in-line
code, because the resulting code represents statements in the source code. These types of macro
calls can be used in place of function calls, for example, instead of writing a function to square a
number, we can define a macro:

#define SQ(x) (x * x)
We can use such a macro in any expression, e.g.,

y = SQ(radius);
printf ("Square of %d is %d\n", radius, SQ(radius));

108 CHAPTER 3. DESIGNING PROGRAMS TOP DOWN

However, remember, macro calls are substitutions, and macro parameters are neither evaluated
nor checked for data type consistency. Therefore, proper placement of parentheses is important
in macro definitions. For example, consider the following macro call and expanded code:

SQ(x+y)

expanded becomes

(X + y * x + y)

The expanded code is not the square of (x + y), as we would expect. By precedence rules, it is
a sum of three terms, x, y * x, and y. A proper definition of a macro for square should be:

#define SQ(x) ((x) * (x))

With this definition,

SQ(x+y)

will expand correctly to

(x +y) * (x+7y))

Here is a simple example program:

/* File: macro.c */

#define READ_FLT(fvar) scanf ("%f", &fvar)
#define PI 3.14159

#define SQ(x) ((x) * (%))

main()
{

float radius;

printf ("Type Radius: ");

READ_FLT(radius);

printf("Area of a circle with radius %6.2f is %6.2f\n",
radius, PI * SQ(radius));

The output of a sample run is:

3.3. CODING PROGRAMS FOR READABILITY 109

Type Radius: 10
Area of a circle with radius 10.00 is 314.15

Why use macros with arguments when functions will serve the same purpose? The advantage
is practical, NOT logical. When a function is called, there is a certain amount of run time
overhead, i.e. extra time needed during execution. The overhead comes from passing arguments,
transferring control, returning a value, and returning control. If a function is called just a few
times, the overhead is negligible. However, if a function is used numerous times, e.g. in a loop
executed many times, then the overhead can become significant.

A macro on the other hand has no run time overhead. It is expanded at compile time into
in-line code which has no overhead at run time. If execution time for a program is a problem
because of a frequently used routine, then writing a macro for that routine makes good sense, as
long as the operation can be simply expressed as a macro.

An Example Program

Let us look at another example program to make use of these new facilities.

Task

Read a set of high temperature readings for some number of days and to count the number of
nice days, bad days, and the average temperature for the period. Nice days are those days whose
temperature falls within some “comfort zone”.

The high level algorithm for this task is straight forward;

prompt the user and read first temperature
while there are more days to read
process one day’s temperature
accumulate total temperature
read the next temperature
print results

With this algorithm, we next consider what information we will be working with in this program.
We read daily temperatures, so we will need a variable for that, and variables to count the number
of nice and bad days. Since we compute the average temperature, we accumulate the total of all
the daily temperatures, so we need a variable for that. Next we consider how we will implement
the algorithm using functions to hide details. For example, the step to print results, printing
the number of nice and bad days as well as computing and printing the average temperature can
be done in a function, print_results(), which is given the number of nice days, bad days, and
the cumulative total of temperatures. The step of processing one day’s temperature is another
candidate; however, this step involves updating our counts of nice and bad days. Since, as we

110 CHAPTER 3. DESIGNING PROGRAMS TOP DOWN

have seen, functions cannot access variables local to main, we refine our algorithm to fill in some
of the details of this step:

prompt the user and read first temperature
while there are more days to read
if it’s a nice day, count a nice day
otherwise count a bad day
accumulate total temperature
read the next temperature
print results

We can use a function to test if a day is nice, thus hiding the details of this operation. We are
now ready to write the code for main() as shown in Figure 3.9. It should be noted we have made
an additional design decision here; we use a zero value for the temperature read in as the loop
termination. Also not that we have provided prototype statements for our functions, nice_day ()
and print_results(). This is sufficient information about these functions when considering the
logic of main(). (We have specified the return value of print_results as type int, but the function
has no real meaningful return value).

We next turn out attention to the function, nice_day (). This function is given the temperature
and should return True if this qualifies as a nice day, and False otherwise. The task specified that
the temperature of a nice day is to fall within some “comfort zone”, i.e. not too cold and not too
hot. We can write the algorithm for this function from this information:

1f temperature is too cold, return False
1f temperature is too hot, also return False
otherwise, this is a nice day, return true

We choose to implement the too cold and too hot tests using macro:

#define TOO_COLD 80
#define TOO_HOT 90

#define HOT_DAY(t) ((t) > TOO_HOT)
#define COLD_DAY(t) ((t) < ToOO_COLD)

Coding of the function is straight forward. Similarly, for print results(), the algorithm is:

print number of nice days and bad days
1f there are any days counted
compute the average temperature
print the average temperature

3.3. CODING PROGRAMS FOR READABILITY 111

/* File: niceday.c
Programmer: Programmer Name
Date: Current Date
This program counts the number of nice days in a set of high
temperature data.

*/

int nice_day(int temp);
int print_results(int nice, int bad, int temp_sum);

main()
{ /* declarations */
int temperature, /* daily temperature */

total = 0, /* cumulative total */
num_nice_days = 0,
num_bad_days 0;

/* print title and prompt */
printf ("***Count Nice Days***\n\n'");
printf ("Type daily high temperature readings (0 to quit): ");

/* read the first temperature */
scanf ("%d", &temperature);
while (temperature '= 0) {

/* process one temperature */
if (nice_day(temperature))

num_nice_days = num_nice_days + 1;
else

num_bad_days = num_bad_days + 1;
/* accumulate total of temperatures */
total = total + temperature;

/* read next temperature */

scanf ("%d", &temperature);

print_results(num_nice_days, num_bad_days, total);

Figure 3.9: Driver for niceday.c

112 CHAPTER 3. DESIGNING PROGRAMS TOP DOWN

/* File: niceday.c (continued) */

#define TRUE 1
#define FALSE

#define TOO_COLD 80
#define TOO_HOT 90

#define HOT_DAY(t) ((t) > TOO_HOT)
#define COLD_DAY(t) ((t) < ToOO_COLD)

#define ANY_DAYS(n,b) (((n) + (b)) > 0)
/* Function to test for a nice day given the temperature */
int nice_day(int temp)
{
if(COLD_DAY(temp)) return FALSE;

if (HOT_DAY(temp)) return FALSE;

return TRUE;

t
/* Function to print results given number of nice and bad days */
/% and total of temperatures */
int print_results(int nice_days, int bad_days, int total)
{
float average_temp;
printf ("There were %d nice days and %d bad days\n",
nice_days, bad_days);
if (ANY_DAYS(nice_days, bad_days)) {
average_temp = (float) total / (float) (nice_days + bad_days);
printf ("The average temperature for %d days was %f\n",
nice_days + bad_days, average_temp);
t
t

Figure 3.10: Functions for niceday.c

3.3. CODING PROGRAMS FOR READABILITY 113

The resulting code for these functions is shown in Figure 3.10

Compiling and executing this program with some sample data produces the following sample
session:

kkCount Nice Daysx*

Type daily high temperature readings (0 to quit): 83
85

88

92

94

86

82

80

79

0

There were 6 nice days and 3 bad days

The average temperature for 9 days was 85.444443

3.3.3 Including Header Files

The second feature provided by the preprocessor allows us to break our source files into smaller
pieces to be reassembled at compile time. Using functions to hide details of algorithms and macros
to hide the syntax and “magic numbers” to make our programs more readable often results in
many function prototype statements and macro definitions at the beginning of source code files
These may also be hidden in separate files, and included in the source file by the preprocessor.
The files containing this information to be included are called include files or header files, and
by convention, are named with a .h extension on the file name. Header files are also often used to
provide common macro definitions and prototype statements that may be useful in may programs
(or as we shall see later, in many files making up a single program). An example of the later case
are the standard library functions provided in C; the prototype statements for these functions
should be available to any program which chooses to use the functions. In many of our programs
so far, we have used the library functions printf () and scanf (). Where are the prototypes for
these? As well as providing the code for library functions, all standard C implementations provide
a set of .h files with this information. The file stdio.h contains the prototypes and macros
needed to use the I/O library. (We have not needed this file before because the compiler will make
assumptions about functions if prototypes are not provided. Sometimes these assumptions are
“safe”, but often they are not. It is a good idea, from now on, to include stdio.hin any program

using the I/O library).

The statements and directives in an include file are inserted in a source file when the preproces-
sor encounters an #include directive in the original source file. To include stdio.h the directive
is:

114 CHAPTER 3. DESIGNING PROGRAMS TOP DOWN

#include <stdio.h>

The angle brackets, < and >, surrounding the filename indicate to the preprocessor that the file,
stdio.h, is to be found in “the usual place” where standard header files are kept on the system
(this is system dependent), and its contents placed in the source code in place of the #include
directive. Any other directives within the included file (such as #define or other #include
directives) are also processed at this time.

Besides the standard header files, as a programmer you can create and include your own header
files for your programs. For example, in our niceday.c program, we defined macros for TRUE and
FALSE. These macros are very common in many programs, so it would be convenient if we could
enter those definitions in a single header file and simply include that header file in any program
the uses those macros. This header file might be called tfdef.h and contain:

/* File: tfdef.h

Programmer: Programmer Name

This file contains the definitions of TRUE and FALSE
*/

#define TRUE 1
#define FALSE

To include these definitions in a .c source file, use the directive:
#include "tfdef.h"

Notice in this instance that the file name is surrounded by double quote, ", characters rather than
the angle brackets used before. This syntax tells the preprocessor that the header file is to be
found in the same directory as the .c source file currently being processed.

Again, in our nice day program, all of the other macro definitions and prototypes relating just
to this program may also be placed in a header file, say niceday.h:

/* File: niceday.h
Programmer: Programmer Name
This file contains the definitions of macros and prototypes
for functions used by the niceday program.

*/

#define TOO_COLD 80
#define TOO_HOT 90

3.3. CODING PROGRAMS FOR READABILITY

#define HOT_DAY(t) ((t) > TOO_HOT)
#define COLD_DAY(t) ((t) < ToOO_COLD)

#define ANY_DAYS(n,b) (((n) + (b)) > 0)

int nice_day(int temp);
int print_results(int nice, int bad, int temp_sum);

and replaced in niceday.c with:

#include '"'niceday.h"

Thus, the beginning of niceday.c has been reduced to:

/* File: niceday.c
Programmer: Programmer Name
Date: Current Date

This program counts the number of nice days in a set of high

temperature data.

*/

#include <stdio.h>
#include "tfdef.h"
#include '"niceday.h"

main()

{

115

Notice we include stdio.h at the head of the source file. Its contents are available for use by the
entire source file. We also declare the function prototypes for nice day() and print results()
in the file niceday.h outside main(). A declaration outside a function is called an external
declaration. The scope of an external declaration is the entire file from the point of the declaration;

i.e. all code that follows the external declaration can use the declared item. Since stdio.h is
included outside main(), the declarations for scanf () and printf() are also external. External
declaration of functions is convenient since it avoids repeated declarations of the same function.
On the other hand, external declarations of variables leads to poorly structured programs and

destroys modularity of functions. External declarations of variables is strongly discouraged.

In summary, the syntax of the #include directive is:

#include <filename>
#include "filename"

116 CHAPTER 3. DESIGNING PROGRAMS TOP DOWN

with the semantics that the contents of the file, filename, is to be inserted in the source file in place
of the #include directive. (Note: here the angle brackets are part of the syntax of the directive).
Other directives in the included file are also processed. In the first form of the directive, the header
file is searched for in the “usual place” for system header files, and in the second case, it is to be
found in the current directory. The advantages of using the #include directive are twofold:

1. Information such as macro definitions and prototype statements that are useful in multiple
program files need only be entered in a single place and then included where needed. This
also facilitates changes; the change need be made only in a single place.

2. Details of macro definitions and prototypes are hidden from the view of the reader, thus alle-
viating clutter and information overload and allowing a reader of the program to concentrate
on the logic of the code itself.

3.3.4 Conditional Compilation

The third useful facility provided by the preprocessor is conditional compilation; i.e. the
selection of lines of source code to be compiled and those to be ignored. While conditional
compilation can be used for many purposes, we will illustrate its use with debug statements. In
our previous programming examples, we have discussed the usefulness of printf () statements
inserted in the code for the purpose of displaying debug information during program testing.
Once the program is debugged and accepted as “working”, it is desirable to remove these debug
statements to use the program. Of course, if later an undetected bug appears during program use,
we would like to put some or all debug statements back in the code to pinpoint and fix the bug.
One approach to this is to simply “comment out” the debug statements; i.e. surround them with
comment markers, so that if they are needed again, they can be “uncommented”. This is a vast
improvement over removing them and later having to type them back. However, this approach
does require going through the entire source file(s) to find all of the debug statements and comment
or uncomment them.

The C preprocessor provides a better alternative, namely conditional compilation. Lines of
source code that may be sometimes desired in the program and other times not, are surrounded
by #ifdef,#endif directive pairs as follows:

#ifdef DEBUG
printf("debug:x = /d, y = 4f\n", x, y);

#tendif

The #ifdef directive specifies that if DEBUG exists as a defined macro, i.e. is defined by means of
a #define directive, then the statements between the #ifdef directive and the #endif directive
are retained in the source file passed to the compiler. If DEBUG does not exist as a macro, then
these statements are not passed on to the compiler.

Thus to “turn on” debugging statements, we simply include a definition:

3.3. CODING PROGRAMS FOR READABILITY 117

#define DEBUG 1

in the source file; and to “turn off” debug we remove (or comment) the definition. In fact, the
replacement string of the macro, DEBUG is not important; all that matters is the fact that its
definition exists. Therefore,

#define DEBUG

is a sufficient definition for conditional compilation purposes. During the debug phase, we define
DEBUG at the head of a source file, and compile the program. All statements appearing anywhere
between #ifdef and matching #endif directives will be compiled as part of the program. When
the program has been debugged, we take out the DEBUG definition, and recompile the program.
The program will be compiled excluding the debug statements. The advantage is that debug
statements do not have to be physically tracked down and removed. Also, it a program needs
modification, the debug statements are in place and can simply be reactivated.

In general, conditional compilation directives begin with an if-part and end with an endif-part.
Optionally, an else-part or an elseif-part may be present before the endif-part. The keywords for
the different parts are:

if-part: if, ifdef, ifndef
else-part: else
elseif-part: elif
endif-part: endif

The syntax is:

#<if-part>
<statements>
[# <elseif-part>
<statements> |
[#<else-part>
<statements> |
#<endif-part>

If the if-part is True, then all the statements until the next <else-part>, <elseif-part> or <endif-
part> are compiled; otherwise, if the <else-part> is present, the statements between the <else-
part> and the <endif-part> are compiled.

We have already discussed the keyword ifdef. The keyword ifndef means “if not defined”. If the
identifier following it is NOT defined, then the statements until the next <else-part>, <elseif-part>
or <endif-part> are compiled.

118 CHAPTER 3. DESIGNING PROGRAMS TOP DOWN

The keyword if must be followed by a constant expression, i.e. an expression made up of
constants and operators. If the constant expression is True, the statements until the next else-
part, elseif-part or endif-part are compiled. In fact, the keyword ifdef is just a special case of the if
form. The directive:

#ifdef ident
is equivalent to:
#1f defined ident

We can also use #if to test for the presence of a device, for example, so that if it is present,
we can include an appropriate header file.

#if DEVICE == MOUSE
#include mouse.h
#tendif

Here, both DEVICE and MOUSE are assumed to be constant identifiers.

The #elif provides a multiway branching in conditional compilation analogous to else ...1if
in C. Suppose, we wish to write a program that must work with any one of a variety of printers.
We need to include in the program a header file to support the use of a specific printer. Let us
assume that the specific printer used in an installation is defined by a macro DEVICE. We can then
write conditional compilation directives to include the appropriate header file.

#if DEVICE == IBM
#include ibmdrv.h
#elif DEVICE == HP
#include hpdrv.h
#else
#include gendrv.h
#endif

Only constant expressions are allowed in conditional compilation directives. Therefore, in the
above code, DEVICE, IBM, and HP must be be defined constants

The niceday Example Again

Using compiler directives is a convenience for the programmer and makes program source files
easier to understand. One goal in understandable files is to make them small, the less a reader
has to look at in trying to understand a program, the better. Good programming style includes

3.4. INTERACTING WITH THE OPERATING SYSTEM 119

the hiding of details at the algorithm level with functions, at the source code level using macros,
and at the source file level using header files and conditional compilation. One comment should
be made about header files. The information stored in header files is meant to be directives and
prototype statements, NOT code statements or function definitions. Also DO NOT:

#include "somefile.c"

The syntax of the #include directive allows these, but it is considered bad style. A final version
of our file niceday.c using these compiler directives is shown in Figure 3.11.

3.4 Interacting with the Operating System

In the programs we have developed so far, we have used C library functions scanf () and printf ()
to perform the input and output for our programs. These library routines are simply functions
that call on the facilities of the operating system to cause data to be the read from the keyboard
and written to the screen. In this section we look in more detail at these features of the operating
system.

3.4.1 Standard Files and EOF

In our payroll programs, we used a sentinel value of id number, namely 0, to indicate the end of
input data. There are many instances when it is not possible to use a special sentinel value of input
data to terminate the input. For example, suppose we wish to read a sequence of numbers and
determine the largest of them. It is impossible to select any one number as a signal to terminate
input since any selected number may be one of the valid numbers in our sequence and may appear
before the entire sequence of numbers is exhausted. We need a way to indicate that the end of
input is reached without entering any special value of input which may also be valid data.

C provides such mechanism to indicate the end of data input through the way it handles all
input and output. All data read by a C program or written from a program can be considered to
be simply a stream or sequence of characters, i.e. symbols we use to type or print information:
alphabetic letters, digits, punctuations, etc. This stream of characters is called a file and is
organized like any other file in the system. Three files, called standard input, standard output,
and standard error, are predefined files available to all programs. By default, standard input
is the keyboard, and standard ouput is the screen. The function scanf () reads data from the
standard input file, and printf () writes data to the standard output file. Run time error messages
are written to standard error, which is also the screen, by default.

The end of a file is indicated by a special marker which is an unusual character not commonly
used for any other purpose. When input is typed at the keyboard, an end of file mark is indicated
by what is called a control character. A control character is typed by pressing the control key,
(CTRL), and pressing another key while keeping CTRL key pressed. For example, control-A is

120 CHAPTER 3. DESIGNING PROGRAMS TOP DOWN

/* File: niceday.c
Programmer: Programmer Name
Date: Current Date

This program counts the number of nice days in a set of high

temperature data.

*/

#include <stdio.h>
#include "tfdef.h"
#include '"niceday.h"

main()
{ /* declarations */
int temperature, /* daily temperature

total = 0, /* cumulative total
num_nice_days = 0,
num_bad_days 0;

/* print title and prompt */
printf ("***Count Nice Days***\n\n'");
printf ("Type daily high temperature readings (0

/* read the first temperature */
scanf ("%d", &temperature);
while (temperature '= 0) {

/* process one temperature */
if (nice_day(temperature))
num_nice_days = num_nice_days + 1;
else
num_bad_days = num_bad_days + 1;
/* accumulate total of temperatures */
total = total + temperature;
#i1fdef DEBUG
printf("debug: %d temps read, total = %d\n",

*/
*/

to quit):

num_nice_days + num_bad_days, total);

#tendif

/* read next temperature */
scanf ("%d", &temperature);

print_results(num_nice_days, num_bad_days, total);

")

3.4. INTERACTING WITH THE OPERATING SYSTEM 121

/* Function to test for a nice day given the temperature */
int nice_day(int temp)
{

if(COLD_DAY(temp)) return FALSE;
if (HOT_DAY(temp)) return FALSE;

return TRUE;

by

/* Function to print results given number of nice and bad days */
/% and total of temperatures */
int print_results(int nice_days, int bad_days, int total)

{

float average_temp;

printf ("There were %d nice days and %d bad days\n",
nice_days, bad_days);

if (ANY_DAYS(nice_days,bad_days)) {
average_temp = (float) total / (float) (nice_days + bad_days);
printf ("The average temperature for %d days was %f\n",
nice_days + bad_days, average_temp);

Figure 3.11: Using Directives in niceday.c

entered by pressing CTRL and pressing A while keeping CTRL pressed. Control characters are
displayed on screen or paper by a caret followed by a letter. For example, control-A is written as
"A. The Control character entered on a keyboard to indicate an end of file is "D on most Unix
machines and "7 on DOS machines. A keyboard file (stream) with an end of file keystroke is
shown in Figure 3.12. Here, three lines of input are represented, followed by the end of file marker
as if the user had typed:

89
78
0

"D

How does scanf () inform the calling function that an end of file has been reached? It does
so by returning a special value to indicate an end of file. The function scanf () is just like any

122 CHAPTER 3. DESIGNING PROGRAMS TOP DOWN

8 9 \n 7 8 \n 0 \n [EOF| \n

Figure 3.12: End of File Marker

other function in C; it has arguments passed to it and it returns a value. So far, we have simply
ignored whatever value has returned. Normally, when scanf () reads data, it returns a value to
indicate the number of data items read successfully. We can save this value returned by scanf ()
and examine whether all data items have been read. For example, consider:

scanf ("%d", &n);
scanf ("%d %f %d", &n, &y, &id);

flag
flag

Assuming that both the above statements read data items successfully, then the first scanf () will
return 1 since it reads one decimal integer, and the second will return 3 since it reads three data
items, two int’s and a float. We have not used this value so far, but we can use it to check if a
correct number of items are read.

When scanf () detects the special end of file marker, it returns a value of either 0 or -1
(depending on implementation). The actual value returned is defined as a macro called EOF in the
file stdio.h.

We can now write a loop that terminates when the end of standard input file is reached.

#include <stdio.h>

flag = scanf();
while (flag '= EOF) {

flag = scanf();
The value returned by scanf () is saved in the variable flag. The loop repeats until flag receives
the value EOF. The above code is portable to any implementation since the correct value of EOF is

defined in stdio.h in every implementation. We can now write a program that uses end of file to
terminate reading of data.

Task

BIG: Find the largest absolute value in a sequence of integers typed in by the user. An end of file
keystroke terminates the input.

3.4. INTERACTING WITH THE OPERATING SYSTEM 123

The algorithm maintains the current largest absolute value. Fach time a new number is read,
the absolute value of the item read is compared with the largest value, and if necessary the largest
value is updated. The algorithm uses a loop that is terminated when an end of file keystroke is
typed. Here is the algorithm.

initialize largest to 0

read first integer, n

while there is still data
compare absolute value of n and largest, update largest
read next integer

print largest

We will need a function absolute() which takes an integer argument n, and returns its absolute
integer value. Notice we initialize our largest absolute value to 0, since that is the smallest absolute
value we can ever encounter. The entire program is shown in Figure 3.13 and a sample session is:

***xLargest Absolute Integer*#**

Type integers, EOF to quit: ~Z for DOS, "D for Unix
-20

0

30

-60

"D

Largest absolute value = 60

In our program, main() first prompts the user to type integers, and it also tells the user how
to terminate the input. It is best to assume that the user does not know how to press a keystroke
for EQF (however, in the future we will omit this reminder and assume the user knows the correct
EQF character). The prompt is written by:

printf ("Type integers, EOF to quit: "
"~7Z for DOS, "D for Unix\n");

Observe that the argument of printf() consists of two adjoining strings of characters, each
in double quotes. When the compiler encounters two adjoining strings, it replaces them by a
concatenated string, i.e. it joins them together into a single string:

"Type integers, EOF to quit: "Z for DOS, "D for Unix\n"

When a string gets too large, it is best to split it into two adjoining strings, since strings cannot
be broken across lines.

124 CHAPTER 3. DESIGNING PROGRAMS TOP DOWN

/* File: maxabs.c
Programmer: Programmer Name
Date: Current Date
This program reads in a sequence of integers until an end of file.
Among the numbers read, the program determines the largest absolute value.
*/
#include <stdio.h>
int absolute(int n);

main()
{ int largest = 0,
n, flag;

printf ("***Largest Absolute Integer*+**\n\n'") ;
printf ("Type integers, EOF to quit: ");

"~7Z for DOS, "D for Unix\n");
flag = scanf("%d", &n);

while (flag '= EOF) {
if (absolute(n) > largest)
largest = absolute(n);
flag = scanf("%d", &n);
t
printf("Largest absolute value = d\n", largest);

/* Function returns the absolute value of n */
int absolute(int n)

{
if (n < 0)
return -n;
else
return n;
}

Figure 3.13: Code for maxabs.c

3.4. INTERACTING WITH THE OPERATING SYSTEM 125

After the prompt, main() reads the first integer. The while loop tests for the end of the
input and compares the value of largest and the absolute value of the last number read, n. If
necessary largest is updated, a new number is read, and so forth. The loop is terminated when
an end of file character ("D or "7Z) is encountered by the function scanf () and it returns a value
EOF. Remember, only the value of flag, NOT that of n, gets the value, EOF. The value of n will
remain unchanged from its previous value when scanf () encounters end of file. Finally, the largest
absolute value is printed out.

We have seen that scanf() returns a value of items read or EOF. It also performs the task
of reading one or more items, converting them to internal form, and storing them at specified
addresses. This additional task does not directly contribute to the returned value and is called a
side effect. Functions may be used solely for their side effects, solely for their returned values,
or for both side effects and returned values. For example, we use printf () for its side effect and
ignore its value. We also frequently ignore the value of scanf(). In this section, we have used
scanf () for both its side effect as well as its return value.

3.4.2 Standard Files and Redirection

As we stated, normally the standard input and standard output files are defined by default to be
the keyboard and the screen. This may not always be convenient. For example, in our nice day
program, we might want to gather statistics for an entire year of temperature data, or an entire
decade. While we may have all this data readily available in a file, to use our program we would
have to type it all in at the keyboard again (and what happens if we make a mistake and have to
start all over). Operating systems such as Unix and MS-DOS allow a user to redirect the standard
input and output files to files other than the keyboard and screen.

If our program in file, niceday.c were compiled using the command:

cc -o niceday niceday.c

producing the executable file niceday, we can execute the program with input data from a file
called temperatures by typing the following command to the shell:

niceday < temperatures

The symbol < in the command redirects the standard input to come from the file temperatures
instead of the keyboard.
Similarly, we can redirect the standard input to our payroll program, pay5, from a file con-

taining monthly data for many employees:

payb < pay_data.march

126 CHAPTER 3. DESIGNING PROGRAMS TOP DOWN

However, in this case, unless we can read very fast, most of the output generated by the program
will scroll past the screen before we can read it. In addition, we might want to save the results of
our program execution in a file to send to a printer for a hard copy. A similar redirection of the
standard output to a file can be done with the symbol > as follows:

payb < pay_data.march > pay_results.march

One problem remains with this technique: all output generated by the program from printf ()
statements will be redirected to the file, including the prompts we put in the program. In this
case, the prompts are not necessary since the data is coming from a file, not from the user at the
keyboard. For programs who’s input and output are meant to be redirected from/to files, it is
best to remove the printf () statements which produce prompts. We might even consider using
conditional compilation to include or exclude the prompts, but remember, the program must be
recompiled to change from one which prompts to one which does not, and vice versa.

3.5 Debugging Guidelines

As programs become large, finding bugs and debugging become a time consuming job. Debugging
is an art that can be learned and developed. However, it requires plenty of experience in writing
and debugging programs. The structured, top down approach to writing programs discussed in
this chapter is one valuable tool for producing quality, working programs. However, there is no
substitute for extensive programming experience and the best way to gain programming experience
is to write, test, and debug programs; write, test, and debug programs; erte test, and

debug programs; etc. etc.

Certain debugging guidelines are presented here to make the learning process easier:

1. The first step cannot be emphasized enough. Spend plenty of time in preparing the algorithm.
A logically clear algorithm is much easier to debug than an ad hoc algorithm with many
fixes for previously found bugs. Trial and error programming may never be bug free.

2. Use top down development for your algorithms, and use modular programming for your
implementation. Top down development makes logic transparent at each stage and hides
unnecessary details by relegating them to later stages. Modular programming localizes errors
in small functions, which can be easily debugged.

3. Document your program using comments as you write it. It is a poor habit to delay docu-
menting a program until it is done. Frequently, the very process of documenting a program
makes the logic clearer and may well eliminate sources of errors.

4. Trace your program flow manually. This means: examine what happens to values of key
variables at key points in the program. Use judicious starting values for these variables.
Particularly, check values of variables at critical points, such as loop beginnings and ends,
function calls, and other key points in the program.

3.6. COMMON ERRORS 127

5. If your compiler comes with a symbolic debugger, learn to use it. The time spent to learn
the use of a debugger makes debugging of most programs an easier task.

6. Otherwise, use trace statements in your program. That is, use statements to print out values
of key variables at key positions in the program to help pin-point the program segment where
the bug may be located. The program segment containing a bug can be narrowed until the
exact one or two lines of code are pin-pointed. It is then easier to spot the error and correct
it. Trace statements are also called debug statements.

7. Pin-point the functions which generate errors. Rewrite the functions if they are overly
complex or long. Many times, it is easier to rewrite a function than to rectify poor logic.

8. In program development, initially we need debug statements. Later, once a program is
debugged, the debug statements must be removed. C provides conditional compilation which
was discussed above. One use of conditional compilation is to conditionally compile debug
statements. Initially the program, including debug statements, is compiled. Later, when the
program has been debugged, it can be compiled without compiling the debug statements.
Debug statements need not be removed from the code.

3.6 Common Errors

This section contains a list of common errors made by programmers — things to watch out for in
your programming.

1. The wrong value is tested for EOF instead of the returned value of scanf ():

flag = scanf("%d", &n);
while (n '= EOF) /* should be: while (flag != EOF) */

The value read is stored at the address given by &n, i.e. it is stored in n. The statement
scanf ("%d", &n) evaluates to a returned value which is either the number of data items
read or EOF. In the above case, if an integer data item is read, the value returned will be 1.
If no data item is read, scanf () returns EOF. The value returned by scanf () is stored in
the variable flag, NOT in n. Test flag for EOF, NOT n.

2. An attempt is made by a called function to access a variable defined in the calling function.

#include <stdio.h>
#tdefine TRUE 1

main()
{ int x, square(int x);
x = 3;

square(x) ; /* x cannot be unchanged by square() */

128 CHAPTER 3. DESIGNING PROGRAMS TOP DOWN

printf("x = %d\n", x); /* prints: x = 3 */
b
int square(int x) /* x is a new object, with initial value */

/* passed by an argument in the function call */

{

X = X * X; /* new x is changed */

return TRUE; /* a value is returned as the value of square() */
b

The variable x in main() is a different object from x in square(). The value of the local
cell, x, is changed in square(), but that does not affect the cell x in main(). The cell, x, in
main() will still have the value 3 after the function call to square(). If main() needs the
squared value of x, then square() should return the squared value of x, NOT TRUE. This
returned value should be saved in a local variable in main(). For example, if the return
statement in square() is:

return X;
then the returned value can be saved in main():
x = square(x);

3. A function is not declared with a prototype statement. Without a prototype, the compiler
will not be able to check for consistency in usage of the function. When a function is declared,
the compiler checks for a correct number of arguments in function calls and checks for correct

types.

4. A default declaration of a function assumes an integer type function value. If the actual
definition of that function returns a non-integer type, then the compiler will consider it an
attempt to redeclare a function. The compiler will flag it as an error.

5. An erroneous keystroke is entered when an end of file is to be entered. For example, an
attempt is made to enter 0 or -1 for an end of file. These values are not the end of file
keystrokes; they represent the possible values returned by scanf() when an end of file
keystroke ("D or "Z) is encountered.

3.7 Summary

This chapter has presented a key concept in the design of good programs; namely, top down design.
Beginning with the algorithm, complex programming tasks are divided into logical subtasks which
themselves may be further divided. This structured design is a form of information hiding —
hiding the details of an operation in its abstraction. We have described how these logical subtasks
may be implemented using functions in C. A function is a block of code, which when given some
information, performs some operations on the data and returns a value. To invoke (call) a function,
use a statement with the form:

3.7. SUMMARY 129

<function_name> ([<argument>[,<argument>...]])

where each argument may be an arbitrary expression. A function is defined by specifying a
function_header and a function_body. A function header takes the form:

<function_name> ([<parameter>[,<parameter>...]])

and a function body is simply a block containing local variable declarations followed by executable
statements to perform the task of the function.

We saw that the <parameter>’s in the function header are really just special forms of variable
declarations; containing a type specifier and an identifier. They declare additional local variables
within the function which are initialized to the values passed as arguments in the call. We also
saw how declaration statements can initialize variables when a block is entered:

<type_specifier><var_name> [=<init_expr>]|, <var_name> [=<init_expr>]...];

Remember, all local variables local to a function may be accessed ONLY within the body of the
function, not by functions calling this function and not by functions called by this function.

The value returned by a function is specified in a return statement of the form:
return <expression>;

If the last statement of the function is reached without executing a return statement, the function
returns with an unknown return value.

Next we discussed another form of information hiding using compiler directives processed by
the C preprocessor. These included macros, with and without arguments, including header files,
and conditional compilation.

#define <symbol_name> <substitution_string>

#include <filename>
#include "filename"

#ifdef <identifier>

(and other variations of the #if directive).

Finally, we described the relationship between 1/O in C and files, including end of file and
redirection of standard input and output files.

130 CHAPTER 3. DESIGNING PROGRAMS TOP DOWN

3.8 Exercises
1. What will the following code do?

#define SQ(x) x * x;
printf ("/4d\n", SQ(3));

2. What will the following code do?

#define SQ(x) x * x;
printf("%d\n", SQ(2+3));

3. What will be the output of the following code:

#tdefine DEBUG O
#define TWICEZ =z + z

main()
{ int z = 5;

#tifdef DEBUG
printf ("%d\n", TWICEZ * 2);
#tendif

4. Check the following program for errors, if any, and use a manual trace to verify the program
averages two numbers.

#include <stdio.h>
main()
{ float x, y, average;

printf ("Type two numbers: ");

scanf ("4 %", &x, &y);

calc_avg(x, y);

printf ("Average of %f and /f is %f\n", x, y, average);

}
calc_avg(float a, float b)
{
return a + b / 2;
}

5. Check the following program for errors, if any, and manually trace its execution.

3.8. EXERCISES 131

main()
{ float x, y, average;

printf ("Type numbers\n");

scanf ("%f", &x);

while (x '= EOF) {
printf ("Number read = %f\n", x);
scanf ("%f", &x);

132

CHAPTER 3. DESIGNING PROGRAMS TOP DOWN

3.9 Problems

10.

11.

. Write a function float speed mph(float distance, float time); where distance trav-

eled is specified in feet and time interval is in seconds. The function should return the speed
in miles per hour. A mile is 5280 feet. Show a manual trace.

. Write a program that prints out an integer and its square for all integers in the range from

7 through 17. Use a function to calculate the square of an integer. Show a manual trace.

. Write a program to sum all input numbers until end of file. The program should keep a count

of the numbers entered and compute an average of the input numbers. Show a manual trace
for the first three numbers.

. Write a function float max(float nl, float n2); that returns the greater of n1 and n2.

Write a function float min(float nl, float n2); that returns the lesser of n1 and n2.
Write a program that reads in numbers and uses the above functions to find the maximum
and the minimum of all the numbers. The end of input occurs when zero is typed. Zero is
a valid number for determining the maximum and the minimum. Use debug statements to
ensure that the maximum and the minimum are updated correctly.

. Write a program that generates a table of equivalent Celsius (C) and Fahrenheit (F) tem-

peratures from 0 to 212 degrees F. The table entries should be at five degree (F) intervals.
Use a function to convert degrees I to C. The conversion between the two is given by:

C=(F -32) 5.0/ 9.0

. Write a program that uses a function to determine if a given year is a leap year. A year is

a leap year if it is divisible by 400; or if it is divisible by 4 and it is not divisible by 100.

. Write a function float sum_recn(int n); which returns the sum of the reciprocals of

integers from 1 through n. Write a program that reads positive integers until end of file. For
each positive integer, x, read, it prints sum rec n(x). Reciprocals must be float values.
Use a cast operator to convert an integer to float before the reciprocal is calculated.

Modify the pay calculation program of Figure 3.2 so that a function print_data() prints
out the input data as well as the pay. The function print_data() should return the number
of items it writes to the output.

Assume that C does not provide a multiply operator. Write a function, int multiply(int
nl, int n2); that multiplies two integers n1 and n2, and returns their product. Write a
driver to test the function.

Write a function, int factors(int n), where n is a positive integer. The function prints
the smallest integer factors of n, excluding 1 and itself. For example, if n is 120, then
factors(n) will print 2, 2, 2, 3, 5. The function returns TRUE if n has no factors and
FALSE otherwise.

Write a program that reads a positive integer and tests if it is a prime number by using
factors() from Problem 10

3.9.

12.

13.

14.

15.

16.

17.

18.

PROBLEMS 133

Write a function int ged(int n, int m); that returns the greatest common divisor (GCD)
of non-negative integers n and m. A GCD may be obtained as follows: if m is zero, then GCD
is n; otherwise, replace current n by the current m and replace current m by (n % m). Repeat
until m becomes zero and GCD is found.

Assume that C does not have a divide operator. Write a function int_divide() with two
integer arguments that returns an integer quotient when the first argument is divided by the
second argument.

Assume that C does not have a modulus operator. Write a function modulus() with two
integer arguments that returns the remainder when the first argument is divided by the
second.

Write a program that prints the accumulated value of an initial investment invested at a
specified annual interest and compounded annually for a specified number of years. Annual
compounding means that the entire annual interest is added at the end of a year to the
invested amount. The new accumulated amount then earns interest, and so forth. If the
accumulated amount at the start of a year is acc_amount, then at the end of one year the
accumulated amount is:

acc_amount = acc_amount + acc_amount * annual_interest

Use a function that returns the accumulated value given the amount, interest, and years.
The prototype is:

float calc_acc_amt(float acc_amount, float annual_interest, int years);

Modify the function in Problem 15 so that the interest may be compounded annually,
monthly, or daily. Assume 365 days in the year. Hint: Use an argument to specify annual,
monthly, or daily compounding of interest. If interest is not to be compounded annually,
the annual interest must be converted to monthly (i.e., interest / 12) or daily interest (i.e.,
interest / 365). The interest must then be compounded each year, each month, or each day
as the case may be.

Write a function that calculates the factorial of an integer n. Use a driver to test the
function for values of n from 1 to 7. Factorial of a positive integer, n, is given by the product
of positive integers from 1 through n. Use a variable that stores the value of the cumulative
product. The cumulative product is multiplied by a new value of an integer each time a loop
is executed:

cum_prod = cum_prod * 1;

The initial value of the cumulative product should be 1 so the first multiple accumulates
correctly.

Write a function, float pos_power(float base, int exponent); which returns the value
of base raised to a positive exponent. For example, if base is 2.0 and exponent is 3, the
function should return 8.0. If the exponent is negative, the function should return 0.

134 CHAPTER 3. DESIGNING PROGRAMS TOP DOWN

19. Write a function, neg_power (), which returns base raised to a negative exponent.

20. Modity the functions in Problems 18 and 19 to write a function float power(float base,
int exponent) ; which returns an exponent power of base, where exponent may be positive
or negative. If the exponent is zero, it should return 1.

21. Write a function int weight(int n); where n is a positive integer. The function returns
the weight of the most significant digit, i.e., the highest power of ten which does not exceed
n. For example, if n is 2345, weight (n) returns 1000. Assume n is less than 10000.

22. Write a function, int sig dig value(int n); that returns the integer value of the most sig-
nificant digit of a positive integer n less than 10000. For example, if nis 2345, sig_dig value(n)
returns integer 2.

23. Write a function, int suppressmsd(int n); that returns an integer value of a positive in-
teger after the most significant digit is removed. For example, if n is 2345, suppressmsd(n)
returns 345.

24. Use Problems 22 and 23 to write a function, print_dig_int (int n); that prints successive
integer values of digits of a positive integer n. Each digit value is printed on a separate line.
For example, if n is 2345, print_ dig_int(n) prints 2 on one line, 3 on the next, 4 on the
next, and 5 on the last line.

25. Write a function print dig float(float x); that writes the value of each digit of a floating
point number x. For example, if x is 2345.1234, then print_dig float (x) will print integer
values of digits 2, 3, 4, 5, 1, 2, 3, and 4 in succession.

26. Write a macro to evaluate the sum of the squares of two parameters. Make sure the macro
can be called with any argument expressions. Write a program that reads two values and
uses the above macro to print the sum of the squares.

Chapter 4

Processing Character Data

So far we have considered only numeric processing, i.e. processing of numeric data represented
as integer and floating point types. Humans also use computers to manipulate data that is not
numeric such as the symbols used to represent alphabetic letters, digits, punctuation marks, etc.
These symbols have a standard meaning to us, and we use them to represent (English) text. In
the computer, the symbols used to store and process text are called characters and C provides
a data type, char, for these objects. In addition, communication between humans and computers
is in the form of character symbols; i.e. all data typed at a keyboard and written on a screen
is a sequence of character symbols. The functions scanf () and printf () perform the tasks of
converting between the internal form that the machine understands and the external form that
humans understand.

In this chapter, we will discuss character processing showing how characters are represented in
computers and the operations provided to manipulate character data. We will develop programs
to process text to change it from lower case to upper case, separate text into individual words,
count words and lines in text, and so forth. In the process, we will present several new control
constructs of the C language, describe user interfaces in programs, and discuss input/output of
character data.

4.1 A New Data Type: char

The complete set of characters that can be recognized by the computer is called the character
set of the machine. As with numbers, the representation in the computer of each character in the
set is done by assigning a unique bit pattern to each character. The typical character set consists
of the following types of characters:

Alphabetic lower case: ’a’,..., 'z’
Alphabetic upper case: ’A’,..., ’Z’
Digit symbols :’00,..., 79
Punctuation 2L, s ete.

136 CHAPTER 4. PROCESSING CHARACTER DATA

Character Meaning
\a’ alert (bell)
’\b’ backspace
AV form feed
’\n’ newline
'\r’ carriage return
'\t horizontal tab
"\v’ vertical tab
A\ backslash
AN single quote
P\ double quote
AV question mark

Table 4.1: Escape Sequences

Space 2
Special symbols : ’Q’, #’, ’$’, etc.
Control Characters : newline, tab, bell or beep, etc.

For example, a digit symbol is character type data, so when we type 234 at the keyboard, we
are typing a sequence of character symbols: ’2°, followed by >3’ followed by ’4°. The function
scanf () takes this sequence and converts it to the internal form of the equivalent number, 234.
Similarly, all writing on the screen is a sequence of characters so printf () takes the internal form
of the number and converts it to a sequence of characters which are written onto the screen.

In C programs, variables may be declared to hold a single character data item by using the
keyword char as the type specifier in the declaration statment:

char ch;

A character constant is written surrounded by single quotation marks, e.g. >a’, *A>, *§>, 217,
etc. Only printable character constants can be written in single quotes, not control characters, so
writing of non-printable control character constants requires special handling. In C, the backslash
character, \, is used as an escape character which signifies something special or different from the
ordinary and is followed by one character to indicate the particular control character. We have
already seen one such control sequence in our printf () statments; the newline character, >\n’.
Other frequently used control character constants written with an escape sequence, include *\t”’
for tab, >\a’ for bell, etc. Table 4.1 shows the escape sequences used in C. The newline, tab, and
space characters are called white space characters, for obvious reasons.

Let us consider a simple task of reading characters typed at the keyboard and writing them
to the screen. The task is to copy (or echo) the characters from the input to the output. We will
continue this task until there is no more input, i.e. until the end of the input file.

4.1. A NEW DATA TYPE: CHAR 137

/* File: copyO.c
Programmer:
Date:
This program reads a stream of characters, one character at
a time, and echoes each to the output until EOF.

x/
#include <stdio.h>
main()
{ char ch; /* declaration for a character object ch */
int flag; /* flag stores the number of items read by scanf() */

printf ("***Copy Program*+**\n\n") ;
printf ("Type text, terminate with EOF\n");

flag = scanf(")c", &ch); /* read the first char */
while (flag '= EOF) { /* repeat while not EOF */
printf("/c", ch); /* print the last char read */
flag = scanf(")c", &ch); /* read the next char, update flag */
t /* flag is EOF, ch may be unchanged */
t
Figure 4.1: Code for copy0.c
TASK

COPYO0: Write out each character as it is read until the end of input file.

The algorithm can be stated simply as:

read the first character

while there are more characters to read
write or print the previously read character;
read the next character

The code for this program is shown in Figure 4.1.

The keyword char declares a variable, ch, of character data type. We also declare an integer
variable, flag, to save the value returned by scanf (). Recall, the value returned is either the
number of items read by scanf () or the value EOF defined in stdio.h. (We do not need to know
the actual value of EOF to use it).

After the title is printed, a character is read by the statement:

138 CHAPTER 4. PROCESSING CHARACTER DATA

flag = scanf(")c", &ch);

The conversion specification for character type data is %c, so this scanf () reads a single character
from the input. If it is not an end of file keystroke, the character read is stored into ch, and the
value returned by scanf (), 1, is saved in flag. As long as the value of flag is not EQF, the loop
is entered. The loop body first prints the value of ch, i.e. the last character read, and then, the
assignment statement reads a new character and updates flag. The loop terminates when flag is
EQF, i.e. when an end of file keystroke is detected. Remember, scanf () does not store the value,
EOF into the object, ch. DO NOT TEST THE VALUE OF ch FOR EOF, TEST flag. A sample

session is shown below:

***xCopy Program**x*

Type text, terminate with EOF

Now is the time for all good men

Now is the time for all good men

To come to the aid of their country.

To come to the aid of their country.

"D

The sample session shows that as entire lines of characters are entered; they are printed. Each
character typed is not immediately printed, since no input is received by the program until a
newline character is typed by the user; i.e. the same buffering we saw for numeric data entry.
When a newline is typed, the entire sequence of characters, including the newline, is placed in
the keyboard buffer and scanf () then reads input from the buffer, one character at a time, up
to and including the newline. In our loop, each character read is then printed. When the buffer
is exhausted, the next line is placed in the buffer and read, and so on. So, scanf () is behaving
just as it did for numeric data; each call reads one data item, in this case a character (%c). One
notable difference between reading numeric data and character data is that when scanf () reads
a character, leading white space characters are read, one character at a time, not skipped over as
it is when reading numeric data.

4.1.1 The ASCII Character Set

Character data is represented in a computer by using standardized numeric codes which have
been developed. The most widely accepted code is called the American Standard Code for
Information Interchange (ASCII). The ASCII code associates an integer value for each symbol
in the character set, such as letters, digits, punctuation marks, special characters, and control
characters. Some implementations use other codes for representing characters, but we will use
ASCIT since 1t is the most widely used. The ASCII characters and their decimal code values are
shown in Table 4.2. Of course, the internal machine representation of characters is in equivalent
binary form.

4.1. A NEW DATA TYPE: CHAR 139

ASCII Character ASCII Character ASCII Character

value value value

000 ~Q 043 + 086 v
001 ~A 044 , 087 W
002 "B 045 - 088 X
003 ~C 046 . 089 Y
004 “D 047 / 090 yA
005 “E 048 0 091 [
006 °F 049 1 092 \
007 ~G 050 2 093]
008 “H 051 3 094 "
009 ~I 052 4 095 _
010 ~J 053 5 096 ‘
011 “K 054 6 097 a
012 “L 055 7 098 b
013 “M 056 8 099 c
014 “N 057 9 100 d
015 ~0 158 : 101 e
016 “pP 059 ; 102 f
017 “Q 060 < 103 g
018 “R 061 = 104 h
019 S 062 > 105 i
020 ~T 063 ? 106]
021 ~U 064 Q 107 k
022 ~V 065 A 108 1
023 “W 066 B 109 m
024 “X 067 c 110 n
025 Y 068 D 111 o
026 ~Z 069 E 112 p
027 ~[070 F 113 q
028 “\ 071 G 114 r
029 "] 072 H 115 s
030 - 073 I 116 t
031 ~- 074 J 117 u
032 [space] 075 K 118 v
033 ! 076 L 119 W
034 " 077 M 120 X
035 # 078 N 121 y
036 $ 079 0 122 z
037 % 080 P 123 {
038 & 081 Q 124 |
039) 082 R 125 +
040 (083 S 126 ~
041) 084 T 127 DEL
042 * 085 U

Table 4.2: ASCII Table

140 CHAPTER 4. PROCESSING CHARACTER DATA

The ASCII table has 128 characters, with values from 0 through 127. Thus, 7 bits are sufficient
to represent a character in ASCII; however, most computers typically reserve 1 byte, (8 bits), for
an ASCII character. One byte allows a numeric range from 0 through 255 which leaves room for
growth in the size of the character set, or for a sign bit. Consequently, a character data type may
optionally represent signed values; however, for now, we will assume that character data types are
unsigned, i.e. positive integer values, in the range 0—127.

Looking at the table, note that the decimal values 0 through 31, and 127, represent non-
printable control characters. All other characters can be printed by the computer, i.e. displayed
on the screen or printed on printers, and are called printable characters. All printable characters
and many control characters can be input to the computer by typing the corresponding keys on
the keyboard. The character column shows the key(s) that must be pressed. Only a single key
is pressed for a printable character; however, control characters need either special keys on the
keyboard or require the CTRL key pressed together with another key. In the table, a control key
is shown by the symbol ~. Thus, ~A is control-A, i.e. the CTRL key kept pressed while pressing
the key, A.

Notice that the character *A’ has the code value of 65, B’ has the value 66, and so on. The
important feature is the fact that the ASCII values of letters >A’ through ’Z’ are in a contiguous
increasing numeric sequence. The values of the lower case letters *a’ through >z’ are also in a
contiguous increasing sequence starting at the code value 97. Similarly, the digit symbol characters
>0’ through ’9’ are also in an increasing contiguous sequence starting at the code value 48. As
we shall see, this feature of the ASCII code is quite useful.

It must be emphasized that a digit symbol is a character type. Digit characters have code
values that differ from their numeric equivalents: the code value of 0’ is 48, that of ’1’ is
49, that of *2’ is 50, and so forth. The table shows that the character with code value 0 is a
control character, ~@, called the NULL character. Do NOT confuse it with the digit symbol
’0’. Remember, a digit character and the equivalent number have different representations.

Besides using single quotes, it is also possible to write character constants in terms of their
ASCII values in a C program, using either their octal or their hexadecimal ASCII values. In writing
character constants, the octal or hexadecimal value follows the escape character, \, as shown in
Table 4.3. At most three octal digits or at most two hexadecimal digits are needed. Note, after the
escape backslash, a leading zero should not be included in writing octal or hexadecimal numbers.
The last example in Table 4.3, >\0”, is called the NULL character, whose ASCII value is zero.
Once again, this is NOT the same character as the printable digit character, *0’, whose ASCII
value is 48.

4.1.2 Operations on Characters

As we just saw, in C, characters have numeric values and, therefore, may be used in numeric
expressions. It is the ASCII code value of a character that is used in these expressions. For
example (referring to Table 4.2), the value of *a’ is 97, and that of A’ is 65. So, the expression
’a’ - A’ is evaluated as 97 — 65, which is 32. As we shall see, this ability to do arithmetic with

4.1. A NEW DATA TYPE: CHAR

Character Constants
'\007", *\07’, *\7’

’\101°

’\XB’

)\O)

141

Meaning
character whose value is octal 7

character whose octal value is 101, or
whose decimal value is 65, i.e. A’

character with hex. value B, i.e.
with decimal value 11.

character whose value is zero;
it i1s called the NULL character

Table 4.3: Escape sequences with Octal & Hexadecimal values

character data simplifies character processing. When a character variable or constant appears in

an expression, it is replaced by its ASCII value of type integer. When a character cell is assigned
an integer value, the value is interpreted to be an ASCII value. In other words, a character and
its ASCII value are used interchangeably as required by the context. While a cast operator can
be used, we do not need it to go from character type to integer type, and vice versa. Here are
some expressions using character variables and constants.

ch = 97;
ch = ’\141°;
ch = ’\x61’;
ch = ’a’;

ch=ch-"’a + ’A’;

ch = ’d’;
ch=ch-"’a + ’A’;
ch=ch - A"+ a’;

/%
/%
/%
/%

/%

/%
/%

ch
ch
ch
ch

ch

ch
ch

<--- ASCII value 97, i.e., ’a’ %/

<--- ’a’; octal 141 is decimal 97 */
<--- ’a’; hexadecimal 61 is decimal 97 */
=== 23" */

=== A */

===] */

K-== 43’ */

The first group of four statements merely assigns lower case ’a’ to ch in four different ways:
the first assigns a decimal ASCII value, the second assigns a character in octal form, the third
assigns a character in hexadecimal form, the fourth assigns a character in a printable symbolic

form. All of these statements have exactly the same effect.

The next statement, after the first group, assigns the value of an expression to ch. The right

hand side of the assignment is:

ch - ’a’ + ’A’

142 CHAPTER 4. PROCESSING CHARACTER DATA

Since the value of ch is ’a’ from the previous four statements, the above expression evaluates to
the value of a’ - ’a’ + A’ i.e. the value of ?A’. In other words, the right hand side expression
converts lower case ’a’ to its upper case version, ’A’, which is then assigned to ch. Since the
values of lower case letters are contiguous and increasing (as are those of upper case letters) ’a’
is less than °b?, b’ less than ’c’, and so forth. Also, the offset value of each letter from the base
of the alphabet is the same for lower case letters as it is for upper case letters. For example, >4’
- ’a’ is the same as D’ - ’A’. So, if ch is any lower case letter, then the expression

ch - ’a’ + ’A’

results in the upper case version of ch. This is because the value of ch - ’a’ is the offset of ch
from the lower case base ’a’; adding that value to the upper case base *A’ results in the upper
case version of ch. So for example, if ch is *£’ then the value of the above expression is ’F’.
Similarly, if ch is an upper case letter, then the expression

ch - A’ + ’a’

results in the lower case version of ch which may then be assigned to a variable.

Using this fact, the last group of three statements in the above set of statements first assigns a
lower case letter d’ to ch. Then the lower case value of ch is converted to its upper case version,
and then back to lower case.

As we mentioned, all lower case and upper case letters have contiguous and increasing values.
The same is true for digit characters. Such a contiguous ordering makes it easy to test if a given
character, ch, is a lower case letter, an upper case letter, or a digit. For example, any lower case
letter has a value that is greater than or equal that of a’ AND less than or equal to that of *z’.
From this, we can write a C expression that is True if and only if ch is a lower case letter:

(ch >= ’a’ &% ch <= 'z7)

Here is a code fragment that checks whether a character is a lower case letter, an upper case
letter, a digit, etec.

if (ch >= ’a’ && ch <= ’z’)
printf("/c is a lower case letter\n", ch);
else if (ch >= A’ && ch <= ’Z’)
printf("/c is an upper case letter\n", ch);
else if (ch >= 0’ && ch <= ’97)
printf("%c is a digit symbol\n", ch);
else
printf("%c is neither a letter nor a digit\n");

4.1. A NEW DATA TYPE: CHAR 143

Observe the multiway decision and branch: if ... else if ... else if ... else. Only
one of the branches is executed. The first if expression checks if the value of ch is between the
values of *a’ and ’z’, a lower case letter. Only if ch is not a lower case letter, does control proceed
to the first else if part, which tests if ch is an upper case letter. Only if ch is not an upper case
letter, does control proceed to the next else if part, which tests if ch is a digit. Finally, if ch is
not a digit, the last else part is executed. Depending on the value of ch, only one of the paths is
executed with its corresponding printf () statement.

Let us see how the expression
(ch >= ’a’ &% ch <= ’z7)

is evaluated. First, the comparison ch >= ’a’ is performed; then, ch <= ’z’ is evaluated;
finally, the results of the two sub-expressions are logically combined by the AND operator. Eval-
uation takes place in this order because the precedence of the binary relational operators (>=,
<=, ==, etc.) is higher than that of the binary logical operators (&&, ||). We could have used
parentheses for clarity, but the precedence rules ensure the expression is evaluated as desired.

One very common error is to write the above expression analogous to mathematical expressions:
(’a’ <= ch <= ’z’)

This would not be found to be an error by the compiler, but the effect will not be as expected.
In the above expression, since the precedence of the operators is the same, they will be evaluated
from left to right according to their associativity. The result of *a’ <= ch will be either True or
False, i.e. 1 or 0, which will then be compared with ’z’. The result will be True since 1 or 0 is
always less than ’z’ (ASCII value 122). So the value of the above expression will always be True
regardless of the value of ch — not what we would expect.

Let’s write a program using all this information. Our next task is to read characters until
end of file and to print each one with its ASCII value and what we will call the attributes of the
character. The attributes are a character’s category, such as a lower case or an upper case letter,
a digit, a punctuation, a control character, or a special symbol.

Task

ATTR: For each character input, print out its category and ASCII value in decimal, octal, and
hexadecimal forms.

The algorithm requires a multiway decision for each character read. A character can only be
in one category, so each character read will lead to the execution of one of the paths in a multiway
decision. Here is the algorithm.

read the first character

144 CHAPTER 4. PROCESSING CHARACTER DATA

repeat as long as end of file is not reached

1f the character is a lower case letter
print the various character representations, and
print that it is a lower case letter

else 1f it 1s an upper case letter
print the various character representations, and
print that it is an upper case letter

else 1f it is a digit
print the various character representations, and
print that it is a digit
etc..

read the next character

Notice we have abstracted the printing of the various representations of the character (as a char-
acter and its ASCII value in decimal, octal and hex) into a single step in the algorithm: print
the various character representations, and we perform the same step in every branch of
the algorithm. This is a classic situation calling for the use of a function: abstract the details
of an operation and use that abstraction in multiple places. The code implementing the above
algorithm is shown in Figure 4.2. We have declared a function print _reps() which is passed a
single character argument and expect it to print the various representations of the character. We
have used the function in the driver without knowing how print reps() will perform its task.

We must now write the function print reps(). The character’s value is its ASCII value.
When the character value is printed as a character with conversion specification J%c, the symbol
is printed; when printed as a decimal integer with conversion specification %d, the ASCII value
is printed in decimal form. Conversion specification %o prints an integer value in octal form, and
%x prints an integer value in hexadecimal form. We simply need a printf () call with these four
conversion specifiers to print the character four times. The code for print_reps() is shown in
Figure 4.3. The function simply prints its parameter as a character, a decimal integer, an octal
integer, and a hexadecimal integer.

Sample Session:

Character Attributes

Type text, terminate with EOF

Aloha, "A!

A, ASCII value decimal 65, octal 101, hexadecimal 41: an upper case letter
, ASCII value decimal 108, octal 154, hexadecimal 6c: a lower case letter
ASCII value decimal 111, octal 157, hexadecimal 6f: a lower case letter
, ASCII value decimal 104, octal 150, hexadecimal 68: a lower case letter
, ASCII value decimal 97, octal 141, hexadecimal 61: a lower case letter
»» ASCII value decimal 44, octal 54, hexadecimal 2c: a punctuation symbol
“A, ASCII value decimal 1, octal 1, hexadecimal 1: a control character

', ASCII value decimal 33, octal 41, hexadecimal 21: a punctuation symbol

-

M B O

4.1. A NEW DATA TYPE: CHAR

/* File: attr.c
This program reads characters until end of file. It prints the
attributes of each character including the ASCII value.

*/

#include <stdio.h>
int print_reps(char ch);

main()
{ char ch;
int flag;

printf ("***Character Attributes***\n\n");
printf ("Type text, terminate with EOF \n");

flag = scanf("c", &ch); /* read the first char */
while (flag '= EOF) {
if (ch >= ’a’ && ch <= ’z’) { /* lower case letter? */

else

else

else

else

else

else

iy
flag

print_reps(ch);
printf("lower case letter\n");

if (ch >= A’ && ch <= ’Z’) { /* upper case letter? */
print_reps(ch);
printf("an upper case letter\n");

if (ch >= 0’ && ch <= ’9’) { /* digit character? */
print_reps(ch);
printf("a digit symbol\n");

if (ch==".7 || ch=="," || ch==";"[] ch==":" ||
ch == "7 || ch == 1) { /* punctuation? */

print_reps(ch);

printf("a punctuation symbol\n");

if (ch ==) { /* space? */
print_reps(ch);
printf("a space character\n");

if (ch < 32 || ch == 127) { /* control character? */
print_reps(ch);
printf("a control character\n");

{ /* must be a special symbol */
print_reps(ch);
printf("a special symbol\n");

scanf ("%c'", &ch); /* read the next char */

+ /* end of while loop */
t /* end of program */

Figure 4.2: Code for ASCII Attributes

145

146 CHAPTER 4. PROCESSING CHARACTER DATA

/* File: attr.c --- continued
*/
int print_reps(char ch)
{
printf("%c, ASCII value decimal %d, octal %o, hexadecimal %x: ",
ch,ch,ch,ch);
t

Figure 4.3: Printing character representations

, ASCII value decimal 10, octal 12, hexadecimal a: a control character

"D

The last line printed refers to the newline character. Remember, every character including the
newline is placed in the keyboard buffer for reading and, while scanf () skips over leading white
space when reading a numeric data item, it does not do so when reading a character.

Can we improve this program? The driver (main()) shows all the details of character testing,
beyond the logic of what is being performed here, so it may not be very readable. Perhaps we
should define a set of macros to hide the details of the character testing expressions. For example,
we might write a macro:

#define IS_LOWER(ch) ((ch) >= ’a’ && (ch) <= 'z7)
Then the first if test in main() would be coded as:

if (IS_LOWER(ch)) A

which directly expresses the logic of the program. The remaining expressions can be recoded using
macros similarly and this is left as an exercise at the end of the chapter.

One other thought may occur to us to further improve the program. Can we make the function
print_reps() a little more abstract and have it print the various representations as well as the
category? To do this we would have to give additional information to our new function, which
we will call print_category(). We need to tell print_category() the character to print as well
as its category. To pass the category, we assign a unique code to each category and pass the
appropriate code value to print_category(). To avoid using “magic numbers” we define the
following macros:

#define LOWER 0
#define UPPER 1

4.1. A NEW DATA TYPE: CHAR 147

#define DIGIT 2
#define PUNCT 3
#define SPACE 4
#define CONTROL 5
#define SPECIAL 6

Placing these defines (together with the comparison macros) in a header file, category.h, we can
now recode the program as shown in Figure 4.4. The code for print_category() is also shown.
Looking at this code, it may seem inefficient in that we are testing the category twice; once in
main() using the character, and again in print_category() using the encoded parameter. Later
in this chapter we will see another way to code the test in print_category () which is more efficient
and even more readable. The contents of the header file, category.h is left as an exercise. The
program shown in Figure 4.4 will behave exactly the same as as the code in Figure 4.2 producing
the same sample session shown earlier.

4.1.3 Character I/O Using getchar() and putchar()

We have already seen how to read and print characters using our usual [/O built in functions,
scanf () and printf(); i.e. the %c conversion specifier. We have also included the header file
stdio.hin all our programs, because it contains the definition for EOF, and declares prototypes for
these formatted 1/O routines. In addition, stdio.h contains two other useful routines, getchar ()
and putchar (), which are simpler to use than the formatted routines for character I/O. We use the
term routine for getchar() and putchar() because they are actually macros defined in stdio.h
which use more general functions available in the standard library. (Often routines that are macros
are loosely referred to as functions since their use in a program can appear like a function call, so
we will usually refer to getchar() and putchar() as functions).

The function getchar() reads a single character from the standard input and returns the
character value as the value of the function, but to accommodate a possible negative value for
EQF, the type of the value returned is int. (Recall, EOF may be either 0 or -1 depending on
implementation). So we could use getchar() to read a character and assign the returned value
to an integer variable:

int c;
c = getchar();
If, after executing this statement, ¢ equals EOF, we have reached the end of the input file; otherwise,

c is the ASCII value of the next character in the input stream.

While int type can be used to store the ASCII value of a character, programs can become
confusing to read — we expect that the int data type is used for numeric integer data and
that char data type is used for character data. The problem is that char type, depending on
implementation, may or may not allow negative values. To resolve this, C allows us to explicitly

148 CHAPTER 4. PROCESSING CHARACTER DATA

/* File: attr2.c
This program reads characters until end of file. It prints the
attributes of each character including the ASCII value.

*/

#include <stdio.h>

#include "category.h"

main()
{ char ch;
int flag;

printf ("***Character Attributes***\n\n");
printf ("Type text, terminate with EOF \n");
flag = scanf(")c", &ch); /* read the first char */

while (flag '= EOF) {
if(IS_LOWER(ch)) print_category(LOWER, ch);
else if (IS_UPPER(ch)) print_category(UPPER, ch);
else if(IS_DIGIT(ch)) print_category(DIGIT, ch);
else if (IS_PUNCT(ch)) print_category(PUNCT, ch);
else if(IS_SPACE(ch)) print_category(SPACE, ch);
else if(IS_CONTROL(ch)) print_category(CONTROL, ch);
else print_category(SPECIAL, ch);

flag scanf ("%c'", &ch); /* read the next char */
+ /* end of while loop */
t /* end of program */

int print_category(int cat, char ch)

{

printf("%c, ASCII value decimal %d, octal %o, hexadecimal %x: ",
ch,ch,ch,ch);

if(cat == LOWER) printf("lower case letter\n");
else if(cat == UPPER) printf("an upper case letter\n');
else if(cat == DIGIT) printf("a digit symbol\n");
else if(cat == PUNCT) printf("a punctuation symbol\n'");
else if(cat == SPACE) printf("a space character\n");
else if(cat == CONTROL) printf("a control character\n");
else printf("a special symbol\n");

t

Figure 4.4: Alternate code for attributes program

4.1. A NEW DATA TYPE: CHAR 149

declare a signed char data type for a variable, which can store negative values as well as positive

ASCII values:

signed char c;

c = getchar();

An explicit signed char variable ensures that a character is stored in a character type object
while allowing a possible negative value for EQF. The keyword signed is called a type qualifier.

A similar routine for character output is putchar (), which outputs its argument as a character
to the standard output. Thus,

putchar(c);

outputs the ASCII character whose value is in ¢ to the standard output. The argument of
putchar() is expected to be an integer; however, the variable ¢ may be either char type or
int type (ASCII value) since the value of a char type is really an integer ASCII value.

Since both getchar() and putchar() are macros defined in stdio.h, any program that uses
these functions must include the stdio.h header file in the program. Let us rewrite our copy
program using these new character 1/O routines instead of using scanf() and printf(). The
new code is shown in Figure 4.5. Characters are read until getchar () returns EOF. Each character
read is printed using putchar(). Sample output is shown below.

**¥*xFile Copy Program#*x

Type text, EOF to quit

This is a test.

This is a test.

Now is the time for all good men

Now is the time for all good men

to come to the aid of their country.

to come to the aid of their country.

"D

The sample output shown here is for keyboard input so the effects of buffering the input is
clearly seen: a line must be typed and entered before the characters become available in the input
buffer for access by the program and then echoed to the screen.

Using getchar () and putchar() are simpler for character I/O because they do not require a
format string as do scanf () and printf (). Also, scanf () stores a data item in an object whose
address is given by its argument, whereas getchar() returns the value of the character read as
its value. Both scanf() and getchar() return EOF as their value when they read an end of file
marker in an input file.

150 CHAPTER 4. PROCESSING CHARACTER DATA

/* File: copychr.c
Program copies standard input to standard output.

*/

#include <stdio.h>
main()

{ signed char c;

printf ("***File Copy Program*x*\n\n") ;
printf ("Type text, EOF to quit\n");
c = getchar();

while (c '= EOF) {
putchar(c);
c = getchar();

Figure 4.5: Using getchar() and putchar()

4.1.4 Strings vs Characters

Frequently, we have needed to write constants that are not single characters but are sequences of
characters. A sequence of zero or more characters is called a string of characters or simply a
string. We have already used strings as arguments in function calls to printf() and scanf ().
In C, there is no primitive data type for strings; however, as a convenience, string constants (also
called string literals) may be written directly into a program using double quotes. The double
quotes are not part of a string constant; they are merely used to delimit (define the limits,) of the
string constant. (To include a double quote as part of a string, escape the double quote with the
\ character).

"This is a string constant."
"This string constant includes newline character.\n"
"This string constant includes \" double quotes."

Escape sequences may of course be included in string constants. A string constant may even
contain zero characters, i.e. an empty string:

Such a string is also called a null string.

Two adjacent strings are concatenated at compile time. Thus,

4.2. SAMPLE CHARACTER PROCESSING FUNCTIONS 151

7S7 7t7 71,7 7i7 71,17 7g7 \O

"string”
o ')

s
Y C \O

Figure 4.6: Strings

||J0hn 1" ||Doe||
are equivalent to:
"John Doe"

Whenever a string constant appears in a source program, the compiler stores the sequence of
characters in contiguous memory locations and appends a NULL character to indicate the end
of the string (see Figure 4.6). The compiler then replaces the string constant by the address
where the characters are stored. Observe that a string of a single character is different from a
character constant. Thus, >c’ is a character constant; but, "c'" is a string constant consisting of
one character and the NULL character, as seen in the figure.

As we have said, a character constant takes on its ASCII value. The value of a string constant
is the address where the string is stored. How this value can be used will be discussed in Chapter
6. For now, think of a string constant as a convenient representation, the exact nature of which
will become clear later.

4.2 Sample Character Processing Functions

So far we have merely read and printed characters and determined their attributes. Character
processing requires manipulation of input characters in meaningful ways. For example, we may
wish to convert all lower case letters to upper case, all upper case letters to lower case, digit
characters to their numeric equivalents, extract words, extract integers, and so forth. In this
section we develop several programs which manipulate characters, beginning with simple example
functions and continuing with programs for more complex text processing.

152 CHAPTER 4. PROCESSING CHARACTER DATA

4.2.1 Converting Letter Characters

Our next task is to copy input characters to output as before except that all lower case letters are
converted to upper case.

Task

COPY1: Copy input characters to output after converting lower case letters to upper case.

The algorithm is similar to COPY0, except that, before printing, each character it is converted
to upper case, if necessary.

read the first character

repeat as long as NOT end of file
convert character to upper case
print the converted character
read the next character

We will write a function, uppercase(), to convert a character. The function is given a character
and if its argument is a lower case letter, uppercase() will return its upper case version; otherwise,
it returns the argument character unchanged. The algorithm is:

1f lower case convert to upper case,
otherwise, leave it unchanged;

The prototype for the function is:
char uppercase(char ch);

The code for the driver and the function is shown in Figure 4.7. The driver is straight forward;
each character read is printed in its uppercase version. The while expression is:

((ch = getchar()) '= EOF)

Here we have combined the operations of reading a character and testing for EOF into one ex-
pression. The innermost parentheses are evaluated first: getchar() reads a character and assigns
the returned value to ch. The value of that expression, namely the value assigned to ch, is then
compared with EOF. If it is not EOF, the loop executes, otherwise the loop terminates. The inner
parentheses are essential. Without them, the expression is:

(ch = getchar() != EOF)

4.2. SAMPLE CHARACTER PROCESSING FUNCTIONS 153

/* File: copyl.c
Programmer:
Date:
This program reads a stream of characters until end of file. Each
character read is converted to its upper case version and printed
out.

*/

#include <stdio.h>

#define IS_LOWER(c) ((c) >= ’a’ && (c) <= 'z7)
#define TO_UPPER(c) ((c) - ’a’ + A7)
char uppercase(char ch);

main()
{ signed char ch;

printf ("***Copy Program - Upper Casex**\n\n");
printf ("Type text, terminate with EOF\n");

while ((ch = getchar()) '= EQOF)
putchar (uppercase(ch)); /* print value of uppercase(ch) */

/* Function returns a lower case letter to an upper case. It returns
all other characters unchanged.

*/
char uppercase(char c)
{
if (IS_LOWER(c)) /* if ¢ is a lower case letter */
return TO_UPPER(c); /* convert to upper case and return */
/* otherwise, */

return c; /* return c unchanged */

t

Figure 4.7: Code for upper case

154 CHAPTER 4. PROCESSING CHARACTER DATA

Since the precedence of an assignment operator is the lowest, getchar() reads a character and
the returned value is first compared to EOF:

getchar() != EOF

The value of this comparison expression, 0 or 1, is then assigned to ch: the wrong result is in
ch. Of course, it is always best to use parentheses whenever there is the slightest doubt. Note,
we have used the call to the function, uppercase(), as the argument for the routine, putchar().
The value returned from uppercase() is a character, which is then passed to putchar().

The function, uppercase(), checks if c is a lower case letter (using the macro IS_LOWER()),
in which case it returns the upper case version of ¢. We have used the macro TO_UPPER() for
the expression to convert to upper case, making our program more readable. When the return
statement is executed, control returns immediately to the calling function, thus, the code after the
return statement is not executed. Therefore, in this case we do not need the else part of the if
statement. In uppercase(), control progresses beyond the if statement only if ¢ is not a lower
case letter, where uppercase() returns c unchanged. A sample session is shown below:

***Copy Program - Upper Casex**

Now is the time for all good men

NOW IS THE TIME FOR ALL GOOD MEN

To come to the aid of their country.

TO COME TO THE AID OF THEIR COUNTRY.
"D

4.2.2 Converting Digit Characters to Numbers

Next we discuss how digit symbols can be converted to their numeric equivalents and vice versa.
As we have stated, the character >0’ is not the integer, 0, >1” is not 1, etc. So it becomes necessary
to convert digit characters to their numeric equivalent values, and vice versa. As we have seen,
the digit values are contiguous and increasing; the value of 07 is 48, >17 is 49, and so forth. If we
subtract the base value of *07, i.e. 48, from the digit character, we can convert the digit character
to its numeric equivalent; e.g. 20’ - 70’ is0; 1’ - ’0’ is 1; and so forth. Thus, if ch is a digit
character, then its numeric equivalent is ch - ’0’. Conversely, suppose n is a positive integer less
than 10, (0, 1, 2, ..., 9). Then the corresponding digit character isn + ’0°.

Using the sketch of an algorithm just described, we can write two functions that convert a
digit character to its integer value, and an integer less than 10 to its character representation.
These sound like operations that could be useful in a variety of programs, so we will put the
functions in a file called charutil.c. These functions are the beginning of a library of character
utility functions we will build. The code is shown in Figure 4.8. (We can also place the code for
uppercase() from the previous example in this file as part ot the library). We have included the

4.2. SAMPLE CHARACTER PROCESSING FUNCTIONS

/* File: chrutil.c */
/* This file contains various utility functions for processing characters

#include <stdio.h>
#include "chrutil.h"

/* Function converts ch to an integer if it is a digit. Otherwise, it
prints an error message.

*/
int dig_to_int(char ch)
{
if (IS_DIGIT(ch))
return ch - ’0’;
printf ("ERROR:dig_to_int: ¥%c is not a digit\n", ch);
return ERROR;
t

/* Function converts a positive integer less than 10 to a corresponding
digit character.

*/
char int_to_dig(int n)
{
if (n >= 0 && n < 10)
return n + ’0’;
printf ("ERROR:int_to_dig: %d is not in the range 0 to 9\n", n);
return NULL;
t

Figure 4.8: Code for Character Utilities

155

*/

156 CHAPTER 4. PROCESSING CHARACTER DATA

/* File: charutil.h x*/
/* This file contains macros and prototypes for character utilities */

#define ERROR -1

#define IS_DIGIT(c) ((c) >= 70’ && (c) <= ’9?)
#define IS_LOWER(c) ((c) >= ’a’ && (c) <= ’z’)

int dig_to_int(char ch);
char int_to_dig(int n);
char uppercase(char ch);

Figure 4.9: Header file for Character Utilities

file charutil.h where the necessary macros and prototypes are located. This header file is shown
in Figure 4.9.

The function dig_to_int() is given a character and returns an integer, namely the value of
ch - 20’ if ch is a digit character. Otherwise, it prints an error message and returns the value
ERROR. Since valid integer values of digits are from 0 to 9, a value of -1 is not normally expected
as a return value so we can use it to signify an error. (Note, we use a macro, in charutil.h, to
define this “magic number”). In int_to_dig(), given an integer, n, the returned value is a digit
character,n + ’0°, if nis between 0 and 9; otherwise, a message is printed and the NULL (ASCII
value 0) character is returned to indicate an error. We do not use ERROR in this case because
int_to_dig() returns a char type value, which may not allow negative values. As was the case
for the function uppercase() above, in these two functions, we have not used an else part. If the
condition is satisfied, a return statement is executed. The control proceeds beyond the if part
only if the condition is false. Returning some error value is a good practice when writing utility
functions as it makes the functions more general and robust, i.e. able to handle valid and invalid
data.

Let us consider the task of reading and converting a sequence of digit characters to an equivalent
integer. We might add such an operation to our library of character utilities and call it getint ()
(analogous to getchar()). We will assume that the input will be a sequence of digit characters,
possibly preceded by white space, but not by a plus or minus sign. Further, we will assume that
the conversion process will stop when a character other than a digit is read. Usually, the delimiter
will be white space, but any non-digit character will also be assumed to delimit the integer being
read.

The function, getint (), needs no arguments and returns an integer. It will read one character
at a time and accumulate the value of the integer. Let us see how a correct integer is accumulated
in a variable, n. Suppose the digits entered are '3’ followed by '4’. When we read the first digit,
’37, and convert it to its integer value, we find that n is the number, 3. But we do not yet know
if our integer is 3, or thirty something, or three hundred something, etc. So we read the next

4.2. SAMPLE CHARACTER PROCESSING FUNCTIONS 157

character, and see that it is a digit character so we know our number is at least thirty something.
The second digit is 4’ which is converted to its integer value, 4. We cannot just add 4 to the
previous value of n (3). Instead, we must add 4 to the previous value of 3 multiplied by 10 (the
base — we are reading a decimal number). The new value of nis n * 10 + 4, or 34. Again, we
do not know if the number being read is 34 or three hundred forty something, etc. If there were
another digit entered, say 57, the new value of n is obtained by adding its contribution to the
previous value of n times 10, i.e.

n * 10 + dig_to_int(’5’)

which is 345. Thus, if the character read,ch, is a digit character, then dig_to_int(ch) is added
to the previously accumulated value of n multiplied by 10. The multiplication by 10 is required
because the new digit read is the current rightmost digit with positional weight of 1; so the
weight of all previous digits must be multiplied by the base, 10. For each new character, the new
accumulated value is obtained by:

n=nx* 10 + dig_to_int(ch);
We can write this as an algorithm as follows:

initialize n to zero
read the first character
repeat while the character read is a digit
accumulate the new value of n by adding
n * 10 + the integer value of the digit character
read the next character
return the result

The code for getint () is shown in Figure 4.10. We have used conditional compilation to test
our implementation by including debug statements to print the value of each digit, ch and the
accumulated value of n at each step. The loop is executed as long as the character read is a
digit. The macro, IS DIGIT(), expands to an expression which evaluates to True if and only if its
argument is a digit. Could we have combined the reading of the character and testing into one
expression for the while?

while(IS_DIGIT(ch = getchar()))
The answer is NO! Recall, IS DIGIT() is a macro defined as:
#define IS_DIGIT(c) ((c) >= 0" && (c) <= ’97)

so ISDIGIT(ch = getchar()) would expand to:

158 CHAPTER 4. PROCESSING CHARACTER DATA

/* File: charutil.c - continued */
/* Function reads and converts a sequence of digit characters to an integer. */

#define DEBUG
int getint()

{ int n;
signed char ch;

ch = getchar(); /* read next char */
while (IS_DIGIT(ch)) { /* repeat as long as ch is a digit */
n=nx* 10 + dig_to_int(ch); /* accumulate value in n */

#ifdef DEBUG
printf("debug:getint: ch = %c\n", ch); /* debug statement */

printf("debug:getint: n = %d\n", n); /* debug statement */
#endif
ch = getchar(); /* read next char */
t
return n; /* return the result */
t

Figure 4.10: Code for getint ()

4.2. SAMPLE CHARACTER PROCESSING FUNCTIONS 159

((ch = getchar()) >= ’0’ && (ch = getchar()) <= ’9’)

While this is legal syntax (no compiler error would be generated), the function getchar () would
be called twice when this expression is evaluated. The first character read will be compared with
>0 and the second character read will be compared with ’9’ and be stored in the variable ch.
The lesson here is be careful how you use macros.

Notice we have used the function, dig_to_int () in the loop. This is an example of our modular
approach — we have already written a function to do the conversion, so we can just use it here,
trusting that it works correctly. What if dig_to_int ever returns the ERROR condition? In this
case, we know that that can never happen because if we are in the body of the loop, we know
that ch is a digit character from the loop condition. We are simply not making use of the full
generality of dig to_in()t.

If, after adding the prototype for getint () to charutil.h:
int getint();

we compile the file charutil.c, we would get a load time error because there is no function main ()
in the file. Remember, every C program must have a main(). To test our program, we can write
a short driver program which simply calls getint () and prints the result:

main()

{
printf ("***Test Digit Sequence to Integer***\n\n");
printf ("Type a sequence of digits\n");
printf("Integer = %d\n", getint()); /* print value */

A sample session is shown below:

**¥*xTest Digit Sequence to Integerk*x*

Type a sequence of digits
34

debug:getint: ch = 3
debug:getint: n = 16093
debug:getint: ch = 4
debug:getint: n = 160934
Integer = 160934

It is clear that something is wrong with the accumulated value of n. The first character "3 is read
correctly; but the value of n is 16093. The only possibility is that n does not have a correct initial
value; we have forgotten to initialize n to zero. A simple fix is to change the declaration of n in
getint () to:

160 CHAPTER 4. PROCESSING CHARACTER DATA

int n = 0;

A revised sample session is shown below.

**¥*xTest Digit Sequence to Integerk*x*

Type a sequence of digits
3456

debug:getint: ch = 3
debug:getint: n =3
debug:getint: ch = 4
debug:getint: n = 34
debug:getint: ch =5
debug:getint: n = 345
debug:getint: ch = 6
debug:getint: n = 3456
Integer = 3456

The trace shows that the program works correctly. The value of n is accumulating correctly. It is
3 after the first character, 34 after the next, 345, after the next, and 3456 after the last character.
At this point, we should test the program with other inputs until we are satisfied with the test
results for all the diverse inputs. If during our testing we enter the input:

**¥*xTest Digit Sequence to Integerk*x*

Type a sequence of digits
123
Integer = 0

we get the wrong result and no debug output. Notice, we have added some white space at the
beginning of the line. In this case, the first character read is white space, not a digit. So the loop
is never entered, no debug statements are executed, and the initial value of n, 0, is returned. We
have forgotten to handle the case where the integer is preceded by white space. Returning to our
algorithm, we must skip over white space characters after the first character is read:

initialize n to zero
read the first character
skip leading white space
repeat while the character read is a digit
accumulate the new value of n by adding
n * 10 + the integer value of the digit character
read the next character
return the result

4.2. SAMPLE CHARACTER PROCESSING FUNCTIONS 161

This added step can be implemented with a simple while loop:
while (IS_WHITE_SPACE(ch)) ch = getchar();

For readability, we have used a macro, IS WHITE_SPACE(), to test ch. We can define the macro in
charutil.h as follows:

#define IS_WHITE_SPACE(c) ((c) == " || (c) == "\t’ || (¢) == ’\n’)

Compiling and testing the program again yields the correct result.

The program may now be considered debugged, it meets the specification given in the task, so
we can eliminate the definition for DEBUG and recompile the program. However, at this point
we might also consider the utility and generality of our getint () function. What happens if the
user does not enter digit characters? What happens at end of the file? Only after the program is
tested for the “normal” case, should we consider these “abnormal” cases. The first step is to see
what the function, as it is currently written, does when it encounters unexpected input.

Let’s look at EOF first. If the user types end of file, getchar() will return EQF, which is not
white space and is not a digit. So neither loop will be executed and getint() will return the
initialized value of n, namely 0. This may seem reasonable; however, a program using this function
cannot tell the difference between the user typing zero and typing end of file. Perhaps we would
like getint () to indicate end of file by returning EOF as getchar() does. This is easy to add to
our program; before returning n we add a statement:

if(ch == EOF) return EOF;

Of course, if the implementation defines EOF as zero, nothing has changed in the behavior of the
function. On the other hand, if the implementation defines EQF as -1, we can legally enter 0 as
input to the program; however, should not expect -1 as a legal value. (In our implementation we
have not allowed any negative number, so EOF is a good choice for a return value at end of file).

Next, let us consider what happens if the user types a non-digit character. If the illegal
character occurs after some digits have been processed, e.g.:

32r

a manual trace reveals that the function will convert the number, 32, and return. If getint () is
called again, the character, *r’ will have been read from the buffer so the next integer typed by
the user will be read and converted. (Note, this is different than what scanf () would do under
these circumstances). This is reasonable behavior for getint (), so we need make no changes to
our code.

If no digits have been typed before an illegal character, e.g.:

162 CHAPTER 4. PROCESSING CHARACTER DATA

r 32

again, the character, *r’ is not white space and not a digit, so getint () will return 0. As before,
a program calling getint () cannot tell if the user entered zero or an error. It would be better if
we return an error condition in this case, but if we return ERROR, defined in charutil.h, we may
not be able to tell the difference between this error and EOF. The best solution to this problem is
to change the definition of ERROR to be -2 instead of -1. This does not affect any other functions
that have used ERROR (such as dig_to_int()) since they only need a unique value to return as
an error condition. We can simply change the #define in charutil.h and recompile (see Figure
4.11). Finally, we must determine how to detect this error in getint (). As described above, we
must know whether or not we have begun converting an integer when the error occurred. We
can do this with a variable, called a flag, which stores the state of the program. We have called
this flag got_digit (see Figure 4.12), and declare and initialize it to FALSE in getint (). If we
ever execute the digit loop body, we can set got_digit to TRUE. Before returning, if got_digit is
FALSE we should return ERROR, otherwise we return n.

All of these changes are shown in Figures 4.11 and 4.12. Notice we have included the header
file, tfdef.h from before in the file charutil.c to include the definitions of TRUE and FALSE.
We have also modified the test driver to read integers from the input until end of file. (Only the
modified versions of getint () and the test driver,main() are shown in Figure 4.12. The functions
digto_int () and int_to_dig() remain unchanged in the file).

Our getint () function is now more general and robust (i.e. can handle errors). Of particular
note here is the method we used in developing this function. We started by writing the algorithm
and code to handle the normal case for input. We then considered what would happen in the
abnormal case, and made adjustments to the code to handle them only when necessary. This
approach to program development is good for utilities and complex programs: get the normal
and easy cases working first; then modity the algorithm and code for unusual and complex cases.
Sometimes this approach requires us to rewrite entire functions to handle unusual cases, but often
little or no extra code is needed for these cases.

4.2.3 Counting Words

The next task we will consider is counting words in an input text file (a file of characters). A word
is a sequence of characters separated by delimiters, namely, white space or punctuation. The first
word may or may not be preceded by a delimiter and we will assume the last word is terminated
by a delimiter.

Task

CNT: Count the number of characters, words, and lines in the input stream until end of file.

Counting characters and lines is simple: a counter, chrs, can be incremented every time a
character is read, and a counter, 1ns, can be incremented every time a newline character is read.

4.2. SAMPLE CHARACTER PROCESSING FUNCTIONS 163

/* File: chrutil.h %/
/* This file contains various macros and prototypes for character processing */

#define ERROR -2

#define IS_DIGIT(c) ((c) >= 70’ && (c) <= ’9?)
#define IS_LOWER(c) ((c) >= ’a’ && (c) <= ’z’)
#define IS_WHITE_SPACE(c) ((c) == " || (c) == "\t’ || (c) == ’\n?)

int dig_to_int(char ch);
char int_to_dig(int n);
char uppercase(char ch);
int getint();

Figure 4.11: Revised Character Utility Header File

Counting words requires us to know when a word starts and when it ends as we read the sequence
of characters. For example, consider the sequence:

Lucky luck

-~ -~ -~ -~

We have shown the start and the end of a word by the symbol ". There are several cases to
consider:

o Aslong as no word has started yet AND the next character read is a delimiter, no new word
has started.

o If no word has started AND the next character read is NOT a delimiter, then a new word
has just started.

o If a word has started AND the next character is NOT a delimiter, then the word is continuing.

o If a word has started AND the character read is a delimiter, then a word has ended.

We can talk about the state of our text changing from “a word has not started” to “a word has
started” and vice versa. We can use a variable, inword, as a flag to keep track of whether a word
has started or not. It will be set to True if a word has started; otherwise, it will be set to False. If
inword is False AND the character read is NOT a delimiter, then a word has started, and inword
becomes True. If inword is True AND the new character read is a delimiter, then the word has
ended and inword becomes False. With this information about the state, we can count a word
either when it starts or when it ends. We choose the former, so each time the flag changes from
False to True, we will increment the counter, wds. The algorithm 1is:

164 CHAPTER 4. PROCESSING CHARACTER DATA

/* File: chrutil.c */
/* This file contains various utility functions for processing characters */

#include <stdio.h>
#include "tfdef.h"
#include "chrutil.h"

/* Function reads the next integer from the input */
int getint()
{ int n = 0;

int got_dig = FALSE;

signed char ch;

ch = getchar(); /* read next char */

while (IS_WHITE_SPACE(ch)) /* skip white space */
ch = getchar();

while (IS_DIGIT(ch)) { /* repeat as long as ch is a digit */

n=nx* 10 + dig_to_int(ch); /* accumulate value in n */

got_dig = TRUE;
#ifdef DEBUG
printf("debug:getint: ch = %c\n", ch); /* debug statement */

printf("debug:getint: n = %d\n", n); /* debug statement */
#endif
ch = getchar(); /* read next char */
t
if(ch == EOF) return EOF; /* test for end of file */
if('got_dig) return ERROR; /* test for no digits read */
return n; /* otherwise return the result */
t
/* Dummy test driver for character utilities */

/* This driver will be removed after testing is complete */
main()
{ int x;
printf ("***Test Digit Sequence to Integer***\n\n");
printf ("Type a sequence of digits\n");

while((x = getint()) '= EOF)
printf ("Integer = %d\n", x); /* print value */

Figure 4.12: Revised Character Utility Code

4.2. SAMPLE CHARACTER PROCESSING FUNCTIONS 165

initialize all counters to zero, set inword to False
while the character read, ch, is not EOF
increment character count chrs
if ch is a newline
increment line count 1lns
if NOT inword AND ch is NOT delimiter
increment word count wds
set inword to True
else if inword and ch is delimiter
set inword to False
print results

We first count characters and newlines. After that, only changes in the state, inword, need to
be considered; otherwise we ignore the character and read in the next one. Each time the flag
changes from False to True, we count a word. We will use a function delimitp() that checks if a
character is a delimiter, i.e. if it is a white space or a punctuation. (The name delimitp stands
for “delimit predicate” because it tests is its argument is a delimiter and returns True or False).
White space and punctuation, in turn, will be tested by other functions. The code for the driver
is shown in Figure 4.13.

After printing the program title, the counts are initialized:
Ins = wds = chrs = 0;

Assignment operators associate from right to left so the rightmost operator is evaluated first; chrs
is assigned 0, and the value of the assignment operation is 0. This value, 0, is then assigned to
wds, and the value of that operation is 0. Finally, that value is assigned to 1ns, and the value of
the whole expression is 0. Thus, the statement initializes all three variables to 0 as a concise way
of writing three separate assignment statements.

The program driver follows the algorithm very closely. The function delimitp() is used to
test if a character is a delimiter and is yet to be written. Otherwise, the program is identical to
the algorithm. It counts every character, every newline, and every word each time the flag inword
changes from False to True.

Source File Organization

We can add the source code for delimitp() to the source file charutil.c we have been building
with character utility functions. In the last section we wrote a dummy driver in that file to test
our utilities. Since we would like to use these utilities in many different programs, we should not
have to keep copying a driver into this file. We will soon see how the code in charutil.c will be
made a part of the above program without combining the two files into one (and without using the
#include directive to include a code file). In our program file, cnt.c, we also include two header
files besides stdio.h. These are: tfdef.h which defines symbolic constants TRUE and FALSE; and

166

/%

*/

CHAPTER 4. PROCESSING CHARACTER DATA

Program File: cnt.c

Other Source Files: charutil.c

Header Files: tfdef.h, charutil.h

This program reads standard input characters and counts the number

of lines, words, and characters. All characters are counted including
the newline and other control characters, if any.

#include <stdio.h>
#include "tfdef.h"
#include "charutil.h"

main()
{ signed char ch;
int inword, /* flag for in a word */
Ilns, wds, chrs; /* Counters for lines, words, chars. */

printf ("***Line, Word, Character Count Program***\n\n");
printf ("Type characters, EOF to quit\n");

lns = wds = chrs = 0; /* initialize counters to 0 */
inword = FALSE; /* set inword flag to False */

while ((ch = getchar()) '= EOF) { /* repeat while not EOF */

chrs = chrs + 1; /* increment chrs */
if (ch == ’\n’) /* if newline char */
lns = 1lns + 1; /* increment lns */

/* if not inword and not a delimiter */

if ('inword && 'delimitp(ch)) { /* if not in word and not delim., */
inword = TRUE; /* set inword to True */
wds = wds + 1; /* increment wds */

else if (inword && delimitp(ch)) /* if in word and a delimiterx/
inword = FALSE; /* set inword to False */

} /* end of while loop */
printf("Lines = %d, Words = Jd, Characters = Jd\n",
lns, wds, chrs);

} /* end of program */

Figure 4.13: Code for Count Words Driver

4.2. SAMPLE CHARACTER PROCESSING FUNCTIONS 167

/* File: tfdef.h */
#define TRUE 1
#define FALSE 0

/* File: charutil.h - continued
This file contains the prototype declarations for functions defined in
charutil.c.

x/

int delimitp(char c); /* Tests if ¢ is a delimiter (white space, punct) */
int whitep(char c); /* Tests if ¢ is a white space */

int punctp(char c); /* Tests if ¢ is a punctuation */

Figure 4.14: Header Files for Word Count

charutil.h which declares prototypes for the functions defined in charutil.c and any related
macros. Since we use these constants and functions in main(), we should include the header files
at the head of our source file. Figure 4.14 shows the file tfdef.h and the additions to charutil.h.

The function delimitp() tests if a character is white space or punctuation. It uses two
functions for its tests: whitep() which tests if a character is white space, and punctp() which
tests if a character is punctuation. (We could have also implemented these as macros, but chose
functions in this case). All these functions are added to the source file, charutil.c and are shown
in Figure 4.15 This source file also includes tfdef .h, and charutil.h because the functions in
the file use the symbolic constants TRUE and FALSE defined in tfdef.h and the prototypes for
functions whitep() and punctp() declared in charutil.h are also needed in this file.

The source code for the functions is simple enough; delimitp () returns TRUE if the its param-
eter, c, is either white space or punctuation; whitep () returns TRUE if c is either a space, newline,
or tab; and punctp() returns TRUE if ¢ is one of the punctuation marks shown. All functions
return FALSE if the primary test is not satisfied.

Our entire program is now contained in the two source files cnt.c and charutil.c which must
be compiled separately and linked together to create an executable code file. Commands to do so
are implementation dependent; but on Unix systems, the shell command line is:

cc -o cnt cnt.c charutil.c

The command will compile cnt . c to the object file, cnt . o, then compile charutil.cto the object
file, charutil.o, and finally link the two object files as well as any standard library functions into
an executable file, cnt as directed by the -o cnt option. (If -o option is omitted, the executable
file will be called a.out). For other systems, the commands are generally similar; for example,
compilers for many personal computers also provide an integrated environment which allows one
to edit, compile, and run programs. In such an environment, the programmer may be asked
to prepare a project file listing all source files. Once a project file is prepared and the project

168 CHAPTER 4. PROCESSING CHARACTER DATA

/* File: charutil.c - continued */

#include "tfdef.h"

#include "charutil.h"

/* Function returns TRUE if c is a delimiter, i.e., 1t 1s a white space
or a punctuation. Otherwise, it returns FALSE.

*/
int delimitp(char c)
{
if (whitep(c) || punctp(c))
return TRUE;
return FALSE;
t

/* Function returns TRUE if ¢ is white space; returns FALSE otherwise. */
int whitep(char c)

{
if (¢ =='\n’ || c == \t’ || c == ")
return TRUE;
return FALSE;
}

/* Function returns TRUE if ¢ is a punctuation; returns FALSE otherwise. */
int punctp(char c)
{
if (C == 2 || c ==)’) || c ==);) || c == 7
Ile=="7 [l c=="1)
return TRUE;
return FALSE;

Figure 4.15: Code for Word Count Utility Functions

4.2. SAMPLE CHARACTER PROCESSING FUNCTIONS 169

option activated, a simple command compiles the source files, links them into an executable file,
and executes the program. Consult your implementation manuals for details. This technique of
splitting the source code for an entire program into multiple files is called serarate compilation
and is a good practice as programs grow larger.

Once the above two files, cnt . c and charutil.c are compiled and linked, the resulting program
may then be executed producing a sample session as shown below:

¥*Line, Word, Character Count Program*

Type characters, EOF to quit

Now is the time for all good men

To come to the aid of their country.

"D

Lines = 2, Words = 16, Characters = 70

Henceforth, we will assume separate compilation of source code whenever it is spread over more
then one file. Since main() is the program driver, we will refer to the source file that contains
main() as the program file. Other source files needed for a complete program will be listed in
the comment at the head of the program file. In the comment, we will also list header files needed
for the program. Refer to cnt.c in Figure 4.13 for an example of a listing which enumerates all
the files needed to build or create an executable program. (The file stdio.h is not listed since it
is assumed to be present in all source files).

Header files typically include groups of related symbolic constant definitions and/or prototype
declarations. Source files typically contain definitions of functions used by one or more program
files. We will organize our code so that a source file contains the code for a related set of func-
tions, and a header file with the same name contains prototype declarations for these functions,
e.g. charutil.c and charutil.h. As we add source code for new functions to the source files,
corresponding prototypes will be assumed to be added in the corresponding header files.

Separate compilation has several advantages. Program development can take place in separate
modules, and each module can be separately compiled, tested, and debugged. Once debugged,
a compiled module need not be recompiled but merely linked with other separately compiled
modules. If changes are made in one of the source modules, only that source module needs
recompiling and linking with other already compiled modules. Furthermore, compiled modules of
useful functions can be used and reused as building blocks to create new and diverse programs.
In summary, separate compilation saves compilation time during program development, allows
development of compiled modules of useful functions that may be used in many diverse programs,
and makes debugging easier by allowing incremental program development.

4.2.4 Extracting Words

The final task in this section extends the word count program to print each word in the input
stream of characters.

170 CHAPTER 4. PROCESSING CHARACTER DATA

Task

WDS: Read characters until end of file and keep a count of characters, lines, and words. Also,
print each word in the input on a separate line.

The logic is very similar to that of the previous program, except that a character is printed
if it 1s in a word, i.e. if inword is True. We will decide whether to print a character only after
a possible state change of inword has taken place. That way when inword changes from False
to True (the first character of a word has been found) the character is printed. When inword
changes from from True to False (a delimiter has been found ending the word) it is not printed,
instead we print a newline because each word is to be printed on a new line. So our algorithm 1is:

initialize counts to zero, set inword to False
while the character read, ch, is not EOF
increment character count, chrs
if ch is a newline
increment line count, lns
if NOT inword AND ch is NOT delimiter
increment word count, wds
set inword to True
else if inword and ch is delimiter
set inword to False
print a newline
if inword
print ch
print results

and the code is shown in Figure 4.16. This code was generated by simply copying the file cnt.c
and making the necessary changes as indicated in the algorithm. The program file is compiled
and linked with charutil.c. and the following sample session is produced.

Sample Session:

k*xWord Program*

Type characters, EOF to quit
Now is the time for all good men
Now

is

the

time

for

all

good

men

4.2. SAMPLE CHARACTER PROCESSING FUNCTIONS 171

/* Program File: wds.c
Other Source Files: charutil.c
Header Files: tfdef.h, charutil.h
This program reads standard input characters and prints each word on a
separate line. It also counts the number of lines, words, and characters.
A1l characters are counted including the newline and other control
characters, if any.

*/

#include <stdio.h>
#include "tfdef.h"
#include "charutil.h"

main()

{ signed char ch;
int inword, /* flag for in a word */
Ilns, wds, chrs; /* Counters for lines, words, chars. */

printf ("***Line, Word, Character Count Program***\n\n");
printf ("Type characters, EOF to quit\n");

lns = wds = chrs = 0; /* initialize counters to 0 */
inword = FALSE; /* set inword flag to False */

while ((ch = getchar()) '= EOF) { /* repeat while not EOF */

chrs = chrs + 1; /* increment chrs */
if (ch == ’\n’) /* if newline char */
lns = 1lns + 1; /* increment lns */

/* if not inword and not a delimiter x*/
if ('inword && !delimitp(ch)) { /* if not in word and not delim. */

inword = TRUE; /* set inword to True */
wds = wds + 1; /* increment wds */

}

else if (inword && delimitp(ch)) { /* if in word and a delimiter*/
inword = FALSE; /* set inword to False */
putchar(’\n’); /* end word with a newline */

}

if (inword) /* if in a word */
putchar(ch); /* print the character */

} /* end of while loop */
printf("Lines = %d, Words = Jd, Characters = Jd\n",
lns, wds, chrs);
} /* end of program */

Figure 4.16: Code fore extracting words

172 CHAPTER 4. PROCESSING CHARACTER DATA

"D

Lines = 1, Words = 8, Characters = 33

In this section we have seen several sample programs for processing characters as well as some
new programming techniques, in particular, splitting the source code for a program into files of
related functions with separate compilation of each source code file. The executable program is
then generated by linking the necessary object files. In the next section, we turn our attention to
several new control constructs useful in character processing as well as in numeric programs.

4.3 New Control Constructs

Earlier in this chapter, we saw the use of a chain of if...else if constructs for a multiway deci-
sion. This is a common operation in programs so the C language provides an alternate multiway
decision capability: the switch statement. In addition, two other control constructs are discussed
in this section: the break and continue statements.

4.3.1 The switch Statement

In a switch statement, the value of an integer valued expression determines an alternate path to
be executed. The syntax of the switch statement is:

switch (<expression>) <statement>

Typically, the <statement> is a compound statement with case labels.

switch (<expression>) {
case <ey >: <stmt; >
case <ey > <stmty >

case <e,_1 >:. <stmt,_; >
default: <stmt, >

Each statement, except the last, starts with a case label which consists of the keyword case
followed by a constant expression, followed by a colon. The constant expression, (whose value
must be known at compile time) is called a case expression. An optional default label is also
allowed after all the case labels. Executable statements appear after the labels as shown.

The semantics of the switch statement is as follows: The expression, <expression> is evaluated
to an integer value, and control then passes to the first case label whose case expression value

4.3. NEW CONTROL CONSTRUCTS 173

matches the value of the switch expression. If no case expression value matches, control passes to
the statement with the default label, if present. This control flow is shown in Figure 4.17. Labels
play no role other than to serve as markers for transferring control to the appropriate statements.
Once control passes to a labeled statement, the execution proceeds from that point and continues
to process each of the subsequent statements until the end of the switch statement.

As an example, we use the switch statement to write a function that tests if a character is a
vowel (the vowels are ’a’, ’e’, ’i’, ’0’, and 'u’ in upper or lower case). If a character passed to this
function, which we will call vowelp () (for vowel predicate), is one of the above vowels, the function
returns True; otherwise, it returns False. We add the function to our file charutil.c, and the code
is shown in Figure 4.18. If ¢ matches any of the cases, control passes to the appropriate case label.
For many of these cases, the <stmt> is empty, and the first non-empty statement is the return
TRUE statement, which, when executed, immediately returns control to the calling function. If ¢ is
not a vowel, control passes to the default label, where the return FALSE statement is executed.
While there is no particular advantage in doing so, the above function could be written with a
return statement at every case label to return TRUE. The function vowelp () is much clearer and
cleaner using the switch statement than it would have been using nested if statements or an if
statement with a large, complex condition expression.

An Example: Encrypting Text

Remember, in a switch statement, control flow passes to the statement associated with the match-
ing case label, and continues from there to all subsequent statements in the compound statement.
Sometimes this is not the desired behavior. Consider the task of encrypting text in a very simple
way, such as:

o Leave all characters except the letters unchanged.

e Encode each letter to be the next letter in a circular alphabet; i.e. ?a’ follows *z’ and A’
follows *Z°.

We will use a function to print the next letter. The encrypt algorithm is simple enough:

read characters until end of file
1f a char is a letter
print the next letter in the circular alphabet
else
print the character

Implementation is straight forward as shown in Figure 4.19. The program reads characters until
end of file. Each character is tested to see if it is a letter using a function, letterp(). If it
is a letter, print next() is called to print the next character in the alphabet; otherwise, the
character is printed as is. The function letterp() checks if a character passed as an argument is
an alphabetic letter and returns True or False. The function is shown below and is added to our
utility file, charutil.c (and its prototype is assumed to be added to the file charutil.h).

174 CHAPTER 4. PROCESSING CHARACTER DATA

|

expression

no match l

!

stmt,,_;

no match

Y
n
—+
=
3

Figure 4.17: Control Flow for switch statement

4.3. NEW CONTROL CONSTRUCTS 175

/* File: charutil.c - continued */

/* File tfdef.h, which defines TRUE and FALSE, has already been
included in this file. */

/* TFunction checks if ¢ is a vowel. */

int vowelp(char c)

{
switch(c) {
case ’a’:
case ’A’:
case ’e’:
case 'E’:
case ’1’:
case ’'1’:
case ’o0’:
case ’'0’:
case ’'u’:
case 'U’: return TRUE;
default: return FALSE;
b
b

Figure 4.18: Code for vowelp() Using a switch Statement

176 CHAPTER 4. PROCESSING CHARACTER DATA

/* File: encrypt.c
Other Source Files: charutil.c
Header Files: charutil.h
This program encrypts text by converting each letter to the next letter
in the alphabet. The last letter of the alphabet is changed to the first
letter.

*/

#include <stdio.h>
#include "charutil.h"

void print_next(char c);

main()
{ signed char c;

printf ("***Text Encryption***\n\n");
printf ("Type text, EOF to quit\n");

while ((c = getchar()) !'= EOF) {
if (letterp(c))

print_next(c);

else
putchar(c);

Figure 4.19: Code for encrypt.c

4.3. NEW CONTROL CONSTRUCTS 177

/* File: charutil.c - continued */
/* Function tests if ¢ is an alphabetic letter. */
int letterp(char c)

{
if (IS_LOWER(c) || IS_UPPER(c))
return TRUE;
return FALSE;
b

It uses the macros IS_LOWER() and IS_UPPER(). We have already define IS_LOWER() in charutil.h;
IS_UPPER() is similar:

#define IS_UPPER(c) ((c) >= A’ && (c) <= °Z?)

and is added to charutil.h.

Let us consider the function, print next (), which is passed a single alphabetic letter as an
argument. It should print an altered letter, that is the next letter in a circular alphabet. The
altered letter is the next letter in the alphabet, unless the argument is the last letter in the
alphabet. If the argument is *z’ or ’Z’, then the altered letter is the first letter of the alphabet,
>a’ or A’ respectively. There are two possible instances of the character ¢ for which we must
take special action, viz. when cis ’z’ or c is *Z’. The default case is any other letter, when the
function should print ¢ + 1, which is the ASCII value of the next letter.

We need a three way decision based on the value of a character c: is ¢ the character >z’ or
>Z’, or some other character? If it is ’z’ print ’a’; else if it is *Z’ print ’A’; otherwise, print ¢
+ 1. We can easily implement this multiway decision using an if ... else ... construct.

if (c == ’z?)
printf("%c", ’a’);
else if (c == ’Z?)
printf("%c", ’A’);
else
printf("%c", ¢ + 1);

Such multiway branches can also be implemented using the switch construct. Suppose we wrote:

switch(c) {
case ’z’: printf("Y%c", ’a’);
case ’Z’: printf("Y%c", ’A’);
default: printf("/c", c + 1);

Will this do what we want? If ¢ has the value ’z’, the above switch statement would match
the first case label and print *a’. However, by the semantics of switch, it would then print >A°
followed by *{’ (the character after >z’ in the ASCII table) — not what we want. Can we salvage
this approach to multiway branching?

178 CHAPTER 4. PROCESSING CHARACTER DATA

/* File: encrypt.c - continued */
/* Prints the next higher letter to c. Alphabet is assumed circular. */
void print_next(char c)

{
switch(c) {
case ’z’: printf("Y%c", ’a’);
break;
case ’Z’: printf("Y%c", ’A’);
break;
default: printf("/c", c + 1);
t
t

Figure 4.20: Implementing print next () Using a switch Statement
4.3.2 The break Statement

C provides a statement for circumstances like this; the break statement. A break can only be
used within a switch statement or any looping statement (so far we have only seen while). Its
syntax is very simple:

break:

The semantics of break are to immediately terminate the closest enclosing compound statement;
either the switch or the loop.

To fix our problem above, Figure 4.20 shows an implementation of print next() using a
switch statement. Once control passes to a label, the control continues down the line of statements
until the break statement is encountered. In the above case, if ¢ is *Z’, then an A’ is printed
and the switch statement is terminated. Similarly, if ¢ is ’z’, then ’a’ is printed and the control
passes to the next statement after the switch. If there is no match, then the control passes to the
default label, and a character with value ¢ + 1 is printed. The switch statement ends at this
point anyway, so no break is required.

Here is a sample session with the program after encrypt.c and charutil.c are compiled and

linked.

*kxText Encryptionk*x*

Type text, EOF to quit
this is a test

uijt jt b uftu

"D

4.3. NEW CONTROL CONSTRUCTS 179

/* Function prints a character, its decimal, octal, and hex value
and its category, using a switch statement

*/
int print_category(int cat, char ch)
{
printf("%c, ASCII value decimal %d, octal %o, hexadecimal %x: ",
ch,ch,ch,ch);
switch(cat) {
case LOWER: printf("lower case letter\n");
break;
case UPPER: printf("an upper case letter\n");
break;
case DIGIT: printf("a digit symbol\n");
break;
case PUNCT: printf("a punctuation symbol\n");
break;
case SPACE: printf("a space character\n");
break;
case CONTROL: printf("a control character\n");
break;
default: printf("a special symbol\n");
t
t

Figure 4.21: New Implementation of print_category using switch

This use of the switch statement with break statements in the various cases is a common and
efficient way to implement a multiway branch in C. For example, we can now reimplement our
print_category() function from Figure 4.4 as shown in Figure 4.21.

As mentioned above, the break statement can also be used to terminate a loop. Let us
consider our previous word extraction task: reading text input and printing each word in the text
(see Figure 4.16). However, now we will consider non-printable characters other than white space
and the end of file marker as invalid. They will represent an error in the input and we will use a
break statement to abort the program.

For this task, we will no longer count characters, words, and lines, simply extract words and
print them, one per line. In our previous algorithm, each iteration of the loop processed one
character and we used a flag variable, inword to carry information from one iteration to the next.
For this program we will modify our algorithm so that each iteration of the loop will process
one word. Each word is found by first skipping over leading delimiters, then, as long as we read
printable, non-delimiter characters, we can print the word. The character terminating the word
must be a delimiter unless it is a non-printable character or we have reached the end of file. In
either of those cases, we abort the program, printing a message if a non-printable character was
encountered. Otherwise, we print the newline terminating the word and process the next word.

180 CHAPTER 4. PROCESSING CHARACTER DATA
Here is the revised algorithm with the code shown in Figure 4.22.

while there are more characters to read
skip over leading delimiters (white space)
while character is legal for a word
print character
read next character
1f EOF, terminate the program
1f character is non-printable,
print a message and abort the program
print a newline ending the word

The program uses two functions: delimitp() testsif the argument is a delimiter, and illegal ()
tests if the argument is not a legal character (printable or a delimiter). They are in the source
file charutil.c; their prototypes are in charutil.h. We have already defined delimitp() (see
Figure 4.15). We will soon write i1legal().

In the main loop, we skip over leading delimiters with a while loop, and then, as long legal
“word” characters are read we print and read characters. If either of these loops terminates with
EQF, the loop is terminated by a break statement and the program ends. (Note, if EOF is detected
while skipping delimiters, the word processing loop will be executed zero times). If a non-printable,
non-delimiter character is found, the program is aborted after a message is printed to that effect.
Otherwise, the word is ended with a newline and the loop repeats.

Function illegal() is easy to write: legal characters are printable (in the ASCII range 32
through 126) or white space. Here is the function and its prototype.

/* File: charutil.c - continued
Header Files: tfdef.h, charutil.h

*/

/* Function tests if ¢ is printable. */

int illegal(char c)

{
if (IS_PRINT(c) || IS_WHITE_SPACE(c))
return FALSE;
return TRUE;
+

/% File: charutil.h - continued */
#define IS_PRINT(c) ((c) >= 32 && (c) < 127)

int illegal(char c); /* Tests if c is legal. */

We have also added the macro IS_PRINT to the header file. The program file words.c and the
source file charutil.c can now be compiled and linked. A sample session when the program is

4.3. NEW CONTROL CONSTRUCTS 181

/* File: words.c
Other Source Files: charutil.c
Header Files: tfdef.h, charutil.h
This program reads text and extracts words until end of file. Only
printable characters are allowed in a word. Upon encountering a control
character, a message is printed and the program is aborted.

*/

#include <stdio.h>

#include "tfdef.h"

#include "charutil.h" /* includes prototypes for delimitp(), printp() */

main()
{ signed char ch;

printf ("***Words: Non-Printable Character Aborts*x*\n\n");
printf ("Type text, EOF to quit\n");

while ((ch = getchar()) '= EOF) { /* while characters remain to be read */

while (delimitp(ch)) /* skip over leading delimiters */
ch = getchar();

while (!delimitp(ch) && printp(ch)) { /* process a word */

putchar(ch); /* print ch */
ch = getchar(); /* read the next char */

}

if (ch == EQOF) /* if end of file, terminate */
break;

if (illegal(ch)) {/* if a control char, print msg and abort */
printf ("\nAborting - Control character present: ASCII %d\n",ch);
break;

printf("\n"); /* terminate word with newline */

Figure 4.22: Extracting Words Using break

182 CHAPTER 4. PROCESSING CHARACTER DATA

executed is shown below.

Words: Non-Printable Character Aborts

Type text, EOF to quit

Lucky you live H" Awaii"A

Lucky

you

live

H

Aborting - Control character present: ASCII 1

The message shows that the program is abnormally terminated due to the presence of a control
character.

It is also possible, though not advisable, to use a break statement to terminate an otherwise
infinite loop. Consider the program fragment:

n = 0;
while (1) {
n=n+1;
if (n > 3) break;
printf("Hello, hello, hello\n");

}
printf ("Print statement after the loop\n");

The loop condition is the constant 1, which is always True so the loop body will be repeatedly
executed, n will be incremented, and the message printed, until n reaches 4. The condition (n >
3) will now be True, and the break statement will be executed. This will terminate the while
loop, and control passes to the print statement after the loop. If the if statement containing the
break statement were not present, the loop would execute indefinitely.

While it is possible to use a break statement to terminate an infinite loop, it is not a good
practice because use of infinite loops makes program logic hard to understand. In a well structured
program, all code should be written so that program logic is clear at each stage of the program. For
example, a loop should be written so that the normal loop terminating condition is immediately
clear. Otherwise, program reading requires wading through the detailed code to see how and when
the loop is terminated. A break statement should be used to terminate a loop only in cases of
special or unexpected events.

4.3.3 The continue Statement

A continue statement also changes the normal flow of control in a loop. When a continue
statement is executed in a loop, the current iteration of the loop body is aborted; however, control

4.3. NEW CONTROL CONSTRUCTS 183

transfers to the loop condition test and normal loop processing continues, namely either a new
iteration or a termination of the loop occurs based on the loop condition. As might be expected,
the syntax of the continue statement is;

continue;

and the semantics are that statements in the loop body following the execution of the continue
statement are not executed. Instead, control immediately transfers to the testing of the loop
condition.

As an example, suppose we wish to write a loop to print out integers from 0 to 9, except for
5. We could use the continue statement as follows:

n = 0;
while (n < 10) {
if (n == 5) {
n=n+1;
continue;
t
printf ("Next allowed number is %d\n", n);
n=n+1;

The loop executes normally except when n is 5. In that case, the if condition is True; n is
incremented, and the continue statement is executed where control passes to the testing of the
loop condition, (n < 10). Loop execution continues normally from this point. Except for 5, all
values from 0 through 9 will be printed.

We can modify our previous text encryption algorithm (Figure 4.19) to ignore illegal characters
in its input. Recall, in that task we processed characters one at a time, encrypting letters and
passing all other characters as read. In this case we might consider non-printable characters other
than white space to be typing errors which should be ignored and omitted from the output.

The code for the revised program is shown in Figure 4.23. We have used the function,
illegal(), from the previous program (it is in charutil.c) to detect illegal characters. When
found, the continue statement will terminate the loop iteration, but continue processing the
remaining characters in the input until EQF.

Sample Session:

¥*Text Encryption Ignoring Illegal Characters*

Type text, EOF to quit
Luck you live H Awaii
Mvdl zpv mjjwf Ixbjj

184 CHAPTER 4. PROCESSING CHARACTER DATA

/* File: encrypt2.c
Other Source Files: charutil.c
Header Files: charutil.h
This program encrypts text by converting each letter to the next letter
in the alphabet. Illegal characters are ignored.
*/
#include <stdio.h>
#include '"charutil.h"

void print_next(char c);

main()
{ signed char c;

printf ("***Text Encryption Ignoring Illegal Characters***\n\n");
printf ("Type text, EOF to quit\n");

while ((c = getchar()) !'= EOF) { /* while there are chars to process */
if (illegal(c)) continue; /* ignore illegal characters */

if (letterp(c)) /* encrypt letters */
print_next(c);

else
putchar(c); /* print all others as is */

Figure 4.23: Code for Revised encrypt.c

4.4. MIXING CHARACTER AND NUMERIC INPUT 185

/% File: scan0O.c
This program shows problems with scanf () when wrong data is entered.

*/

#include <stdio.h>
main()

{ int cnt, n;

printf ("***Numeric and Character Data***\n\n");
printf ("Type integers, EOF to quit: ");

cnt = 0;
while ((scanf("%d", &n) !'= EOF) && (cnt < 4)) {
printf("n = %d\n", n);

cnt = cnt + 1;
printf("Type an integer, EOF to quit: ");

Figure 4.24: Code for Testing scanf ()
"D

It should be noted that the use of break and continue statements is not strictly necessary.
Proper structuring of the program, using appropriate loop and if. . .else constructs, can produce
the same effect. The break and continue statements are best used for “unusual” conditions that
would make program logic clearer.

4.4 Mixing Character and Numeric Input

We have seen how numeric data can be read with scanf () and character data with either scanf ()
or getchar (). Some difficulties can arise, however, when both numeric and character input is done
within the same program. Several common errors in reading data can be corrected easily if the
programmer understands exactly how data is read. In this section, we discuss problems in reading
data and how they can be resolved.

The first problem occurs when scanf () attempts to read numeric data but the user enters the
data incorrectly. (While the discussion applies to reading any numeric data, we will use integer
data for our examples). Consider an example of a simple program that reads and prints integers as
shown in Figure 4.24. In this program, scanf () reads an integer into the variable n (if possible)
and returns a value which is compared with EOF. If scanf() has successfully read an integer,

186 CHAPTER 4. PROCESSING CHARACTER DATA

the value returned is the number of conversions performed, namely 1, and the loop is executed.
Otherwise, the value returned is expected to be EOF and the loop is terminated. The the first part
of the while condition is:

(scanf ("%d", &n) '= EOF)

This expression both reads an item and compares the returned value with EOF, eliminating separate
statements for initialization and update. The second part of the while condition ensures that the
loop is executed at most 4 times. (The reason for this will become clear soon). The loop body
prints the value read and keeps a count of the number of times the loop is executed. The program
works fine as long as the user enters integers correctly. Here is a sample session that shows the
problem when the user makes a typing error:

*kkMistyped Numeric Datax**x*

Type integers, EOF to quit: 23r
n = 23
Type an integer, EOF to quit: n

23
23
Type an integer, EOF to quit: n = 23

Type an integer, EOF to quit: n

The user typed 23r. These characters and the terminating newline go into the keyboard buffer,
scanf () skips over any leading white space and reads characters that form an integer and converts
them to the internal form for an integer. It stops reading when the first non-digit is encountered,
in this case, the *r’. It stores the integer value, 23, in n and returns the number of items read,
i.e. 1. The first integer, 23, is read correctly and printed , followed by a prompt to type in the
next integer.

At this point, the program does not wait for the user to enter data; instead the loop repeatedly
prints 23 and the prompt but does not read anything. The reason is that the next character in
the keyboard buffer is still r’. This is not a digit character so it does not belong in an integer;
therefore, scanf () is unable to read an integer. Instead, scanf () simply returns the number of
items read as 0 each time. Since scanf () is trying to read an integer, it can not read and discard
the r’. No more reading of integers is possible as long as r’ is the next character in the buffer.
If the value of the constant EOF is -1 (not 0), an infinite loop results. (That is why we have included
the test of cnt to terminate the loop after 4 iterations).

Let us see how we can make the program more tolerant of errors. One solution to this problem
is to check the value returned by scanf () and make sure it is the expected value, i.e. 1 in our
case. If it is not, break out of the loop. The while loop can be written as:

while ((flag = scanf("/d", &n)) != EOF) {
if (flag !'= 1) break;
printf("n = %d\n", n);

4.4. MIXING CHARACTER AND NUMERIC INPUT 187

printf ("Type an integer, EOF to quit\n");

In the while expression, the inner parentheses are evaluated first. The value returned by scanf ()
is assigned to flag which is the value that is then compared to EQF. If the value of the expression
is not EOF, the loop is executed; otherwise, the loop is terminated. In the loop, we check if a data
item was read correctly, i.e. if flagis 1. If not, we break out of the loop. The inner parentheses
in the while expression are important; the while expression without them would be:

(flag = scanf("})d", &n) !'= EOF)

Precedence of assignment operator is lower than that of the relational operator, ! =; so, the
scanf () value is first compared with EOF and the result is True or False, i.e. 1 or 0. This value is
then assigned to flag, NOT the value returned by scanf ().

The trouble with the above solution is that the program is aborted for a simple typing error.
The next solution is to flush the buffer of all characters up to and including the first newline. A
simple loop will take care of this:

while ((flag = scanf("/d", &n)) != EOF) {
if (flag '= 1)
while (getchar() '= ’\n’);
else {
printf("n = %d\n", n);
printf ("Type an integer, EOF to quit\n");

It the value returned by scanf () when reading an integer is not 1, then the inner while loop is
executed where, as long as a newline is not read, the condition is True and the body is executed.
In this case, the loop body is an empty statement, so the condition will be tested again thus
reading the next character. The loop continues until a newline is read. This is called flushing

the buffer.

The trouble with this approach is that the user may have typed other useful data on the same
line which will be flushed. The best solution is to flush only one character and try again. If
unsuccessful, repeat the process until an item is read successfully. Figure 4.25 shows the revised
program that will discard only those characters that do not belong in a numeric data item.

Sample Session:

*kkMistyped Numeric Data: Flush characterskkx

Type integers, EOF to quit

188 CHAPTER 4. PROCESSING CHARACTER DATA

/* File: scanl.c
This program shows how to handle mistyped numeric data by flushing
erroneous characters.

*/

#include <stdio.h>

#define DEBUG

main()
{ char ch;
int flag, n;

printf ("***Mistyped Numeric Data: Flush characters***\n\n");
printf ("Type integers, EOF to quit\n");

while ((flag = scanf("}d", &n)) != EOF) {

if (flag '= 1) {
ch = getchar(); /* flush one character */
#ifdef DEBUG
printf("debug:%c in input stream, discarding\n", ch);

#endif
by
else printf("n = %d\n", n);
printf ("Type an integer, EOF to quit\n");
by
by

Figure 4.25: Revised Code for Reading Integers

4.4. MIXING CHARACTER AND NUMERIC INPUT 189

231t 34

n = 23

Type an integer, EOF to quit
debug:r in input stream, discarding
Type an integer, EOF to quit
debug:t in input stream, discarding
Type an integer, EOF to quit

n =34

Type an integer, EOF to quit

"D

The input contains several characters that do not belong in numeric data. Each of these is
discarded in turn and another attempt is made to read an integer. If unable to read an integer,
another character is discarded. This continues until it is possible to read an integer or the end of
file is reached.

Even if the user types data as requested, other problems can occur with scanf (). The second
problem occurs when an attempt is made to read a character after reading a numeric data item.
Figure 4.26 shows an example which reads an integer and then asks the user if he/she wishes to
continue. If the user types ’y’, the next integer is read; otherwise, the loop is terminated. This
program produces the following sample session:

***Numeric and Character Datax*xx*

Type an integer

23\n

n = 23

Do you wish to continue? (Y/N): debug:
in input stream

The sample session shows that an integer input is read correctly and printed; the prompt to the
user is then printed, but the program does not wait for the user to type the response. A newline
is printed as the next character read, and the program terminates. The reason is that when the
user types the integer followed by a RETURN, the digit characters followed by the terminating
newline are placed in the keyboard buffer (we have shown the \n explicitly). The function scanf ()
reads the integer until it reaches the newline character, but leaves the newline in the buffer. This
newline character is then read as the next input character into c. Its value is printed and the loop
is terminated since the character read is not ’y’.

A simple solution is to discard a single delimiting white space character after the numeric data
is read. C provides a suppression conversion specifier that will read a data item of any type and
discard it. Here are some examples

scanf ("%*xc'") ; /* read and discard a character */

190 CHAPTER 4. PROCESSING CHARACTER DATA

/* File: mix0.c
This program shows problems reading character data when it follows
numeric data.

*/

#include <stdio.h>

#define DEBUG

main()
{ char ch;
int flag, n;

printf ("***Numeric and Character Data***\n\n");
printf ("Type an integer\n");

while ((flag = scanf("}d", &n)) != EOF) { /* continue until EOF */
printf("n = %d\n", n); /* print n */

printf (Do you wish to continue? (Y/N): "); /* prompt */

scanf ("%c", &ch); /* read a character, */
#i1fdef DEBUG
printf("debug:%c in input stream\n", ch); /* type its value */
#endif
if (ch == ’y’) /* if char is ’y’ */
printf ("Type an integer\n"); /* prompt */
else /* otherwise, */
break; /* terminate loop */
by
by

Figure 4.26: Mixing Numeric and Character Data

4.4. MIXING CHARACTER AND NUMERIC INPUT 191

scanf ("%*xd") ; /* read and discard an integer */

scanf ("%d%*c", &n); /* read an integer and store it in n, */
/* then read and discard a character */

scanf ("%*xclc", &ch); /* read and discard a character, */

/* and read another, store it in ch, */

Figure 4.27 shows the revised program that discards one character after it reads an integer

This program produces the following sample session:

***Numeric and Character Datax*xx*

Type an integer

23\n

n = 23

Do you wish to continue? (Y/N): y\n
debug:y in input stream

Type an integer

34 \n
n = 34
Do you wish to continue? (Y/N): debug: in input stream

We have shown the terminating newline explicitly in the sample session input. The first integer
is read and printed; one character is discarded and the next one read correctly as ’y’ and the
loop repeats. The next integer is typed followed by some white space and then a newline. The
character after the integer is a space which is discarded and the following character is read. The
new character read is another space, and the program is terminated because it is not a ’y’.

The solution is to flush the entire line of white space until a newline is reached. Then the next
character should be the correct response. The revised program is shown in Figure 4.28 and the
sample session is below:

***Numeric and Character Datax*xx*

Type an integer

23 \n
n = 23
Do you wish to continue? (Y/N): y \n

debug:y in input stream
Type an integer

34 \n
n = 34
Do you wish to continue? (Y/N): n \n

debug:n in input stream

192 CHAPTER 4. PROCESSING CHARACTER DATA

/* File: mixl.c
This program shows how character data might be read correctly when it
follows numeric data. It assumes only one white space character
terminates numeric data. This character is suppressed.

*/

#include <stdio.h>

#define DEBUG

main()
{ char ch;
int flag, n;

printf ("***Numeric and Character Data***\n\n");
printf ("Type an integer\n");

while ((flag = scanf("}d", &n)) != EOF) {
printf("n = %d\n", n);

printf("Do you wish to continue? (Y/N): ");

scanf ("%*xcc", &ch); /* suppress a character, read another */
#ifdef DEBUG
printf("debug:%c in input stream\n", ch);

#endif
if (ch == ’y’)
printf ("Type an integer\n");
else
break;
by
by

Figure 4.27: Revised Code for Mixing Data

4.4. MIXING CHARACTER AND NUMERIC INPUT 193

/* File: mix2.c
This program shows how character data can be read correctly when it
follows numeric data even if several white space characters follow
numeric data.

*/

#include <stdio.h>

#define DEBUG

main()
{ char ch;
int flag, n;

printf ("***Numeric and Character Data***\n\n");
printf ("Type an integer\n");

while ((flag = scanf("}d", &n)) != EOF) {
printf("n = %d\n", n);

/* flush white space characters in a line; stop when newline read */
while (getchar() '= ’\n’);

printf("Do you wish to continue? (Y/N): ");
scanf ("%c", &ch);

#ifdef DEBUG

printf("debug:%c in input stream\n", ch);

#endif
if (ch == ’y’)
printf ("Type an integer\n");
else
break;
by
by

Figure 4.28: A Better Revision for Mixing Data

194 CHAPTER 4. PROCESSING CHARACTER DATA

The first integer is read and printed, the keyboard buffer is flushed of all white space until the
newline is read, and the next character is read to decide whether to continue or terminate the
loop. The next character input is also terminated with white space; however, the next item to be
read is a number and all leading white space will be skipped.

A final alternative might be to terminate the program only when the user types an ’n’;
accepting any other character as a ’y’. This would be a little more forgiving of user errors in
responding to the program. One should also be prepared for mistyping of numeric data as discussed
above. A programmer should anticipate as many problems as possible, and should assume that a
user may not be knowledgeable about things such as EOF keystrokes, will be apt to make mistakes,
and will be easily frustrated with rigid programs.

4.5 Menu Driven Programs

Finally, we end this chapter by using what we have learned to improve the user interface to
programs: we consider the case of a program driven by a menwu. In a menu driven program, the
user is given a set of choices of things to do (the menu) and then is asked to select a menu item.
The driver then calls an appropriate function to perform the task selected by the menu item. A
switch statement seems a natural one for handling the selection from the menu.

We will modify the simple version of our payroll program to make it menu driven. While a
menu is not needed in this case, we use it to illustrate the concept. The menu items are: get data,
display data, modify data, calculate pay, print pay, help, and quit the program. The user selects a
menu item to execute a particular path; for example, new data is read only when the user selects
the menu item, get data. On demand, the current data can be displayed so the user may make
any desired changes. Pay is calculated only when the user is satisfied with the data.

Figure 4.29 shows the driver for this program. (The driver of any menu driven program will
look similar to this). The program prints the menu and then reads a selection character. A
switch is used to select the path desired by the user. The user may type a lower or an upper
case letter; both cases are included by the case labels. Usually, the driver hides the details of
processing individual selections, so we have implemented most selections as function calls. The
only exception here is when the selection is get data where the actual statements to read the
necessary data are included in the driver itself because to use a function, it would have to read
several items and somehow return them. So far we only know how to write functions that return
a single value. We will address this matter in Chapter 6.

Notice what happens if the user elects to quit the program: a standard library function, exit (),
is called. This function is like a return statement, except that it terminates the entire program
rather than return from a function. It may be passed a value which is returned to the environment
in which the program runs. A value of 0 usually implies normal termination of a program; any
other value implies abnormal termination.

After the appropriate function is called, we terminate the selected case with a break statement
to end the switch statement . The control then passes to the statement after the switch state-

4.5. MENU DRIVEN PROGRAMS 195

/* File: menu.c
An example of a menu driven program. The main() driver prints the menu,
reads the selected item, and performs an appropriate task. */
#include <stdio.h>
#include '"payroll.h"

main()
{ signed char c;
int id;

float hours_worked, rate_of_pay, pay;

printf ("***Pay Calculation: Menu Driven***\n\n"); /* print title */

print_menu(); /* Display the menu to the user */
while ((c = getchar()) !'= EOF) { /* get user selection */
switch(c) { /* select an appropriate path */

case ’g’: /* should be a function get_data() */

case ’G’: printf("Id number: ");
scanf ("%d", &id);
printf ("Type Hours worked and rate of pay\n");
scanf ("4 %f", &hours_worked, &rate_of_pay);
break;
case ’'d’:
case ’'D’: display_data(id, hours_worked, rate_of_pay);
break;
case ‘'m’:
case ’M’: modify_data();
break;
case ’'c’:
case 'C’: pay = calc_pay(hours_worked, rate_of_pay);
break;
case 'p’:
case ’'P’: display_data(id, hours_worked, rate_of_pay);
print_pay(pay) ;
break;
case ’h’:
case ’'H’: print_menu();
break;
case ’q’:
case 'Q’: exit(0);
default: printf("Invalid selection\n");
print_menu();
} /* end of switch */
while ((c = getchar()) != ’\n’); /* flush the buffer */
} /* end of while loop */
} /* end of program */

Figure 4.29: Code for menu driven program

196 CHAPTER 4. PROCESSING CHARACTER DATA

ment, namely flushing the buffer. Let us see what would happen if this flush were not present.
The user selects an item by typing a character and must terminate the input with a newline. The
keyboard buffer will retain all characters typed by the user, including the newline. So if the user

types:
d\n

(showing the newline explicitly), the program would read the character, ?d’, select the appropriate
case in the switch statement and execute the path which displays data. When the break ends
the switch, control returns to the while expression which reads the next character in the buffer:
the newline. Since newline is not one of the listed cases, the switch will choose the default case
and print an error message to the user. Thus, flushing the keyboard buffer always obtains a new
selection. In fact, even if the user typed more than a single character to select a menu item (such
as an entire word), the buffer will be flushed of all remaining characters after the first.

As we have mentioned before, a large program should be developed incrementally, i.e. in small
steps. The overall program logic consisting of major sub-tasks is designed first without the need
to know the details of how these sub-tasks will be performed. Menu driven programs are partic-
ularly well suited for incremental development. Once the driver is written, “dummy” functions
(sometimes called stubs) can be written for each task which may do nothing but print a debug
message to the screen. Then each sub-task is implemented and tested one at a time. Only after
some of the basic sub-tasks are implemented and tested, should others be implemented. At any
given time during program development, many sub-task functions may not yet be implemented.
For example, we may first implement only get data, print data, and help (help is easy to implement;
it just prints the menu). Other sub-tasks may be delayed for later implementation. Figure 4.30
shows example implementations of the functions used in the above driver. These are in skeleton
form and can be modified as needed without changing the program driver. It should be noted
that the linker will require that all functions used in the driver be defined. The stubs satisfy the
linker without having to write the complete function until later.

The use of a menu in this example is not very practical. It is merely for illustration of the
technique. The menu is normally printed only once, so if the user forgets the menu items, he/she
may ask for help, in which case the menu is printed again. Also, if the user types any erroneous
character, the default case prints an appropriate message and prints the menu.

4.6 Common Errors

1. Errors in program logic: The program does not produce the expected results during testing.
Use conditional compilation to introduce debug statements.

2. The value of getchar() is assigned to a char type. It should be assigned to a signed char
type if it is to be checked for a possibly negative value of EOF.

3. The keyboard buffer is not flushed of erroneous or unnecessary characters as explained in
Section 4.4.

4.6. COMMON ERRORS 197

/* File: payroll.c x*/

/* Prints the menu. */

void print_menu(void)

{ /* print the menu */
printf("Select:\n");
printf ("\tG(et Data\n");
printf ("\tD(isplay Data\n");
printf ("\tM(odify Data\n");
printf("\tC(alculate Pay\n");
printf ("\tP(rint Pay\n");
printf ("\tH(elp\n");
printf ("\tQ(uit\n");

/* Displays input data, Id number, hours worked, and rate of pay. */
void display_data(int id, float hrs, float rate)

{
printf("Id Number %d\n", id);
printf ("Hours worked %f\n", hrs);
printf("Rate of pay %f\n", rate);
}

/* Calculates pay as hrs * rate */
/* a very simple version of calc_pay. Out previous implementation
could be used here instead.

x/
float calc_pay(float hrs, float rate)
{
return hrs * rate;
}

/* Modifies input data. */
void modify_data(void)
{
printf("Modify Data not implemented yet\n");

/* Prints pay */
void print_pay(float pay)
{
printf("Total pay = %f\n", pay);

Figure 4.30: Menu Driven Functions

198

4.

10.

CHAPTER 4. PROCESSING CHARACTER DATA

Improper use of relational operators:

if (’a’ <= ch <= ’z7) /* should be (’a’ <= ch && ch <= ’z’) x*/

The operators are evaluated left to right: ’a’ <= ch is either True or False, i.e. 1 or 0.
This value is compared with >z’ and the result is always True.

An attempt is made to read past the end of the input file. If the standard input is the
keyboard, it may or may not be possible to read input once the end of file keystroke is
pressed. If the standard input is redirected, it is NOT possible to read beyond the end of
file.

A break statement is not used in a switch statement. When a case expression matches the
switch expression, control passes to that case label and control flow continues until the end
of the switch statement. The only way to terminate the flow is with a break statement.
Here is an example:

char find_next(char c¢)
{ char next;

switch(c) {
case ’z’: next = ’a’;
default: next = ¢ + 1;

b

return next;

Suppose c is *z’. The variable next is assigned an ’a’ and control passes to the next
statement which assigns ¢ + 1 to next. In fact, the function always returns ¢ + 1 no
matter what c is.

Errors in defining macros. Define macros carefully with parentheses around macro formal
parameters. If the actual argument in a macro call is an expression, it will be expanded
correctly only if the macro is defined with parentheses around formal parameters.

A header file is not included in each of the source files that use the prototypes and/or macros
defined in it.

Repeated inclusion of a header file in a source file. If the header file contains defines, there
is no harm done. BUT, if the header file contains function prototypes, repeated inclusion is
an attempt to redeclare functions, a compiler error.

Failure to set environment parameters, such as the standard include file directory, standard
library directory, and so forth. Most systems may already have the environment properly set,
but that may not be true in personal computers. If necessary, make sure the environment is
set correctly. Also, make sure that the compile and link commands correctly specify all the
source files.

4.7. SUMMARY 199

4.7 Summary

In this chapter we have introduced a new data type, char, used to represent textual data in the
computer. Characters are represented using a standard encoding, or assignment of a bit pattern to
each character in the set. This encoding is called ASCII and includes representations of several
classes of characters such as alphabetic characters (letters, both upper and lower case), digit
characters, punctuation, space, other special symbols, and control characters. We have seen how
character variables can be declared using the char keyword as the type specifier in a declaration
statement, and how character constants are expressed in the program, namely by enclosing them
in single quotes, e.g. ’a’. The ASCII value of a character can be treated as an integer value,
so we can do arithmetic operations using character variables and constants. For example, we
have discussed how characters can be tested using relational operators to determine their class,
how characters can be converted, for example from upper to lower case, or from a digit to its
corresponding integer value.

We have also discussed character Input/Output using scanf() and printf() with the %c
conversion specifier, or the getchar() and putchar() routines defined in stdio.h. We have used
these routines and operations to write several example programs for processing characters and
discussed the organization of program code into separate source files. This later technique allows
us to develop our own libraries of utility functions which can be linked to various programs, further
supporting our modular programming style.

In this chapter we have also introduced several new control constructs available in the C
language. These include the switch statement:

switch (<expression>) <statement>

where the <statement> is usually a compound statement with case labels.

switch (<expression>) {
case <ey >: <stmt; >
case <ey > <stmty >

case <e,_1 >:. <stmt,_; >
default: <stmt, >

The semantics of this statement are that the <expression> is evaluated to an integer type value and
the case labels are searched for the first label that matches this value. If no match is found, the
optional default label is considered to match any value. Control flow transfers to the statement
associated with this label and proceeds to successive statements in the switch body. We can
control which statements are executed further by using return or break statements with the
switch body.

200 CHAPTER 4. PROCESSING CHARACTER DATA

The syntax of the break statement is simply:
break:

and it may be used only within switch or loop bodies with the semantics of immediately termi-
nating the execution of the body. In loops, the break statement is best used to terminate a loop
under unusual or error conditions. A similar control construct available for loops is the continue
statement:

continue;

which immediately terminates the current iteration of the loop but returns to the loop condition
test to determine if the loop body is to be executed again.

We have also discussed some of the difficulties that can be encountered when mixing numeric
and character data on input. These difficulties are due to the fact that numeric conversion specifiers
(%d or %f) are “tolerant” of white space, i.e. will skip leading white space in the input buffer to
find numeric characters to be read and converted, while character input (using %c or getchar())
is not. For character input, the next character, whatever it is, is read. In addition, numeric
conversions will stop at the first non-numeric character detected in the input, leaving it in the
buffer. We have shown several ways of handling this behavior to make the input tolerant of user
errors in Section 4.4.

Finally, we used the features of the language discussed in this chapter to implement a common
style of user interface: menu driven programs. Such a style of program also facilitates good top
down, modular design in the coding and testing of our programs.

1.8. EXERCISES 201
4.8 Exercises

1. What is the value of each of the following expressions:
ch = ’d’;

(a) ((ch >= ’a’) && (ch <= ’z’))
(b) ((ch > ’A’) && (ch < ’Z7))
(c) ((ch >= ’A’) && (ch <= ’Z7))
(d) ch = ch -’a’ + ’A’;

(e) ch =ch - A’ + ’a’;

2. What will be the output of the following:

char ch;
int d;

ch = ’d’;

d = 65;

printf("ch = %c, value = %d\n", ch, ch);
printf("d = %d, 4 = ¥%c\n", 4, 4);

3. Write the header file category.h discussed in section 4.1.2. Write the macros IS_UPPER(),
IS_DIGIT(),IS_PUNCT(),IS_SPACE(),IS_CONTROL()

4. Write a code fragment to test:

e if a character is printable but not alphabetic
e if a character is alphabetic but not above "M’ or 'm’

o if a character is printable but not a digit

5. Write separate loops to print out the ASCII characters and their values in the ranges:

’a’ to 'z,
A’ to ’Z7,
07 to 97,

6. Are these the same: ’a’ and "a”7 What is the difference between them?
7. What will be the output of the source code:

#define SQ(x) ((x) * (x))

#define CUBE(x) ((x) * (x) * (x))

#define DIGITP(c) ((c) >= ’0’ && (c) <= ’9’)

char ¢ = ’37;

202

8.

9.

10.
11.
12.

13.

CHAPTER 4. PROCESSING CHARACTER DATA

if (DIGITP(c))
printf ("/d\n", CUBE(c - ’0°));
else
printf ("%d\n", SQ(c - ’0°));
Find the errors in the following code that was written to read characters until end of file.

char c;

while (c = getchar())
putchar(c);

What will be the output of the following program?

#include <stdio.h>

main()
{ int n, sum;
char ch;
ch = ’Y’;
sum = 0;
scanf ("%d", &n);
while (ch !'= ’N?) {
sum = sum + n;
printf ("More numbers? (Y/N) '");
scanf ("%c", &ch);
scanf ("%d", &n);
t
t

What happens if scanf () is in a loop to read integers and a letter is typed?
What happens if scanf () reads an integer and then attempts to read a character?
Use a switch statement to test if a digit symbol is an even digit symbol.

Write a single loop that reads and prints all integers as long as they are between 1 and 100
with the following restrictions: If an input integer is divisible by 7 terminate the loop with
a break statement; if an input integer is divisible by 6, do not print it but continue the loop
with a continue statement.

4.9. PROBLEMS 203

4.9 Problems

10.

11.

12.

. First use graph paper to plan out and then write a program that prints the following message

centered within a box whose borders are made up of the character *.

Happy New Year

. Write a program to print a character corresponding to an ASCII value or vice versa, as

specified by the user, until the user quits. If the character is not printable, print a message.

. Write a function that takes one character argument and returns the following: if the argument

is a letter, it returns the position of the letter in the alphabet; otherwise, it returns FAIL,
whose value is -1. For example, if the argument is ?A’, it returns 0; if the argument is ’d’,
it returns 3, and so forth. Define and use macros to test if a character is a lower case letter
or an upper case letter.

Use a switch statement to write a function that returns TRUE if a character is a consonant
and returns FALSE otherwise.

Use a switch statement to write a function that returns TRUE if a digit character represents
an odd digit value. If the character is not an odd digit, the function returns FALSE.

. Write a program to count the occurrence of a specified character in the input stream.

. Write a program that reads in characters until end of file. The program should count and

print the number of characters, printable characters, vowels, digits, and consonants in the
input. Use functions to check whether a character is a vowel, a consonant, or a printable
character. Define and use macros to test if a character is a digit or a letter.

Modify the program in Chapter 2 to find prime numbers so that the inner loop is terminated
by a break statement when a number is found not to be prime.

. Write a function that takes two arguments, replicate(int n, char c);, and prints the

character, ¢, a number, n, times.

Use replicate() to write a function, drawrect (), that draws a rectangle of length, g, and
width, w. The dimensions are in terms of character spaces. The rectangle top left corner is
at top, t, and left, 1. The arguments, g, w, t, and 1 are integers, where t and 1 determine
the top left corner of the rectangle, and the length of the rectangle should be along the
horizontal. Use ’*’ to draw your lines. Write a program that repeatedly draws rectangles
until length and width specified by the user are both zero.

Repeat 10, but modify drawrect() to fillrect() that draws a rectangle filled in with a
specified fill character.

Write a function that draws a horizontal line proportional to a specified integer between the
values of 0 and 50. Use the function in a program to draw a bar chart, where the bars are
horizontal and in proportion to a sequence of numbers read.

204

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

CHAPTER 4. PROCESSING CHARACTER DATA

Write a function to encode text as follows:

a. If the first character of a line is an upper case letter, then encode the first character to
one that is 1 position higher in a circular alphabet. Move the rest of the characters in
the line up by 1 position in a circular printable part of the ASCII character set.

b. If the first character of a line is a lower case letter, then move the first character down
by 2 positions in a circular alphabet. Move the rest of the characters in the line down
by 2 positions in a circular printable part of the ASCII character set.

c. If the first character of a line is white space, then terminate the input.

d. Otherwise, if the first character of a line is not a letter, then move all characters in the
line down by 1 position in a circular printable part of the ASCII character set.

Write a function to decode text that was encoded as per Problem 13.

Write a menu-driven program that combines Problems 13 and 14 to encode or decode text
as required by the user. The input for encoding or decoding is terminated when the first
character of a line is a space. The commands are: encode, decode, help, and quit.

Write a function that takes three arguments, two float numbers and one arithmetic operator
character. It returns the result of applying the operator to the two numbers. Using the
function, write a program that repeatedly reads a float number, followed by an arithmetic
operator, followed by a float number; each time it prints out the result of applying the
operator to the numbers.

Modify the program in Problem 16 to allow further inputs of a sequence of an operator
followed by a number. Each new operator is to be applied to the result from the previous
operation and the new number entered. The input is terminated by a newline. Print only
the final result.

Read and convert a sequence of digits to its equivalent integer. Any leading white space
should be skipped. The conversion should include digit characters until a non-digit character
is encountered. Modify the program so it can read and convert a sequence of digit characters
preceded by a sign, + or -.

Write a program that converts the input sequence of digit characters, possibly followed by a
decimal point, followed by a sequence of digits, to a float number. The leading white space
is skipped and the input is terminated when a character not admissible in a float number is
encountered.

Modify the above program to include a possible leading sign character.

Write a function that takes a possibly signed integer as an argument, and converts it to a
sequence of characters.

Write a program that takes a possibly signed floating point number and converts it to a
sequence of characters with 4 digits after the decimal point.

4.9. PROBLEMS 205

23.

24.

25.

26.

Modify the word extraction program, wds.c, in Figure 4.16. It should count words with
exactly four characters and words with five characters. Assume the input consists of only
valid characters and white space.

Write a program that reads in characters until end of file. The program should identify each
token, 1.e. a word after skipping white space. The only valid token types are: integer and
invalid. White space delimits words but is otherwise ignored. An integer token is a word
that starts with a digit and is followed by digits and terminates when a non-digit character
is encountered. An invalid token is made up of any other single character that does not
belong to an integer. Print each token as it is encountered as well as its type. Here is a
sample session:

Type text, EOF to quit: 3456 a23b
3456 integer

a invalid

23 integer

b invalid

Type text, EOF to quit: "D

Modify the program in Problem 24 so it also allows an identifier as a valid token. An
identifier starts with a letter and may be followed by a sequence of letters and/or digits.

Modify the program in Problem 25 so that tokens representing float numbers are also allowed.
A float token must start with a digit, may be followed by a sequence of digits, followed by
a decimal point, followed by zero or more digits. Here is a sample session:

Type text, EOF to quit: The ID Number is 123, not 123
The Identifier

ID Identifier

Number Identifier

is Identifier

123 Integer

, Invalid

not Identifier

123. Float

Type text, EOF to quit: pay = 1.5 * hours * rate;
pay Identifier

= Invalid

1.5 Float

* Invalid

hours Identifier

* Invalid

rate Identifier

; Invalid

Type text, EOF to quit: "D

206 CHAPTER 4. PROCESSING CHARACTER DATA

Hint: Skip leading delimiters; test the first non-delimiter, and build a word of the appropriate
type. An integer and a float are distinguished by the presence of a decimal point.

Chapter 5

Numeric Data Types and Expression
Evaluation

In the preceding chapters we have introduced all the basic tools needed to write programs in C:
the control constructs and operators of the language, as well as the basic data types for integer,
floating point, and character data. Using these basic tools, we have been able to write programs
for both numeric processing and non-numeric, character, processing.

In this chapter we will introduce several useful features of C that allow greater flexibility in
program writing and allow a greater range of values and precision. We will first take a closer look
at integer and floating point data types; their size, and limitations, and will introduce sub-types
of integers, and double precision floating point numbers. We will formalize the order of evaluation
of operators in expressions as well as the type of the expression value when several data types are
are present as operands. We will also introduce several C statements that are possible alternatives
for statements already discussed and describe some new operators.

5.1 Representing Numbers

As we saw in Chapter 1, the range of possible values of objects depends on the sizes used to
represent them. The finite size of an object puts a limit on the range of values that can be stored
in it. Integer objects have a limit on the range of positive and negative integers. Floating point
numbers have limits on the number of significant digits (known as the precision) as well as on
the range of the exponents (limiting the range of numbers). We will illustrate the reasons for these
limits by analogy with decimal representation.

Let us represent integers using a finite number of decimal digits, say only five digits are allowed.
We can use these digits to represent unsigned positive integers in the range 0 to 99999. If we wish
to represent both positive and negative numbers, we need one digit to encode the sign, + or -, and
can then use only the remaining four digits to represent the absolute value of an integer. So, with
five digits, we can represent positive and negative integers in the range -9999 to +9999. If we had

207

208 CHAPTER 5. NUMERIC DATA TYPES AND EXPRESSION EVALUATION

more digits to represent integers, the range of values will be appropriately greater.

Now let us use the same five digits to represent floating point numbers in scientific notation,
i.e. a fractional part multiplied by a power of ten. For our discussion, we will assume that the
fractional part is less than 1 and that the exponent of ten can be positive or negative. For example:

.234E3
.987E-2
-.345E2

The numbers are shown as a fraction times some power of ten where the exponent is shown after

the E. The first number is 234.0, the second is .00987, the third is -34.5.

When we represent numbers using this system, we do not need to store the decimal point (it
is always in the same place) or the base (it is always E, standing for 10). So, of our 5 digits, let
us say that we use three digits for the fractional part and two digits for the exponent. One digit
of the fractional part and one digit of the exponent is reserved for the sign. This leaves only two
digits for the absolute value of the fractional part, and it leaves one digit for the absolute value of
the exponent. Thus, the range of values for the fractional part is —.99 to +.99 and the range for
exponents is —9 to +9.

Even though the range of actual values is quite large (we can represent numbers from almost
negative one billion to positive one billion), there are only two significant digits of precision; all
other digits will be zeros contributed by the power of ten. So, the range of numbers is from
—990, 000, 000 to +990, 000,000 (-.99E+9 to +.99E+9). With this scheme, it would be impossible
to represent a number such as 123.4567 exactly. The best we can do is represent it as +.12E+3,
which is the number 120 — not nearly as accurate as 123.4567. We have a loss of precision (or
accuracy) because of the limited number of digits we have for representing floating point numbers.
There is a slight distinction between precisions and accuracy. In the above representation scheme,
we can always say there are 2 digits of precision; however, the accuracy depends on the value of
the exponent. The smallest number we can represent is .00000000099 (+.99E-9), which is pretty
darn accurate. However, if the exponent is +9, our accuracy is only + 5 million. If more digits are
used to represent floating point numbers, the precision and the range can be greater. For example,
if 6 digits were allowed, with four digits for a signed fractional part, we could represent 123.4567
as +.123E3, which is 123.0. If 7 digits were allowed, with 5 digits for a signed fractional part, we
could represent the same number as +.1234E3, which is 123.4, and so forth.

Conceptually, binary representation of numbers is no different from decimal representation.
The finite size imposes a limit on the range of integers and on the precision and range of floating
point numbers. Binary representation is also tailored to facilitate the basic operations in hardware,
such as addition and subtraction. For example, as we saw in Chapter 1, integers are typically
represented in what is called the two’s complement number system. However, one does not need
to know the number system to realize that the limits on the range of values will be similar in
nature and will depend on the sizes used to represent the numbers.

Recall that, in a computer, memory is organized as a sequence of bytes, each byte with an
address, and storage is allocated in units of bytes. For example, if 1 byte is used for signed integers,

5.1. REPRESENTING NUMBERS 209

the range of values (in decimal) is -128 to 127; and unsigned integers have the range 0 to 255. If
2 bytes are used to represent signed integers, the range is -32768 to +32767; and 0 to 65535 for
unsigned integers. If 4 bytes are used to represent integers, the range will be appropriately greater.
Similarly for floating point numbers; with 4 bytes to represent floating point numbers, the precision
is equivalent to about 7 significant decimal digits and a magnitude between approximately 10E38
and 10E-38. If more bytes are used for floating point numbers, the precision and the range are
both appropriately greater.

So far we have used char, int, and float data types in our programs. Character data type is
usually encoded as an ASCII integer value (signed or unsigned) in one byte of memory. Integers
are at least two bytes in size, and floating point numbers are at least four bytes in size. C provides
additional integer sizes and floating point data types that provide greater range and/or precision.

5.1.1 Signed and Unsigned Integer Types

For integer data types, there are three sizes: int, and two additional sizes called long and short,
which are declared as long int and short int. The keywords long and short are called sub-
type qualifiers. The long is intended to provide a larger size of integer, and short is intended
to provide a smaller size of integer. However, not all implementations provide distinct sizes for
them. The requirement is that short and int must be at least 16 bits, long must be at least 32
bits, and that short is no longer than int, which is no longer than long. Typically, short is 16
bits, long is 32 bits, and int is either 16 or 32 bits.

Unless otherwise specified, all integer data types are signed data types, i.e. they have values
which can be positive or negative. Recall, char types, without qualifiers, may be signed or unsigned
depending on the implementation. However, all sizes of integers and char type may be explicitly
qualified as signed or unsigned. (Unsigned numbers are always non-negative numbers).

For integers, long, short, and unsigned may be declared with the keyword int or without it.
In C, whenever a data type is left out in a declaration, int is assumed by default. Here are some
example declarations:

long int light_year;
short int n;

signed char ch;

unsigned char letter;
unsigned int age;

long distance;

short m, n;

unsigned memory_address;
unsigned long zip_code;

The data type of a constant, written directly into a program, is ascertained from the way it is
written. Integer constants are written as a string of digits, optionally preceded by a unary positive

210 CHAPTER 5. NUMERIC DATA TYPES AND EXPRESSION EVALUATION

or a negative operator. Commas are not allowed. Decimal integer constants should be written
without leading zeros, for example:

29
-173
0

1
-525
+7890

Alternate number systems may also be used to express integer constants in C programs. Octal
numbers are written with a leading zero, and hexadecimal numbers are written with a preceding
zero followed by the letter x or X:

Constants Octal/Hexadecimal Integers
0234 octal number 234

0101 octal number 101

0x34 hexadecimal number 34

0X1F hexadecimal number 1F

A constant to be represented as a long int may be explicitly written using the suffix 1 or L, as
in:

123L
456781

Any integer constant that is too big to fit into the integer size is interpreted by the compiler as
long.

Unsigned integers can be of all sizes, int, long, and short. The range of unsigned integers
is 0 through 2¥~!, where k is the number of bits, so for 16 bits the maximum unsigned integer is
65535. Unsigned integer constants are written using the suffix, u or U:

OxFFFFU
123U
0777u

The two suffixes can be combined to write an unsigned long:

12345678UL
OX8FFF FFFFLU

5.1. REPRESENTING NUMBERS 211

5.1.2 Single and Double Precision Floating Point Numbers

Different sizes of floating point data can also be declared with the keywords float and double.
The type specifier double is used to declare double precision floating point numbers. The size of
float is typically 32 bits, and that of double is 64 bits. For greater precision, most scientific and
engineering computation should be performed using the double data type. Furthermore, extra
precision may be provided for floating point numbers by declaring them long double. (This may
be the same as or more bits of precision as double, depending on implementation). Here are
example declarations for floating point numbers:

float x;
double GPR;
long double y;

Decimal float constants in programs have an integer part and a fractional part with a decimal
point between them. They may also be written in scientific (or exponential) notation, i.e. a decimal
number multiplied by a power of ten to indicate the actual position of the decimal point. Positive
and negative numbers may be written with an explicit positive or negative unary operator.

123.789
0.5534
+9635.0000
-8942.3214
-0.765E5
1.4523e12
0.786345e-10

The last three numbers are written in exponential notation with the exponent of ten shown after
the letter e or E. The exponent may be a positive or a negative integer. For clarity, always write
float numbers with at least one digit before and one after the decimal point; for example, zero
18 0.0 in float representation.

Floating point constants are taken to be of double precision type by default. Single precision
floating point constants may be specified with a suffix £ or F.

34.567f
3.141516F

Extra precision for constants may be written with the suffix 1 or L:

23456789.171819L

212 CHAPTER 5. NUMERIC DATA TYPES AND EXPRESSION EVALUATION

5.2 New Control Constructs

So far, we have seen all of the basic control constructs of the C language for calling functions,
branching, and looping. In this section we introduce two new looping constructs that can be used
in place of while; namely for loops and do...while loops.

5.2.1 The for Statement

The logic of the loops we have constructed so far has included three components: some form of
initialization before the loop, a test for loop termination, and some form of data update within the
body of the loop. We implemented these loops using three separate statements in the program,
with a while statment forming the condition test and loop body. Another looping construct
combines all three components of a loop in a single statement: the for statement.

The syntax for the for statement is:

for (<exprl>; <expr2>; <expr3>) <statement>

The keyword, for, and the parentheses are required as shown. Notice the three expressions are
separated by semi-colons (;). The semantics of the for statement is as follows. The expression,
<exprl>, is evaluated once before the loop condition is tested for the first time; <expr2> is the loop
condition which is evaluated prior to each execution of the loop body; and <expr3> is evaluated
at the end of the loop body, just prior to testing the condition. The process repeats until the loop
condition becomes False. The body of the loop is <statement>, which, as usual, may be any valid
type of C statement; empty, simple, or compound. As with the while loop, if the loop condition
evaluates to True, the loop body is executed; otherwise, if the loop condition evaluates to False,
the loop is terminated, and control passes to the next statement following the for statement. In
typical use, the expressions, <exprl> and <expr3> initialize and update a variable, respectively.
Figure 5.1 shows the control flow for a for statement.

A for statement includes all the necessary features of a loop: an initialization expression, a
loop condition, and an update expression. Thus, the following two forms of implementing a loop
are equivalent:

<exprl>;

while (<expr2>) {
<statement> and for (<exprl>; <expr2>; <expr3>) <statement>
<expr3>;

}

The break and continue statements can also be used in the body of a for statement, just as
in a while statement. The use of a for statement or a while statement to implement a loop is a
matter of choice, based on the logic of the algorithm. One advantage might be that writing a for
statement reminds one that initialization and update expressions are usually necessary for a loop.

5.2. NEW CONTROL CONSTRUCTS 213

l

exprl

@ False

True

expr3

statement

Figure 5.1: Control Flow of for Loop
An Example: Factorial

Let us consider an example task which may require a bigger range of integers than the one provided
by int on many machines. The task is to determine a cumulative product from 1 to a positive
integer, n. The product from 1 to n is called the factorial of n, written n!. The algorithm is very
simple: read an integer n; call a function fact (n) which returns the factorial of n; print the result.

The function fact () merely needs to multiply a cumulative product variable, initialized to 1,
by all integers from 1 through n:

initialize product to 1

repeat for values of 1 =1, 2, 3,..., n
product = product * 1

return product

The variable, product, must be initialized to 1 before the loop, otherwise the cumulative product
will be garbage. Each iteration brings us closer to the result. We will use a for statement to
implement the iterative algorithm for a factorial function as shown in Figure 5.2. The for loop
executes as follows. The first expression in parentheses is an initialization expression, i.e. 1 is
initialized to 1. The second expression is the loop condition. If the second expression, i <= n,
evaluates to True, then the loop body is executed. The third expression is the update expression;
it is evaluated after the loop body is executed, and control then passes to the loop condition. In
our example, the expression, 1 = i + 1, is evaluated to update the variable, 1, after the loop body

214 CHAPTER 5. NUMERIC DATA TYPES AND EXPRESSION EVALUATION

/* File: fact.c
Program computes the factorial of integers using function
fact().

*/

#include <stdio.h>

int fact(int n);

main()

{ int n;

printf ("***Factorial Program***\n");
printf ("Type positive integers, EOF to terminate\n");
while (scanf("%d'", &n) != EOF)
if (n <= 0)
printf("%d typed, type a positive integer\n", n);
else
printf("Factorial of %d is %d\n", n, fact(n));

/* Function computes factorial of n using a for loop. */
int fact(int n)
{ int i, product;

product = 1;

for (1 =1; 1i<=mn; 1i=1+1)
product = product * 1;

return product;

Figure 5.2: Code for factorial

is executed. The loop condition is then tested, and the process repeats until the loop condition
becomes False. The above loop executes for 1 = 1, 2, 3, ..., and n and the variable product
accumulates the factorial value of 1 %2 * 3 * ... x n.

The driver uses a while condition:
(scanf ("%d", &n) '= EOF)

where scanf () reads an integer item if possible and stores it in n. The value returned by scanf ()
is then compared with EOF and if the value returned is NOT EOF, the loop executes. As soon as
scanf () returns EOF, the loop is terminated. The while expression serves both to read an item
and to check if the returned value is EOF. The loop body tests the value of n; if it not a positive
integer, the user is asked to retype a positive number; otherwise, the value of fact(n) is printed.

Here is a sample session run on an IBM PC:

5.2. NEW CONTROL CONSTRUCTS 215

x*xFactorial Program#
Type positive integers, EOF to terminate

4

Factorial of 4 is 24

553

Factorial of 5 is 120

-3

Negative number -3 typed, type positive integers
5}

Factorial of 6 is 720

7

Factorial of 7 is 5040

8

Factorial of 8 is -25216
~Z

The cumulative product in the factorial function grows very fast with n. For moderately large
values of n, the cumulative product overflows the int type object; the number is too large for the
size of the object. When this occurs, the results are meaningless. Usually, an overflow is indicated
when a program, working correctly for smaller numbers, gives ridiculous results for larger numbers.
In the case of the factorial function, the first sign of trouble is a negative result for the factorial of
8. We know the result must be positive since we are multiplying only positive numbers. What has
happened is the result has overflowed into the sign bit resulting in a negative integer. If factorial
of larger numbers is desired, a long int variable should be used for the variable product as well
as for the function fact. Here is a revised version of the factorial function.

/* Function computes a long factorial of n using a for loop. */
long longfact(int n)
{ long int product;

int 1i;

product = 1;

for (1 =1; 1i<=mn; 1i=1+1)
product = product * 1;

return product;

We must keep several things in mind when using the function, longfact (), in the driver program.
In the calling function, if the value returned by longfact () is saved, it must be assigned to a long
integer; otherwise, a long result would be converted to int by dropping higher order bits and the
result would be meaningless. In addition, to print the long value of longfact (), the conversion
specifier must be qualified by the prefix 1:

printf("Factorial of %d is %1d\n", n, longfact(n));

216 CHAPTER 5. NUMERIC DATA TYPES AND EXPRESSION EVALUATION

|

statement

expression
e

False

Y

Figure 5.3: Control Flow of do...while Loop

The conversion specifier, %1d, prints a long decimal integer.

This example has shown a case where the size of the type int is smaller than the type long,
as it 1s in some implementations. The situation could be corrected by using a larger size data
type to accumulate the factorial. However, even this type has limitations; the factorial of 13 will
overflow the size of a long integer. The only possibility provided for even larger numbers is to use
a floating point representation, which has a larger range, at the expense of loss of precision.

5.2.2 The do...while Statement

In while statements and for statements, the condition is tested for each iteration before the loop
body is executed. Thus, it is possible that the loop may not be executed even once if the loop
condition evaluates to False the first time. The C language provides another looping construct
which guarantees that the body will be executed at least once: the do...while statement. The
loop condition is tested after the body is executed, and the loop continues or terminates depending
on the condition value. The syntax for the do...while statement is:

do
<statement>
while (<expression>);

Figure 5.3 shows the control flow for this construct. As with the other loop constructs, the
break and continue statements can also be used with the do...while statement. The choice of
a loop construct depends on the program logic. There are situations when one construct may be
preferable to another.

5.2. NEW CONTROL CONSTRUCTS 217

An Example: Square Root

Programs are often written to find a solution (or solutions) to an algebraic equation; for example:
y°—ax =0

Here, the solution for the variable, y, is the square root of x. In general, such solutions are real
numbers, and as we have seen, floating point representations of real numbers use a finite number
of bits, and are therefore limited in the precision of the result. Solutions to most numeric problems
can never be exact (all solutions are precise only up to a certain number of decimal digits) but
the result may be sufficiently close to the real solution to be acceptable.

One important numeric computation method to find solutions to equations involves successive
approximations. This method starts with a guess for the solution to the problem, and tests if
the guess satisfies the equation. If the guess is close enough for a solution, it is accepted and
computation terminates; otherwise, the guess is improved, i.e. brought closer to the solution and
the process is repeated. After each iteration, the guess is closer and closer to the solution, until it
is acceptably close enough.

One successive approximation algorithm we will use is Newton’s method to compute the square
root of a number, . Newton’s method starts with an arbitrary guess, and if it is not good enough,
it is improved by averaging the guess with = /guess. The process continues until the guess is close
enough. Here is an example of the process for square root of 9.0:

guess x/quess Average
1.0 9.0 (1.04+9.0)/2.0
5.0 1.8 3.4
3.4 2.647 3.023
3.023

In just three iterations, we have arrived close to the square root of 9.0 (which is 3.0). We will say
a guess is close enough to the solution, if and the square of guess differ by a small value, say
0.001, or less. The algorithm is simple:

begin with an initial guess

repeatedly do the following
improve the guess

while 1t is not close enough

We will start with an arbitrary guess, say 1.0, for the square root of the number, z. In a loop,
each iteration improves the guess of the square root of x until the guess is close enough. In our
implementation, we assume two functions: one to test if a guess is close enough, and the second
to improve the guess. This algorithm works for any successive approximation method; the only
difference would be how to improve the guess, and how to check the guess for closeness to the
solution. Here is the code fragment for square root using a do...while statement:

218 CHAPTER 5. NUMERIC DATA TYPES AND EXPRESSION EVALUATION

guess = 1.0;
do

guess = improve(guess, x);
while ('close(guess, x))

The body of the loop follows the keyword do. The loop body is executed and then the while
expression is tested for True or False. If it is True, the loop is repeated; otherwise, the loop is
terminated. The above loop body calls on a function improve() to improve the guess and the
condition is then tested to see if the improved guess is close enough by the function close().

As we said, the difference between do...while and the other loop constructs is that in this
case the loop is executed at least once; while loops and for loops may be executed zero times if
the loop condition is initially False. In the case of successive approximations, we always expect
the initial guess to need improvement: so, the loop must be executed at least once.

Figure 5.4 shows the implementation of the driver. The source file includes a header file
mathutil.h that declares the function prototypes for close(), improve(), and other functions
defined in a source file, mathutil.c, shown in Figure 5.5. The two source files sqroot.c and
mathutil.c must be compiled and linked to create an executable file. Here is mathutil.h:

/* File: mathutil.h */

/* File contains prototypes for functions defined in mathutil.c */
double improve(double guess, double x);

int close(double guess, double x);

double absolute(double x);

Notice we have used the type, double for the parameters and return values of the functions because
precision is important in successive approximation algorithms. It is best to use double precision in
all such computations. We have also included the header file, tfdef .h, which defines the symbolic
constants TRUE and FALSE.

The program driver uses a loop to read a positive, double precision number into x using the
conversion specification %1f. (When a double precision number is printed, conversion specification
is still %£ since a printed double precision floating point number looks the same as a single precision
number). If the number read into x is negative or zero, a message is printed and the loop is repeated
until a positive number is read. We have used the do. . .while construct here, since we know that
the loop must be executed at least once to get the desired data.

Next, guess is initialized to 1.0 and the loop body improves guess We have included a debug
statement to print the value of the improved guess during program testing. The loop repeats until
guess is close enough to be an acceptable solution.

We still need to write the functions improve () and close(). The function close() tests if the
absolute value of the difference between the square of guess and x is small enough. We will use a
function, absolute(), that returns the absolute value of its argument. Figure 5.5 shows close()
and absolute() in the source file, mathutil.c. Some of the functions defined in this source file

5.2. NEW CONTROL CONSTRUCTS 219

/* File: sqroot.c
Other Files: mathutil.c
Header Files: tfdef.h, mathutil.h
Program computes and prints square roots of numbers. Uses Newton’s
method to compute square root of x: Start with any guess. Test if
it is acceptable. If not, improve guess by averaging it with x/guess.
*/
#include <stdio.h>
#include "tfdef.h"
#include "mathutil.h"
#define DEBUG
main()
{ int 1i;
double x, guess;

printf ("***xSquare Root Program: Newton’s Method**x\n\n") ;
printf("Type a positive number: ");
do {
scanf ("%1f", &x);
if (x <= 0)
printf ("/f typed, type a positive number\n", x);
} while (x <= 0);

guess = 1.0;

do {
guess = improve(guess, x); /* improve guess. */
#ifdef DEBUG /* debug stmt */

printf("guess = %f\n", guess); /* Print guess. */

#endif /* end of debug */

} while (!close(guess, x)); /* terminate if guess is close */

/* exit loop if guess is close enough */

printf("Sq.Rt. of %f is %f\n", x, guess); /* Print sq. rt. */

Figure 5.4: Code for Square Root

220 CHAPTER 5. NUMERIC DATA TYPES AND EXPRESSION EVALUATION

/* File: mathutil.c */

#include <stdio.h>

#include "tfdef.h"

#include "mathutil.h"

/* Tests if square of guess approximately equals x. */
int close(double guess, double x)

{
if (absolute(guess * guess - x) < 0.001)
return TRUE;
else
return FALSE;
b

/* Returns absolute value of x. */
double absolute(double x)

{
if (x € 0)
return -x;
else
return X;
}

/* Returns average of guess and x / guess. */
double improve(double guess, double x)

{

return (guess + x / guess) / 2;

Figure 5.5: Code for Math Utilities

5.2. NEW CONTROL CONSTRUCTS 221
are also called within it, e.g. absolute(), so we have included mathutil.h in this source file, as

well as tfdef .h, which defines TRUE and FALSE. Finally, we write the function improve() which
merely returns the average of guess and x / guess.

Sample Session:

x5quare Root Program

Type a number: I6

guess = 8.500000
guess = 5.191176
guess = 4.136665
guess = 4.002257
guess = 4.000000

3q.Rt. of 16.000000 is 4.000000

The debug statement shows how guess is changed at each step. Once we are satisfied with the
program, we can remove the definition of DEBUG.

Next, we modify our program to encapsulate it into a function, sqroot (), and to provide user
control over the precision desired for the solution instead of building it into the function, close().
The sqroot () function requires two arguments, a number and an acceptable error in the solution.
We also require a new function close2() that checks if a given guess is close enough to a solution
with a specified margin of error. With this modification, it is not necessary to use double for
numbers in main(). Only the actual computations need to be double type for greater precision.
Figure 5.6 shows the revised driver in which float numbers are used in main() and the function
sqroot () is called to find the square root. Figure 5.7 shows the prototypes added to mathutil.h
and the new functions in mathutil.c. The driver simply repeats the following loop: read a
number; if the number is negative, continue the loop; otherwise, call sqroot () to find the square
root of the number within specified margin; print the value. The function sqroot () merely starts
with a guess and improves it in a loop until it is within an allowable margin of error. The final
acceptable guess is returned. The function close2() tests if a guess is close to the solution within
a specified error.

In main (), numbers are read into float variables, so when arguments are passed to sqroot (),
they are cast to double. Likewise, the returned double value is cast to float before assigning it
to the variable root. Here is the statement that uses cast operators to convert types:

root = (float) sqroot((double) x, 0.001);

Recall that a floating point constant is always assumed to be of type double. If function prototypes
are declared, we don’t have to convert the types explicitly by cast operators, the compiler will take
care of that for both the arguments and the returned value. However, the explicit cast operators
improve readability by showing that conversions are taking place.

Sample Session:

222 CHAPTER 5. NUMERIC DATA TYPES AND EXPRESSION EVALUATION

/* File: sqrt2.c
Other Files: mathutil.c
Header Files: tfdef.h, mathutil.h
Program computes and prints square roots of numbers until the end of
file. Uses Newton’s method to compute the square root of x to within a
specified error margin.

*/

#include <stdio.h>

#include "tfdef.h"

#include "mathutil.h"

main()

{ int 1i;
float x, root;

printf ("***Square Root Program**x\n\n");
printf ("Type positive numbers, EOF to quit: ");
while (scanf("%f", &x) != EOF) {
if (x <= 0) {
printf ("/f typed, type positive numbers \n");
continue;
t
root = (float) sqroot((double) x, 0.001);
printf("Sq.Rt. of %f is %f\n", x, root);

Figure 5.6: Modified Square Root Driver

5.2. NEW CONTROL CONSTRUCTS

/* File: mathutil.h - continued */
double sqroot(double y, double error);
int close2(double g, double y, double error);

/* File: mathutil.c - continued */

/* Uses Newton’s method to compute square root within the margin
allowed by error.

*/

double sqroot(double y, double error)

{ double guess = 1.0;

do

guess = improve(guess, y); /* improve guess. */
while (!'close2(guess, y, error)); /* while guess not close */
return guess; /* when close enough, return guess.*/

/* Tests if square of g equals y within the error limits specified. */
int close2(double g, double y, double error)

{
if (absolute(g * g - y) < error)
return TRUE;
else
return FALSE;
}

Figure 5.7: Modified Square Root Utilities

223

224 CHAPTER 5. NUMERIC DATA TYPES AND EXPRESSION EVALUATION

x5quare Root Program

Type positive numbers, EOF to quit: 16
3q.Rt. of 16.000000 is 4.000000

13

3q.Rt. of 13.000000 is 3.605551

19

3q.Rt. of 19.000000 is 4.358902

25

3q.Rt. of 25.000000 is 5.000023

"D

The last example shows the square root of 25.0 to be slightly different from the correct value of 5.0,
but within our allowed error of 0.001. It must be remembered that floating point representation
cannot be exact due to the finite number of bits used. Therefore, if the error specified were very
small, it may not be possible to arrive at an answer with the desired accuracy. That is, the guess
may never converge to a value such that close2() returns True and the loop in sqroot () would
never terminate. In successive approximations algorithms, one must guard against possible lack
of convergence such as by putting a limit on the number of loop iterations allowed.

In Chapter 6 we will see that standard library functions are available to compute the square
root and the absolute value of a number. Our emphasis here has been to illustrate program devel-
opment using just the basics of a programming language, viz. expressions including assignments,
branching, and looping.

5.3 Scalar Data Types

All of the data types we have seen so far, char, int, short long, float, and double are called
scalar (or base) data types because they hold a single data item. (Chapters 7 and 12 describe
compound data types provided in C). There are two other scalar types in the language: enum and
void which are described in this section. We will refer to float and double types as floating
point types and to all sizes of integers, char and enum types as integral types. In addition, we
describe how a user defined type may be declared.

5.3.1 Data Type void

The data type void actually refers to an object that does not have a value of any type. The most
common example of its use is when we define a function that returns no value. For example, a
function may only print a message and no return value is needed. Such a function is used for
its side effect and not for its value. In the function declaration and definition, it is necessary to
indicate that the function does not return a value by using the data type void to indicate an
empty type, i.e. no value. Similarly, when a function has no formal parameters, the keyword void

5.3. SCALAR DATA TYPES 225

is used in the function prototype and header to signify that there is no information passed to the
function.

Here is a simple program using a message printing function which takes a void parameter and
returns type void:

/* File: msg.c
This program introduces data type void.

*/
void printmsg(void);

main()

{

/* print a message */
printmsg() ;

/* Function prints a message. */
void printmsg(void)
{
printf ("**x*HOME IS WHERE THE HEART IS****\n");

No parameters are required for the function, printmsg(), and it returns no value; it merely prints
its message. In the function call in main(), parentheses must be used without any arguments.
Observe that no return statement is present in printmsg(). When a function is called, the body is
executed and, when the end of the body is reached, program control returns to the calling function.
Such a return from a called function without a return statement is often called returning by falling
off the end. There are times when it is necessary to return from a void function before the end
of the body. In such case, a return statement, with an empty expression may be used to return
nothing:

void printmsg(void)

{
printf(”****HOME IS WHERE THE HEART IS***x*\n");
return;

A return statement can also be used elsewhere in the body to return control immediately to
the calling function. Consider a function which prints the values of its arguments if they are all
positive; otherwise it does nothing:

void func(int x, in y)

226 CHAPTER 5. NUMERIC DATA TYPES AND EXPRESSION EVALUATION

{
if (x <=0 1l y<=0)
return;
printf("x = %d, y = %Ad\n", x, y);
}

It either of the arguments is not positive, the function returns to the calling function. If it does
not return, then it prints the values of the arguments.

The use of void for a function returning no value is not strictly necessary. We could declare
the function as being type int (or any other type) and simply not return any value and never use
the value of the function in an expression. However, the void declaration makes the nature of
the function explicit to someone reading the code and may allow the compiler to generate more
efficient object code.

5.3.2 Enumeration

The data type, enum (for enumeration) also allows improvement in program clarity by specifying
a list of names, the enumeration constants, which are associated with constant integer values. It
is similar to using #define directives to define constant integer values for a set of symbolic names;
however, with enum the compiler can generate the values for you, and may check for proper use of
enum type variables. A variable of enum type is declared as follows:

enum { FALSE, TRUE } flag;

The variable, flag, is defined here to be of a type which can take on the two enumerated constant
values, FALSE and TRUE. Normally, enumeration constants are identifiers whose values start at zero
and increase in sequence: here, FALSE is 0, and TRUE is 1. However, the enumeration can have
explicit constant values specified in the enumeration:

enum { SUN = 1, MON, TUE, WED, THU, FRI, SAT } day;

Here, SUN is associated with value 1, and the rest of the names have values in increasing sequence:
MON is 2, TUE is 3, and so on until SAT which is 7. The variable, day can hold any of the enumerated
values.

An enumeration type can be given a tag, i.e a name which can be used later to declare variables
of that tagged enumeration type. For example, we can name an enumeration:

enum boolean { FALSE, TRUE };

where the name boolean can then be used to declare variables of that enumeration type:

5.3. SCALAR DATA TYPES 227

enum boolean flagl, flag2;

This declaration defines variables, flagl and flag2, which are of a type specified by the boolean
enumeration; that is, flagl and flag2 can have values FALSE or TRUE. It is also possible to specify
a tag and declare variables in the same declaration:

enum boolean {FALSE, TRUE} done;
enum boolean found;

The first declaration specifies a tag, boolean, for the enumeration as well as declaring a variable,
done of this type. The second declaration defines a variable, found, of the enumeration boolean
type. Here is a function, digitp(), that returns a boolean value to the calling function. (The
calling function must also declare the enumeration in order to use the returned value correctly).

enum boolean { FALSE, TRUE };

enum boolean digitp(char c)

{
if (c >= 0’ && c <= ’9?)
return TRUE;
else
return FALSE;
}

Remember, the value of an enum type variable is an integer. An enumerated data type is
primarily a convenience for writing the source code; information about the symbolic names are
not retained at run time. For example, if we were to execute a statement:

printf("digitp returns %d\n",digitp(’0°’));

it would print

digitp returns 1

NOT

digitp returns TRUE

However, some symbolic debuggers may use the enumerated names for displaying debugging in-
formation.

228 CHAPTER 5. NUMERIC DATA TYPES AND EXPRESSION EVALUATION

5.3.3 Defining User Types: typedef

The C language provides a facility for defining synonyms for data types to make programs more
readable. New data types that are equivalent to existing data types may be created using the
typedef declaration. The syntax is:

typedef <existing-type-specifier> <new-type-specifier>;

The scope of a type definition is from the point of definition to the end of the source file. Variables
can then be defined in terms of these new types. For example, variables used to represent values
of age of people or objects can be defined to be of a new type, age.

typedef int age;
age yrs;

The variable yrs can have age type values. In this case, the primary difference is that we can
have more meaningful names for data types than the generic name int.

A typedef definition is also commonly used to “hide the details” of more complicated decla-
rations:

typedef enum { FALSE, TRUE } boolean;

boolean flag;

The type definition defines data type, boolean which is a synonym for an enumerated type con-
sisting of two constant values FALSE and TRUE. Variables of type boolean can now be defined, and
they can be assigned one of the enumerated values. In fact, the name, boolean, can be used like
any other data type. Functions can have boolean parameters and can return boolean values. For
example, we could write:

flag = TRUE;

if (flag)
printf("Flag is true\n");

Let us consider the task of a simple calculator. It should read two numbers and then read an
operator that is to be applied to the operands. The operator should be applied to the operands
and the result printed. (When an operator appears after the operands, the expression is said to
be in postfix form). The algorithm for a postfix calculator is:

repeat until end of file or error in reading numbers
read two numbers and an operator
apply operator to the numbers and get result
print result

5.4. OPERATORS AND EXPRESSION EVALUATION 229

The program must make sure that two valid numbers and an operator are read correctly. We
will ensure that two numbers are read correctly by examining the value returned by scanf (). The
buffer will then be scanned and flushed until a valid operator is found. The program is shown in

Figure 5.8.

The while loop continues until scanf () is unable to read two numbers. If scanf () reads two
numbers, it returns a value of 2, and the loop is executed. In the loop, we use get_operator() to
get a valid operator. The function, get_operator() will scan each new character in the keyboard
buffer until an acceptable operator is found. Once an operator is read, an error flag of type
boolean is initialized to FALSE.

A switch statement is used to determine the result of applying the operator to the operands.
The division operator can lead to trouble if oprnd?2 is zero; divide by zero is a fatal error and the
program would be aborted. We trap this error by testing for a zero value of oprnd2, in which case
we set error to TRUE. If there is no error, the result is printed ; otherwise, an error message is
printed. The loop repeats until scanf () does not read 2 floats (including detecting EOF).

The function get_operator () consists of a loop that continues to read a character until a valid
operator is read; skipping over any white space and any erroneous characters. It uses a boolean
type function, operatorp(), to test if an argument is an acceptable operator. Figure 5.9 shows
the required functions.

Sample Session:

***Postfix Calculatorkk*

Type two numbers, followed by an operator: +, -, *, or /
EOF to quit
12 12
+
12.000000 + 12.000000 = 24.000000
50 0

/

Runtime error: 50 / 0

"D

We have purposely used a lot of white space to show that the calculator functions correctly.

5.4 Operators and Expression Evaluation

Once we can declare data to be the type and size with the appropriate precision for our task, we
would like to perform operations with the data. We have already discussed some of the basic C
operators, and in this section we provide the complete precedence table for all C operators. We

230 CHAPTER 5. NUMERIC DATA TYPES AND EXPRESSION EVALUATION

/* File: calc.c
This program is a postfix calculator. Two operands followed by an
operator must be entered. The program prints the result. The program
repeats until end of file.

*/

#include <stdio.h>

typedef enum { FALSE, TRUE } boolean;

char get_operator(void);

boolean operatorp(char c);

main()

{ float oprndl, oprnd2, result;
char c;
boolean error;

printf ("***Postfix Calculator***\n\n");
printf ("Type two numbers, followed by an operator: +, -, *, or /\n");
printf ("EOF to quit\n");

while (scanf("/f %f", &oprndl, &oprnd2) == 2) {
c = get_operator();
error = FALSE;

switch(c) {
case ’+’: result

oprndl + oprnd2; break;
oprndl - oprnd2; break;
oprndl * oprnd2; break;
case ’/’: if (oprnd2)
result = oprndl / oprnd2;
else
error = TRUE;
break;

case ’'-’: result

case ’*’: result

if (error == FALSE)
printf ("4f Yic 4T = Y%f\n", oprndl, c, oprnd2, result);
else
printf ("Runtime error: %f Y%c %f\n", oprndl, c, oprnd2);
} /* end of while loop */
* end of program *
Y/ d of prog /

Figure 5.8: Code for Simple Postfix Calculator

5.4. OPERATORS AND EXPRESSION EVALUATION 231

/* File: calc.c - continued */

/* Gets one of the allowed operator, +, - , *, /. %/
char get_operator(void)

{ char c;

while ((c = getchar()) && operatorp(c) '= TRUE)

b

return c;
t
/* Function tests if ¢ is one of the operators +, -, *, /. %/
boolean operatorp(char c)
{
switch(c) {
case '+’
case ’-’:
case ’*’:
case ’/’: return TRUE;
default: return FALSE;
t
t

Figure 5.9: Code for get_operator()

232 CHAPTER 5. NUMERIC DATA TYPES AND EXPRESSION EVALUATION

present a few new operators here, and others shown in the table will be discussed in detail in later
chapters.

5.4.1 Precedence and Associativity

The data type and the value of an expression depends on the data types of the operands and
the order of evaluation of operators which is determined by the precedence and associativity of
operators. Let us first consider the order of evaluation. When expressions contain more than one
operator, the order in which the operators are evaluated depends on their precedence levels. A
higher precedence operator is evaluated before a lower precedence operator. If the precedence levels
of operators are the same, then the order of evaluation depends on their associativity (or, grouping).
In Chapter 2 we briefly discussed the precedence and associativity of arithmetic operators. Table
5.1 shows the precedence levels and associativity of all C operators.

In the table, there are 15 precedence levels 0 through 14: higher level implies higher precedence.
The precedence levels of operators are separated by solid lines with operators within solid lines
having the same precedence level. For example, binary arithmetic operators *, /, and % have the
same precedence level which is higher than binary +, and —. Observe that the precedence of
the assignment operator is lower than all but the “comma” operator (described below). This is
in accordance with the rule that the expression on the right side of an assignment is evaluated
first, and then its value is assigned to the left hand side object. On the other hand, “function
call” has the highest precedence, since a function value is treated like a variable reference in an
expression. In any expression, parentheses may be used to over ride the precedence of the operators
— innermost parentheses are always evaluated first. The precedence of binary logical operators
is lower than that of binary relational operators; that of binary relational operators is lower than
that of binary arithmetic operators, and so forth. The unary NOT operator has a precedence
higher than that of all binary operators.

When operators of the same precedence level appear in an expression, the order of evaluation is
determined by the associativity. Except for the assignment operator, associativity of most binary
operators is left to right; associativity of the assignment operator and most unary operators is
right to left. Consider the following program fragment:

int x = 10, y =7, z = 20;

-20 + 10 * 5; By the precedence, the unary minus (—) is evalu-
ated first; followed by the multiplication () and
then the addition. So the expression is evaluated
as (-20) + (10 * 5) and finally the result is as-
signed to x which now has the value 30.

>
1]

x/y* z; Here the / and * have the same precedence, so by

>
1]

associativity are evaluated left to right: (x/y)* z.
This is 30/7 %20, or 4% 20 (integer division); so 80

is assigned to x.

5.4. OPERATORS AND EXPRESSION EVALUATION

Operator Associativity | Precedence
O Function call Left-to-Right | Highest 14
[] Array subscript
. Dot (Member of structure)
- > Arrow (Member of structure)
! Logical NOT Right-to-Left 13
- One’s-complement
- Unary minus (Negation)
4+ Increment
—— Decrement
& Address-of
* Indirection
(type) Cast
sizeof Sizeof
* Multiplication Left-to-Right 12
/ Division
% Modulus (Remainder)
+ Addition Left-to-Right 11
— Subtraction
<< Left-shift Left-to-Right 10
>> Right-shift
< Less than Left-to-Right 8
<= Less than or equal to
> Greater than
>= Greater than or equal to
== Equal to Left-to-Right 8
= Not equal to
& Bitwise AND Left-to-Right 7
" Bitwise XOR Left-to-Right 6
| Bitwise OR Left-to-Right 5
&& Logical AND Left-to-Right 4
'l Logical OR Left-to-Right 3
7 Conditional Right-to-Left 2
, + = | Assignment operators Right-to-Left 1
* =, etc
Comma Left-to-Right | Lowest 0

Table 5.1: Precedence and Associativity Table

233

234 CHAPTER 5. NUMERIC DATA TYPES AND EXPRESSION EVALUATION

x/y/ z Again, associativity causes the operators to be
evaluated left to right. (80/7)/20, i.e. 11/20 or

0. (No assignment is made here).
xhyhz Evaluated as (80%7)%20; 3%20 or 3.

x =y = 10; The assignment operator associates right to left;
so y is assigned 10, and then the result value, 10,
is assigned to x.

X +y<=2%z The highest precedence operator is *, so it is eval-
uated first, followed by +, and finally the com-
parison operator, <=. The result, 87, is not less
than or equal to 40, so this expression evaluates
to False, namely 0.

x+y>=2%2z2) && (x-y '=2) The parentheses force the logical operator && to
be evaluated last. Its left operand is similar to
the last expression; only the result is now True,
or 1. The right operand evaluates the subtraction
followed by the comparison, not equal. Since 73 is
not equal to 20, the result is True, and therefore,
the entire expression is True, or 1.

When a logical operator is used in an expression, the entire expression is not evaluated if the
result of the entire logical expression is clear. For example,

(x >0) & (y > 0)
(x>0 Il (y >0

In the first expression, if x > 0 is False, there is no need to evaluate the second part of the logical
AND expression since the AND operation will be False. Similarly, in the second expression, the
logical OR expression is True if the first part, x > 0, is True; there is no need to evaluate the
second part. C evaluates only those parts of a logical expression that are required in order to
arrive at the result of the expression.

When in doubt as to the order of evaluation within an expression, parentheses may be used to
ensure evaluation is performed as intended.

5.4.2 The Data Type of the Result

The data type of an expression value depends on the operators and the types of operands. If the
operands are all of the same type, the result is of that same type. When there are operands of
mixed type in an assignment expression, the right hand side is always converted to the data type
of the object on the left hand side. This follows common sense since the type of the object on the
left of an assignment is fixed and cannot be changed. When any other binary operator is applied

5.4. OPERATORS AND EXPRESSION EVALUATION 235

to operands of mixed type, the operand of a type with lower range is converted to the type of the
higher range operand before the operator is applied; and the result is of the higher range type. Of
course, values of characters in an expression are considered to be int type. Again, some examples
will illustrate:

int n =3, m= 2;

long large;
float x = 9.0, y = 5.0;
double z = 4.0;
large = n; The integer value of n is converted to long and
assigned to large.
large = n / m; Since n and m are both type int, integer division is
performed (3 / 2 which is 1); and then converted
to long (1L) which is assigned to large.
large = n / x; Since x is a float, the integer value of n is con-
verted to float and real division (3.0 / 9.0) is
performed yielding 0.33. This result is then con-
verted to a long integer (by truncating), namely
OL, and assigned to large.
z =z % y; Because z is type double, the value of y is con-
verted to double and the double precision result
of z x y is assigned to z.
n/x+z/y; In the first division, n / x, since x is type float

the division will be done at float precision by
first converting the value of n, yielding a float re-
sult. The second division will be performed using
double precision because z is a double, by first
converting y to a double. The addition is now
of a float and a double, so the left operand is
first converted to double yielding a double result.
This is equivalent to:

(double) ((float) n / x) + z / (double) y;

As with the precedence and associativity rules, when in doubt as to the type and/or preci-
sion of an expression evaluation, cast operators may be used to force conversions to the desired
type. Remember, only values of variables are converted for the purpose of computation, NOT the
variables themselves.

236 CHAPTER 5. NUMERIC DATA TYPES AND EXPRESSION EVALUATION

5.4.3 Some New Operators

In Table 5.1 there are several operators which we have not yet discussed. Some of these are
described below; the remainder will be delayed until later chapters when we discuss the appropriate
data types.

Increment and Decrements Operators

A common operation in many programs is to increase or decrease a variable value by one; for
example, this is how we keep a count of how many times a loop is executed. C provides a
“shorthand” way of performing this operation with special increment and decrement operators,
++ and -- respectively. These are unary operators requiring one operand and may be used either
as prefix or postfix operators meaning they either precede or follow their operands. In postfix
form, x++ increases the value of x by one, and y-- decreases the value of y by one. Likewise, in
prefix form, ++x increases the value of x by one, and --y decreases the value of y by one. However,
there is a difference between the prefix and postfix operators. In the case of prefix operators, the
operation is performed first and then the expression evaluates to the new value of its operand. For
postfix operators, the expression first evaluates to the current value of the operand and then the
operators are applied. For example, if x is 1, the expression ++x first increments x to 2 and then
evaluates to the value 2. On the other hand, again if x is 1, the expression x++ first evaluates to
the value of x, namely 1, and then increments x to 2. Here is a code fragment showing the use of
the increment and decrement operators:

int x, y, zl1, z2, z3;

x = 4;
y =4
x++; The value of x is incremented to 5. The value of
this expression is 4, but is discarded.
y--; The value of y is decremented to 3. The value of
this expression is also 4, but is also discarded.
zl = x++ - yt++; The expression x++ evaluates to the current value
of x, 5, and then x gets the value 6. Likewise, y++
evaluates to 3 and then y is incremented to 4. The
variable z1 gets the value of 5 - 3, or 2.
z2 = ++x - ++y; First, x is incremented to 7, and ++x evaluates to

7. Likewise ++y increments to y to 5 and evaluates
to 5, so z2 gets the value of 7 - 5 or 2.

5.4. OPERATORS AND EXPRESSION EVALUATION 237

z3 = x++ + --y; The expression, x++, evaluates to 7 and then in-
crements x to 8. The expression, --y, decrements
y to 4 and evaluates to 4. So z3 gets the value of
7 + 4, 0or 11.

The value of
++xX - xX++

is implementation dependent. A compiler may either evaluate the first term first or the second
term first. It is therefore not possible to say what the expression will evaluate to. For example,
assume that x is initially 1. If the first expression is evaluated first, then the expression is:

i.e. 0, and x is 3. On the other hand, if the second term is evaluated first, then the expression is:

ie. 2, and x is 3.

Increment and decrement operations can just as well be written as assignment expressions:

x=x+1;
y=y -3

The use of increment and decrement operators does not accomplish anything that cannot be done
by appropriately placed assignments. These operators were designed to be used with machines
that have increment and decrement registers; in which case the compiler can take advantage of
these registers and improve the performance of the program. However, many machines today do
not have these registers, so most compilers translate expressions with increment and decrement
operators in exactly the same manner as they do assignment expressions, but these operators
remain as a “shorthand” syntax for compact programs.

The syntax of the increment and decrement operators is:

++ <Lvalue>
-- <Lvalue>
<Lvalue> ++
<Lvalue> --

The operand must be and <Lvalue>, i.e. a location into which a value can be placed. (So far, we
have seen that only a variable name may be used as an <lLvalue>. We will see other possibilities

238 CHAPTER 5. NUMERIC DATA TYPES AND EXPRESSION EVALUATION

Composite Equivalent

x += 5; Xx =x + 5;
y -=12; y =7y - 12;
X k= 3; X = X % 3;
y/=5 y=y/5;
x h=7; x=xh7;

Table 5.2: Composite Assignment Operators and Their Equivalents

in Chapter 6). The precedence and associativity of increment and decrement operators is given in
Table 5.1. Here are some examples of their use in program code:

for (1 = 0; 1 < MAX; i++) The message, This is a test will be printed MAX
printf("This is a test\n"); times.

n=0; The expression n++ evaluates to the value of n

while (n++ < 10) before it is incremented. The loop will print the

printf("Value of n is %d\n", n);values 1,2, ...,10 for n.

n=0; The expression ++n evaluates to the value of n
while (++n < 10) after it is incremented. The loop will print the
printf("value of n is %d\n", n); values 1,2, ...,9 for n.

Composite Assignment Statements

The above operators provide a “shorthand” way of increasing or decreasing a variable by one;
but sometimes we would like to increase or decrease (or multiply, divide or mod) by some other
value. C provides “short hand” operators for these as well, called the composite assignment
operators. These operators and their equivalent are shown in Table 5.2.

The general syntax of a composite assignment operator is:

<Lvalue> <op>= <expression>

where <op> may be one of the binary arithmetic operators, +, =, *, /, or %. The left operand of
these operators must be an <lLvalue>, but the right operand may be an arbitrary <expression>.

Again, there is no particular advantage in using the composite assignment operators over the
simple assignment operator except that they produce a somewhat more compact program. The
precedence and grouping for composite assignment operators given in Table 5.1 shows they are
the same as the assignment operator. Figure 5.10 shows the factorial function (see Figure 5.2)
using these new operators.

5.4. OPERATORS AND EXPRESSION EVALUATION 239

/* File: mathutil.c - continued */
/* Function returns long factorial of n. */
long factcomp(int n)

{ int 1i;
long prod;
prod = 1; /* initialize */
for (1 = 1; 1 <= n; i++) /* loop from 1 to n */
prod *= 1i; /* compute cumulative product */
return prod; /* return product */
by

Figure 5.10: Factorial Function Using Composite Operators

Conditional Expression

Sometimes in a program we would like to determine the value of an expression based on some
condition. For example, if we had two variables, x and y, and we wanted to assign the larger value
to the variable, z. We could write and if statement to perform this task as follows:

if (x<y) z=y;
else z = x;

Another way of stating this in words is that z should be assigned the value of y if x < y or x,
otherwise. The (operator) symbols 7 and : may be used to form such a conditional expression as
follows:

z=x<y 7y :x;

The expression to the right of the assignment operator is evaluated first as follows. If x < y, the
expression evaluates to the value of the expression after 7, i.e. y. Otherwise, it evaluates to the
value of the expression after :, i.e. x. In other words, the expression evaluates to the larger of x
and y which is then assigned to the variable, z.

As another example, we can write an expression that evaluates to the absolute value of x:
x<07-x:x

If x is negative, the expression evaluates to -x (a positive value); otherwise to x.

The syntax for writing a conditional expression is:

<exprl> 7 <expr2> : <expr3>

240 CHAPTER 5. NUMERIC DATA TYPES AND EXPRESSION EVALUATION

/* File: mathutil.c - continuedx*/
double maxdbl(double x, double y)
{

return (x >y 7 x : y);

Figure 5.11: Function maxdbl Using a Conditional Expression

The first operand, <exprl>, is evaluated; if true, the result of the entire expression is the value of
< expr2>. Otherwise, the result is the value of <expr3>. The conditional operator is a ternary
operator since it requires three operands.

An if statement can always perform the task that a conditional expression does. Whether to
use one or the other is a matter of choice and convenience. Figure 5.11 shows a function which
returns the value of the larger of two double arguments.

The Comma Operator

The comma operator, ,, provides a way to combine several expressions into a single expression.
The syntax is:

<expressionl> , <expression2>

The semantics are that <expressionl> is evaluated first, followed by <expression2> with the value
of the entire expression being that of <expression2>. These expressions may be arbitrary expres-
sions, including another comma expression.

The comma expression is useful where the syntax of a statement requires a single expression,
but we have several expressions to be evaluated, such as a for statement where several variables
are used to control the loop. Here, the comma operator may be used to write multiple initialization
and update expressions. As an example, we will use comma operators to write a function that
computes and prints Fibonacci numbers. Fibonacci numbers are natural numbers in the sequence:

1,1, 2, 3, 5, 8, 13,

Each number of the sequence is computed by adding the previous two numbers of the sequence.
Thus, we must start with the first two numbers, which are both 1, then the next number is
1+ 1 =2, the next one is 1 + 2 = 3, the next one is 2+ 3 = 5, and so on.

We will write a driver, main(), which calls a function, £ib(), to print the Fibonacci numbers.
The function starts with two variables, which are initialized to the values of the first two numbers
1 and 1. Each new number is computed as a sum of the previous two until the limit is reached.
Figure 5.12 shows the code.

5.4. OPERATORS AND EXPRESSION EVALUATION 241

/* File: fib.c
Program computes and prints Fibonacci numbers less than a
specified limit of 100.

*/

#include <stdio.h>

#define LIM 100

void fib(int lim);

main()

{

printf ("***Fibonacci Numbers***\n'");
printf("Limit is %d \n", LIM);
fib(LIM);

/* Function computes and prints the Fibonacci numbers less than lim. */
void fib(int 1lim)
{ int i, j, n;

printf ("1\ni\n"); /* print the first two fib. numbers */

for (i =1, j=1,n=0; n< lim; i = j, j =n) {
n=1+j; /* compute the next fib. number */

if (n < lim)
printf("%d\n", n); /* print the next fib. number */

Figure 5.12: Revised Fibonacci

242 CHAPTER 5. NUMERIC DATA TYPES AND EXPRESSION EVALUATION

The function, £ib(), prints Fibonacci numbers less than its argument, lim. It uses a for
loop with comma expressions for the first and last expressions. The first expression initializes two
variables, 1 and j to 1, with i assumed to be the first and j assumed to be the second number in
the sequence. The variable, n, the next number in the sequence, is initialized to zero so that the
loop condition may be tested the first time with some value of n less than 1im. The sum of i and
j is the next number in the sequence, n, which is computed and printed in the loop body. The
variables are then updated to the new values, j assigned the value of n and i assigned the value
of j. Thus, i and j always have the values of the last two Fibonacci numbers in the sequence.
The process is repeated until n exceeds 1im.

The output of the program is shown below:

***Fibonacci Numbers**x*
Limit is 100

The sizeof Operator

The exact amount of space reserved in memory for different data types depends on the imple-
mentation. Typically, a character is assigned 8 bits or one byte of space; integers are generally
assigned 2 or 4 bytes of storage; £loat numbers usually require at least four bytes, and double at
least eight bytes. Table 5.3 shows some typical examples for the HP9000, an HP_UX Unix system,
and the IBM PC, a DOS environment. It is sometimes necessary to use the sizes of objects in
expressions, and since the sizes are implementation dependent, to make our programs portable,
we should not build the values into our programs as constants. For any implementation, size of
an object can be easily determined by the use of the sizeof operator with syntax:

sizeof <expression>

The unary operator, sizeof, yields the size, in bytes, of the type of its operand. The operand
may be an arbitrary expression, however, the expression is NOT evaluated; the sizeof expression
simply evaluates to the number of bytes used for the type of the result. For example, the expression,
sizeof x, evaluates to the size of x in bytes. Here is a code fragment using the sizeof operator:

5.4. OPERATORS AND EXPRESSION EVALUATION 243

Data types ~ HP9000 IBM PC
Bytes Bytes

char 1 1
int 4 2
short int 2 2
long int 4 4
float 4 4
double 8 8
long double 16 8

Table 5.3: Space allocation in Bytes for data types

int x;
double y;

printf("Size of x is %d bytes\n", sizeof x);
printf("Size of x+y is %d bytes\n", sizeof (x+y));

The first printf () statement will print the size (in bytes) of the int type object, x. The second
will print the size of the value of the expression, x+y. As we saw earlier, this addition would be
done in double precision and the result would be a double. Remember, the expression, x+y is not
evaluated; only its size is used by the sizeof operator. Also remember that sizeof is an operator,
like +; not a function call. It has a precedence and associativity like any other operator (shown in
Table 5.1). That is why the parentheses are required in that second printf (), the precedence of
sizeof is higher than +. Without the parentheses, the expression would be evaluated as:

(sizeof x) + y

It is also possible for the operand of sizeof to be a parenthesized type name, like a cast operator,
rather than a variable name, for example:

sizeof (int)

sizeof (float)

sizeof (long int)

sizeof (unsigned long int)

We can easily write a program to determine the sizes of different types for the host implemen-
tation. The code is shown in Figure 5.13. A sample output for the HP9000 is:

***kSizeof operatork*x

244 CHAPTER 5. NUMERIC DATA TYPES AND EXPRESSION EVALUATION

/* File: size.c */

main()
{ int x;
double y;

printf ("***xSizeof operator***\n\n'");

printf("Size of x is ’%d bytes\n", sizeof x);

printf("Size of x+y is %d bytes\n\n", sizeof (x+y));
printf("Size of data types in bytes:\n");

printf("Size of int type is %d\n", sizeof(int));

printf("Size of long int is %d\n", sizeof(long int));
printf("Size of short int is %d\n", sizeof(short int));
printf("Size of unsigned int is %d\n", sizeof(unsigned int));
printf("Size of float is %d\n", sizeof(float));

printf("Size of double is %d\n", sizeof(double));

Figure 5.13: Testing sizeof Operator

Size of x is 4 bytes
Size of x+y 1is 8 bytes

Size of data types in bytes:
Size of int type is 4

Size of long int is 4

Size of short int is 2

Size of unsigned int is 4
Size of float is 4

Size of double is 8

Whenever the size of a type is required in a program, the sizeof operator should be used
rather than the actual size, since the actual value is implementation dependent. Such a use of
the sizeof operator in a program ensures that the program will be portable from one type of
computer to another.

5.5 Common Errors

1. A result may be outside the range of values possible for a given data type. Use a data type
with greater range and/or precision.

2. Prototypes are not declared; instead, default integer type declaration is assumed for func-
tions. If there is no prototype declaration for a function and if the argument in the function
call is a float, it is converted to double. If the formal parameter in the function definition

5.5.

COMMON ERRORS 245

is declared as a float, there is a possible mismatch. A double object passed as an argu-
ment might be accessed as a float resulting in a possible wrong value. The actual situation
depends on the compiler. Here is an example:

/* File: default.c
Program illustrates problems with default declarations for functiomns.
*/
#include <stdio.h>
main()
{ float x;

x = 3.0;
printf ("Truncated Square of %f = %d\n", x, trunc_square(x));
}
int trunc_square(float z)
{
return (int) (z * z);
}

The function trunc_square() returns integer type and main() uses the default declaration
for trunc_square(). The float argument, x in the function call in main() is converted to
double. But trunc_square() declares a float formal parameter, z. An attempt will be
made to access a double object as a float. The function may not access the correct value
passed as an argument. Thus, it is always best to use function prototypes to avoid confusion.

An expression is written without consideration of precedence and associativity of the oper-
ators. For example,

while (x = scanf("}d", &n) '= EOF)

Wrong! The scanf () value is compared first with EOF and the result of the comparison is
assigned to x. Using parentheses:

while ((x = scanf("%d", &n)) '= EOF)

x is assigned the value returned by scanf (), and the value of x is then compared with EOF.
Examples where associativity must be considered include:

a=10; b=5; ¢ =20; d = 4;

a-b-c¢c is -15
a/b/c/d is 0
afd%bhc is 2

Increment and decrement operators are used incorrectly. Remember that postfix implies
increment /decrement after evaluation and prefix implies increment /decrement before evalu-
ation.

246 CHAPTER 5. NUMERIC DATA TYPES AND EXPRESSION EVALUATION

5.6 Summary

In this chapter we have tied up some loose ends and formalized some of the concepts from previous
chapters. We have seen how the finite number of bits available to represent numbers limits the
range and precision of the numbers stored in the computer. We have introduced additional data
types which can extend the range and increase precision as needed for some applications. We
have discussed the data types void (when no value is expected) and enum (for improving program
readability). We have also shown how user defined names for data types can be defined using
typedef with syntax:

typedef <existing-type-specifier> <new-type-specifier>;

We have extended our available control constructs by introducing two variations on the looping
constructs provided in the language: the for statement and the do...while statement, with
syntax:

<exprl>;
while (<expr2>) {
for (<exprl>; <expr2>; <expr3>) <statement> equivalent to <statement>
<expr3>;

and

do
<statement>
while (<expression>);

We have also described how expressions are evaluated, including the determination of the
type of the result and the order of applying operators, giving the full precedence and associa-
tivity table for all C operators (Table 5.1). We have described some new operators, such as the
increment /decrement operators:

++ <Lvalue>
-- <Lvalue>
<Lvalue> ++
<Lvalue> --

composite assignment operators:
<Lvalue> <op>= <expression>

the conditional expression:

5.6. SUMMARY 247

<exprl> 7 <expr2> : <expr3>
the comma operator:

<expressionl> , <expression2>
and the sizeof operator:

sizeof <expression>

Other operators in the table such as the indirection, array subscripting, structure accessing, and
bitwise operators will be described in later chapters.

248 CHAPTER 5. NUMERIC DATA TYPES AND EXPRESSION EVALUATION
5.7 Exercises

1. If x is 100 and z is 200, what is the output of the following:

if (z = x)
printf("z = %d, x = %d\n", z, x);

2. With the following declarations:
int a = 10, b = 15, ¢ = 25;
float x = 15;
double y = 30;
long int m = 25L;

What are the values and types of the following expressions:

poE oo
+ 4+ + +
* %X x ¥

e

+

)
T~
g

3. Evaluate the expressions following the declarations:

int x, y, z;
float u, v, w;

x = 10; y= 20; z = 30;
x=z/y+y;
x=x/y/ z;
x=xhyhz

4. Evaluate the expressions:

int x, y, z;

float u, v, w;

x = 10; y= 20; z = 30;
u=>5.0; v=10.0; w=30.0;

2 8 e X
I
Mg N o=
NN NN
oo
~ + + +

+u/ v;

5.7. EXERCISES 249

5. What is the output of the following program?

#tdefine PRHAPS
#define TWICEZ z + z

main()
{ int w, x, y, Z;
float a, b

#ifdef PRHAPS

x = 15;
y = 5;
#endif

printf("(a). %d 4d\n", x, y);
printf(”(b). %d\n", TWICEZ * 2);
printf("(c). %f %f\n", w / z * a+c, z/ w*b + ¢);
printf("(d). #d\n", z b y % x);
t

6. What will be the output in the following cases:

a) #define SWAP(x, y) 1int temp; temp = x; x = y; = tem
y p p Yy ¥ p
main()
{ int x1 = 10, x2 = 20;

SWAP(x1, x2);
printf("x1 = 4d, x2 = %d\n", x1, x2);
t

(b) #define SWAP(x, y) {int temp; temp = x; x = y; y = temp;’
main()
{ int x1 = 10, x2 = 20;

SWAP(x1, x2);
printf("x1 = 4d, x2 = %d\n", x1, x2);
t

c) #define SWAP(x, y) 1int temp; temp = x; X = y; = tem
y p p Yy ¥ p
main()
{ int x1 = 10, x2 = 20;

printf ("Swapping Values\n");
SWAP(x1, x2);
printf("x1 = 4d, x2 = %d\n", x1, x2);

250 CHAPTER 5. NUMERIC DATA TYPES AND EXPRESSION EVALUATION

7. Write a while and a do...whileloop to read and echo long integers until end of file. Allow
for the possibility that the first input is an end of file.

8. Write a for loop to print out squares of integers in the sequence 5, 10, 15, 20, 25, etc. until
100.

9. Given the following declarations:
int x = 100, y;

What are the values of x and y after each of the following expressions is evaluated (the
expressions are evaluated in sequence)?

o
I
|
|
™

10. What are the values of the following expressions considered sequentially:

= 100; y = 200;
= y++ - +4x;
++y - xX++;

= ++y * 2;

= 2 % x++;

M
I

11. Evaluate the following:

x = 100; y = 200;

y += 2 % x++;
y -= 2 * --x;
y += x;

12. Evaluate the following:

x = 100; y = 200; z = 25;
Z=y>xX7Xx:79;
z=(z2>x&& z>y) 7z-x*y:2zZ+X*Yy;

5.8. PROBLEMS 251

5.8 Problems

1. Write a program to calculate the roots of a quadratic equation:
axz:+bsxx+ec=0

The program should repeatedly read the set of coefficients @, b, and ¢. For each set, calculate
the roots if and only if b b is not less than 4 x a * ¢. Otherwise, write a message that the
roots are not real and proceed to the next set of coefficients. The two roots of a quadratic

are:
—b+ Vb2 —4dxaxc

2% q

—b— Vb —4dxaxc

2% q

1 =

o =
Use the sq_root () function defined in the chapter.

2. Write a function to find exp(x) whose value is given by the Taylor series:

R R T
I+ i + o1 + 37 +

where n! is n factorial. Write and use a function, power(x, n), which returns the n'* power

of x, where n is an integer. Use a function, fact (), to compute the factorial. Write a driver

that reads input values of x, and finds exp(x). Use as many terms as needed to make values

before and after an additional term very close.

3. Write a function to evaluate sin(x) using the expansion shown below. Use it in a program
to find the sine of values read until end of file.

R A N L

sin(z) = —— "+ — —F — — -

o3t 5 7t 9l

4. Write a function, cos(x), using the expansion below and use it in a program to find the
cosine of values read until EQF.

22 2t 2% 28

5. What are the limitations on the accuracy of the above expansions?

6. Write a function that returns the number of ways that r items can be taken together out of
n items. The value of combination is:

n!
comb(n,r) = m

Use long integers for factorials.

7. Extend the range of possible values for Problem 6 by cancelling out common factors in
numerator and denominator.

252

10.

11.

12.

13.

CHAPTER 5. NUMERIC DATA TYPES AND EXPRESSION EVALUATION

. Write a program that uses Newton’s method to find the roots of the equation:

flz)y=2*+5*2+6=0

Newton’s method uses successive approximations. Start with a guess value for root. The
improved value of root is given by:

newroot = root —

where f(root) is the value of the function when x equals root, and f'(root) is the value of
the function below when x equals root:

fl(z)=2xx2+5

. Write a program that finds the approximate value of an integral of a function whose four

sample values sy, s, 83, 84 are specified at time instants ¢1, ¢t + h, t1 + 2% h, t; + 3 % h.
The user should be asked for the value of the interval size, h, and starting instant, ¢;. The
approximate value of an integral from ¢; to ¢; + 4 % h is the sum of the area under each
rectangle made up of the sample value and the inter-sample distance, i.e.:

81*h+82*h—|—83*h—|—84*h

Write a program that reads in the coefficients and the right hand side values for two linear
simultaneous equations. Solve the equations for the unknowns and print the solution values.
The equations are:

a(1,1) * T1 + Q(12) * T2 = €1

a(2,1) ¥ T1 + Q(2,2) * T2 = C2

where a(1,1), @(1,2), €1, @2,1), @(2,2), and ¢y are the coefficients to be read, and z; and
are the unknowns. To solve the equations, multiply the first equation coefficients and right
hand side by —Zij—j; and add the corresponding values to those of the second equation. The
new, modified value of az,1) will be zero, so the second equation can be solved for z;, and,
substituting the value of x5 in the first equation, solve for z;.

Given coefficients and the right hand side of two simultaneous equations, verify if a given
set of values for 1 and x, is correct. If the left hand side and the right hand side are within
a small error margin the solution is assumed to be correct. Let the margin of error be a
specifiable value with an assumed default value.

Write a menu-driven program to solve and verify two linear equations as per Problems 10
and 11. Allow the following commands: get data, display data, solve equations, display
solution, verify solution, help, and quit.

Write a program to determine the current and the power consumed in an electrical resistor
(load) of 10000 ohms if it is connected to a battery of 12 volts. Power consumed in a resistor
is V2/R, where V is the volts across the resistor and R is the resistor value in ohms. The
current in a resistor is given by V/R.

5.8.

14.
15.
16.

17.

18.

19.

20.

21.
22.
23.

24.

25.

PROBLEMS 253

Use for loops to write a program that finds all prime numbers less than a specified value.
Use do...while loops to write Problem 14.

Write a program that reads a year, a month, and a day of the month. It then determines
the number of the day in the year. (Use the definition of a leap year given in Problem 3.6).
Use enumeration type for the months, and a switch statement which uses the number of
days in the year prior to the first of each month.

Modify Problem 16 so the program reads the day of the week on the first of January and
determines the day of the week for the specified date.

Write a program to read the current date in the order: year, month, and day of the month.
The program then prints the date in words: Today is the nth day of Month of the year Year.
Example:

Today i1s the 24th day of December of the year 2000.

It the GCD of two numbers, m and n is 1, they have no common divisor. Write a program
to find all pairs of numbers, in the range 2 to 20, that have no common divisors. (Refer to

Problem 3.12 for the definition of GCD).

A rational number is maintained as a ratio of two integers, e.g. 20/23, 35/46, etc. Rational
number arithmetic adds, subtracts, multiplies and divides two rational numbers. Write a
program that repeatedly reads and adds two rational numbers. The program should print
the result in each case as a rational number.

Write a function to subtract two rational numbers.
Write a function to multiply two rational numbers.
Write a function to divide two rational numbers.

Write a function to reduce a rational number. A reduced rational number is one in which
all common factors in the numerator and the denominator have been cancelled out. For

example, 20/30 is reduce to 2/3, 24/18 is reduced to 4/3, and so forth. The GCD can be

used to reduce a rational number.

Modify the rational numbers programs in Problems 20 through 24 so the result is first
reduced before it is printed.

254 CHAPTER 5. NUMERIC DATA TYPES AND EXPRESSION EVALUATION

Chapter 6

Pointers

In the preceding chapters, our programs have been written to access objects directly, i.e. using
the variable names. We have postponed until now a discussion of the concept of indirect access,
i.e. access of objects using their address. As we have seen, variables local to a function may
be accessed using their name only within that function. When arguments are passed to another
function, only the values are passed, and the called function may use these values, but cannot
affect the variable cells in the calling function. Sometimes, however, a function needs to have
direct access to the cells in another function. This can be done in C through indirect access, using
the address of the cell, called a pointer.

In this chapter, we will introduce the concepts of indirect access, pointer types, and dereferenced
pointer variables. We will use these concepts to write functions that indirectly access objects in a
calling function.

6.1 What is a Pointer?

Frequently, a called function needs to make changes to objects declared in the calling function. For
example, the function, scanf (), needs to access objects in the calling function to store the data
read and converted into an object defined there. Therefore, we supply scanf () with the address
of objects rather than their values. Here, we will see how any function can indirectly access an
object by its address.

Another common use of pointers is to write functions that “return” more than one value. As
we have seen, every function in C returns a value as the value of the function; however, if a
function’s meaning includes the return of several pieces of information, this single return value
is not sufficient. In these cases, we can have the function return multiple data values indirectly,
using pointers.

255

256 CHAPTER 6. POINTERS

6.1.1 Data vs Address

Before we discuss passing pointers and indirectly accessing data between functions, let us look at
how we can declare pointer variables and access data using them. Consider the following simple

program:

main()

{ int x;
int iptr;
printf ("**xTesting Pointer Variables*x*\n");
x = 10;
iptr = &x;
printf ("/4d\n",iptr);

}

We have declared two integers, x, intended to hold an integer value, and iptr which is intended
to hold a pointer to an integer, i.e. and address of an integer. We then assign a value to x, and
the address of x to the variable iptr using the & (address of) operator. The address of a variable
is simply the byte address of the cell which was allocated by the declaration. An address is an
integer (actually and unsigned integer) so may be stored in an int type variable. The situation is
shown in Figure 6.1a). When we compile and execute this program the result is:

¥*Testing Pointer Variablesxx*
1000

What if we had wanted to print the value of the cell pointed to by iptr and not the value of
iptr itself? The indirection operator, *, accesses the object pointed to by its operand. In our
example, the value of iptr is 1000 which is an address of some object; i.e. iptr points to some
object located at address 1000. So we should be able to access that object with an expression like:

*iptr

However, there is no way to know how many bytes to access at address 1000, nor how to interpret
the data, unless the type of object at address 1000 is known: is it an int? a float? a char?
etc. In order for the compiler to know how to access an object indirectly, it must know the type
of that object. We specity the type of object to access by indicating to the compiler the type of
objects a pointer refers to when we declare the pointer. So, in our example, we should declare the
variable, iptr as a “pointer to an integer” as follows:

int *iptr;

6.1. WHAT IS A POINTER? 257

or
int * iptr;

(white space may separate the operator, *, and the variable name, iptr). The declaration specifies
a variable, iptr, of type int *, i.e. integer pointer (the type is read directly from the declaration).
So, int *is the type of iptr, and int is the type of *iptr — the thing it points to. This statement
declares an integer pointer variable, iptr, and allocates memory for a pointer variable. Similarly,
we can declare float pointers or character pointers:

float * pa, * pb;
char * pc;

These statements declare variables, pa and pb, which can point to float type objects, and pc
which can point to a char type object. All pointer variables store addresses, which are unsigned
integers, and so need the same amount of memory space regardless of the pointer types.

Since the compiler now knows that iptr points to an integer object, it can access the object
correctly. Our simple program becomes:

main()
{ int x;
int *iptr;

printf ("**xTesting Pointer Variables*x*\n");

x = 10;

iptr = &x;

printf("Address %d holds value %d\n",iptr,*iptr);

which produces the output:

¥*Testing Pointer Variablesxx*
Address 1000 holds value 10

We are generally not interested in the value of the pointer variable itself; it may even be different
each time a program is run. Instead, we are interested in the cell the pointer is pointing to, so
we indicate the value of a pointer variable in diagrams and program traces using an arrow («+) as
shown in Figure 6.1b.

In summary, the address of an object is called a pointer to that object since the address tells
one where to go in order to access the object. The address by itself does not provide sufficient

258

CHAPTER 6. POINTERS

main()
int x int iptr
10 1000
a)
main()
int x int *iptr
10 ’
b)

Figure 6.1: Declaring Pointer Variables

6.1. WHAT IS A POINTER? 259

information to access an object; we must know what type of object the address is pointing to.
If the pointer (address) value and the data type of the object that it points to are both known,
then it is possible to access the object correctly. In other words, pointers must be specified to be
int pointers, pointing to an integer type object, float pointers, pointing to a floating point type
object, char pointers, etc.

6.1.2 Indirect Access of Values

The indirection operator, *, accesses an object of a specified type at an address. Accessing an
object by its address is called indirect access. Thus, *iptr indirectly accesses the object that
iptr points to, i.e. *iptr accesses x. The indirection operator is also called the contents of
operator or the dereference operator. Applying the indirection operator to a pointer variable
is referred to as dereferencing the pointer variable, i.e. *iptr dereferences iptr. The address of
operator, &, is used to get the address of an object. We have already used it in calls to scanf ().
We can also use it to assign a value to a pointer variable.

Let us consider some examples using the following declarations:

int x, z;

float y;

char ch, * pch;
int * pi, *pi2;
float * pf;

When these declarations are encountered, memory cells are allocated for these variables at some
addresses as shown in Figure 6.2. Variables x and z are int types, y is float, and ch is char.
Pointer variables pi and pi2 are variables that can point to integers, pf is a float pointer, and
pch is a character pointer. Note that the initial values of all variables, including pointer variables,
are unknown. Just as we must initialize int and float variables, we must also initialize pointer
variables. Here are some examples:

x = 100;

y = 20.0

z = 50;

pi = &x; /* pi points to x */
pi2 = &z; /* pi2 points to z */
pch = &ch; /* pch points to ch */

The result of executing these statements is shown in Figure 6.3: pi points to the cell for the
variable x, pi2 points to z, pch points to ch, and pf still contains garbage. Remember, the value
of a pointer variable is stored as an address in the cell; however, we do not need to be concerned
with the value itself. Instead, our figure simply shows what the initialized pointer variables point

260 CHAPTER 6. POINTERS

main()
int x int z float y char ch
?? ?? ?? 79
o o o o
? ? ? ?
int *pi int *pi2 float *pf char *pch
Figure 6.2: Declaration of Pointer Variables
main()
int x int z float y char ch
100 50 20.0 77
o
?
int *pi int *pi2 float *pf char *pch

Figure 6.3: Assignments of pointers

6.1. WHAT IS A POINTER? 261

main()
int x int z float y char ch
100 50 20.0 77
o
?
int *pi int *pi2 float *pf char *pch

Figure 6.4: Effect of Pointer to Pointer Assignment — Statement 1.

to. These initialized pointers may now be used to indirectly access the objects they point to, or
they be may be changed by new assignments. Here are some examples of statements and how
they change things for the above memory organization. (The statements are numbered in order
to reference them; the numbers are not part of the code).

1: pi2 = pi; /* pi2 points to where pi points */

/* i.e. pi2 ==> x */
2: pi = &z; /* pi now points to z, pi2 still points to x */

/* i.e. pi ==> z, pi2 ==> x x/
3: *pl = *pi2; /¥ z =x, i.e, z = 100 */
4: *pi = 200; /* z = 200, x is unchanged */
5: *pi2 = *pi2 + 200; /* x = 300, z is unchanged */

Statement 1: Assigns value of pi to pi2, so pi2 now also points to x (see Figure 6.4). Since
both of the variables are type int * this assignment is allowed.

Statement 2: Makes pi point to z (see Figure 6.5). The expression &z evaluates to the
address of z; i.e. an int pointer.

Statement 3: Since pi2 points to x, the value of the right hand side, *pi2, dereferences
the pointer and evaluates to the value in the cell, i.e. 100. This value is assigned to
the object accessed by the left hand side, *pi, i.e. the place pointed to by pi or the

262 CHAPTER 6. POINTERS

main()
int x int z float y char ch
100 50 20.0 77
é o
s
int *pi int *pi2 float *pf char *pch

Figure 6.5: Effect of Pointer Reassignment — Statement 2.

object z (see Figure 6.6). This has the same effect as the assignment z = x. Note,
we have used a dereferenced pointer variable as the Lvalue on the left hand side of an
assignment operator. The semantics is to access the object indirectly and store the
value of the expression on the right hand side.

Statement 4: The value, 200, is assigned to *pi, i.e. z (see Figure 6.7). Again, we have
used an indirect access for the Lvalue of the assignment.

Statement 5: The right hand side evaluates to 300, since 200 is added to *pi2; so 300 is
assigned to *pi2, i.e. x (see Figure 6.8). Again, we have used an indirect access on

both the left and right hand sides.

We see that the left hand side of an assignment operator, the Lvalue, can be a reference to
an object either by direct access (i.e. a variable name) or by indirect access (i.e. a dereferenced
pointer variable). Also notice that we were very careful about the type of the objects on the left
and right hand side of the assignment operators. We have assigned an integer value to a cell
pointed to by an integer pointer, and when assigning pointers, we have assigned an integer pointer
to a cell declared as an int *. An assignment statement such as:

6.1.

WHAT IS A POINTER?

main()
int x int z float y char ch
100 100 20.0 77
' Y o '
?
int *pi int *pi2 float *pf char *pch

Figure 6.6: Effect of Indirect Pointer Access and Assignment — Statement 3

main()
int x int z float y char ch
100 200 20.0 77
é 1Y o ¢
?
int *pi int *pi2 float *pf char *pch

Figure 6.7: Effect of Indirect Assignment — Statement 4

263

264 CHAPTER 6. POINTERS

main()
int x int z float y char ch
300 200 20.0 77
é o
s
int *pi int *pi2 float *pf char *pch

Figure 6.8: Effect of Indirect Pointer Access and Assignment — Statement 5

is a legal statement in C: assigning an integer value to a pointer cell. However, the effect may
not be as we would expect. The value of x will be placed in the pointer cell, pi, and subsequent
dereferencing of pi, (*pi), will use that value as a pointer (an address) to find the cell to indirectly
access. This is almost never what we intend to do in this statement. Most C compilers will generate
a warning at compile time stating that an illegal integer-pointer combination in an assignment was
encountered to indicate that something is possibly wrong here. A warning is not an error; it does
not prevent the compiler from generating a functional object file. However, it is an indication that
the statement may not be what the programmer intended. Such a statement is probably correctly

written as:
*pl = X; or pl = &x;

which assign a value to the cell pointed to by pi or to assign an address to pi itself, respectively.
(In the RARE instance where such an assignment of an integer to a pointer cell is intended, the
syntax:

pi = (int *)x;

i.e. casting the integer to an integer pointer, should be used).

Likewise, an attempt to use the uninitialized variable, pf will be a disaster. Suppose we write:

6.1. WHAT IS A POINTER? 265

printf ("%f\n", *pf);

The value of pf is garbage so *pf will attempt to access the garbage address for a float object.
The garbage value of pf may be an invalid memory address, in which case, the program will be
aborted due to a memory fault; a run time error. This is bad news; however, we may be even more
unfortunate if the value in pf is a valid memory address. In this case, we would access a value
from some unknown place in memory. The situation is even worse when an uninitialized pointer
is used indirectly as an Lvalue:

*pf = 3.5;

Since we do not know where pf is pointing, if it happens to be a legal address, we have just
placed the value, 3.5, in some unknown location in memory, possible a cell belonging to a variable
in another part of the program. Finding this type of bug is very difficult. The lesson here is
that care should be taken when using pointers, particularly ensuring that pointers are properly
initialized.

On the other hand, the character variable, ch, is not initialized, but the pointer variable, pch
is initialized to point to ch so the expression, *pch, will access the object, ch, correctly. If the
value of *pch is accessed, it will be garbage; but a value can be stored in *pch correctly.

With proper care, the value of an initialized pointer variable (the address of some object) allows
us to indirectly access the object by dereferencing the pointer variable. An example program,
shown in Figure 6.9, illustrates the value of a pointer variable and the value of the object indirectly
accessed by it.

Figure 6.10 shows program trace graphically. The program first declares an int and an int *
variables (Figure 6.10a)). The first printf () statement prints the program title followed by the
initialization of i1 and iptr (Figure 6.10b)). The next printf () gives the hexadecimal value of
iptr, which is the address of i1. The next statement prints the value of the same object indirectly
accessed by *iptr and directly accessed by i1. Then, the value of *iptris changed (Figure 6.10¢));
and the last statement prints the changed value of the object, accessed first indirectly and then
directly.

The output for a sample run is:

Pointers: Direct and Indirect Access

iptr = 65490
*iptr = 10, 11 = 10
*iptr = 100, 11 = 100

266 CHAPTER 6. POINTERS

/* File: access.c
This program prints out the values of pointers and values of
dereferenced pointer variables.

*/
#include <stdio.h>
main()
{ int *iptr, /* integer pointer */
i1;
printf("Pointers: Direct and Indirect Access\n\n");
/* initializations */
i1 = 10;
iptr = &it1; /* iptr points to the object whose name is il */
/* print value of iptr, i.e., address of i1l */
printf("iptr = Ju\n", iptr);
/* print value of the object accessed indirectly and directly */
printf("*iptr = %d, il = }d\n", *iptr, il);
*iptr = *iptr * 10; /* value of *iptr changed */
/* print values of the object again */
printf("*iptr = %d, il = }d\n", *iptr, il);
by

Figure 6.9: Example Code with Direct and Indirect Access

6.1. WHAT IS A POINTER?

main() main()
int 1l int 1l
77 10
A
) ¢
int *iptr int *iptr
a) b)

Figure 6.10: Trace for Direct and Indirect Access

267

main()

int 11

100

int *iptr

268 CHAPTER 6. POINTERS

6.2 Passing Pointers to Functions

As we have seen, in C, arguments are passed to functions by value; i.e. only the values of argument
expressions are passed to the called function. Some programming languages allow arguments
passed by reference, which allows the called function to make changes in argument objects. C
allows only call by value, not call by reference; however, if a called function is to change the value
of an object defined in the calling function, it can be passed a value which is a pointer to the
object. The called function can then dereference the pointer to access the object indirectly. We
have also seen that a C function can return a single value as the value of the function. However, by
indirect access, a called function can effectively “return” several values. Only one value is actually
returned as the value of the function, all other values may be indirectly stored in objects in the
calling function. This use of pointer variables is one of the most common in C. Let us look at
some simple examples that use indirect access.

6.2.1 Indirectly Incrementing a Variable

We will first write a program which uses a function to increment the value of an object defined
in main(). As explained above, the called function must indirectly access the object defined in
main(), i.e. it must use a pointer to access the desired object. Therefore, the calling function
must pass an argument which is a pointer to the object which the called function can indirectly
access.

Figure 6.11 shows the code for the program and the program trace is shown graphically in
Figure 6.12. The function, main() declares a single integer variable and initializes it to 7 (see
Figure 6.12a)). When main() calls indirect_incr(), it passes the pointer, &x (the address of
x). The formal parameter, p, is defined in indirect_incr() as a pointer variable of type int *.
When indirect_incr() is called, the variable, p gets the value of a pointer the the cell named
x in main() (see Figure 6.12b)). The function, indirect_incr(), indirectly accesses the object
pointed to by p, i.e. the int object, x, defined in main(). The assignment statement indirectly
accesses the value, 7, in this cell, and increments it to 8, storing it indirectly in the cell, x, in
main() (see Figure 6.12¢)).

Sample Session:

***Indirect Access**x*
Original value of x is 7
The value of x is 8

6.2.2 Computing the Square and Cube

Sometimes, whether a value should be returned as the value of a called function or indirectly stored
in an object is a matter of choice. For example, consider a function which is required to “return”

6.2. PASSING POINTERS TO FUNCTIONS

*/

File: indincr.c

Program illustrates indirect access
to x by a function indirect_incr().
Function increments x by 1.

#include <stdio.h>

void

indirect_incr(int * p);

main()

{

/%

void

int x;

printf ("**xIndirect Access***\n");

X = 7;

printf("Original value of x is %d\n", x);
indirect_incr(&x);

printf("The value of x is %4d\n", x);

Function indirectly accesses object in calling function.

indirect_incr(int * p)

*p:*p+1;

Figure 6.11: Code for Indirect Access by a Function

*/

269

270

main()

CHAPTER 6. POINTERS

main()

int x

int x

7

\

D

indirect_incr(int * ¢ |)

b)

Figure 6.12: Trace for Indirect Access by a Function

main()

int x

8

\

indirect_incr(int

D

6.2. PASSING POINTERS TO FUNCTIONS 271

/* File: sqcube.c
Program uses a function that returns a square of its argument and
indirectly stores the cube.

*/

#include <stdio.h>

double sqcube(double x, double * pcube);

main()
{ double x, square, cube;

printf ("***Directly and Indirectly Returned Values***\n");
x = 3;

square = sqcube(x, &cube);
printf("x = ¥f, square = f, cube = ¥%f\n",
X, square, cube);

/* Function return square of x, and indirectly stores cube of x */
double sqcube(double x, double * pcube)
{

*pcube = x * x * x;

return (x * x);

Figure 6.13: Code for Indirectly Returned Values

two values to the calling function. We know that only one value can be returned as the value of
the function, so we can decide to write the function with one of the two values formally returned
by a return statement, and the other value stored, by indirect access, in an object defined in the
calling function. The two values are “returned” to the calling function, one formally and one by
indirection.

Let us write a function to return the square and the cube of a value. We decide that the
function returns the square as its value, and “returns” the cube by indirection. We need two
parameters; one to pass the value to be squared and cubed to the function, and one pointer type
parameter which will be used to indirectly access an appropriate object in the calling function to
store the cube of the value. We assume all objects are of type double.

The code is shown in Figure 6.13. The prototype for sqcube() is defined to have two param-
eters, a double and a pointer to double, and it returns a double value. The printf () prints the
value of x; the value of square which is the value returned by sqcube() (the square of x); and,
the value of cube (the cube of x) which is indirectly stored by sqcube().

272 CHAPTER 6. POINTERS

main()
double x double square double cube
3.0 77 77
sqcube(double double * |°®
X pcube
double

- - = =]

Figure 6.14: Trace for sqcube — Step 1

6.2. PASSING POINTERS TO FUNCTIONS 273

main()
double x double square double cube
3.0 77 77
sqcube(double 3.0 double * |*
X pcube
double

- - = =]

Figure 6.15: Trace for sqcube — Step 2

274 CHAPTER 6. POINTERS

main()
double x double square double cube
3.0 77 27.0
sqcube(double 3.0 double * |*
X pcube
double

- - = =]

Figure 6.16: Trace for sqcube — Step 3

6.2. PASSING POINTERS TO FUNCTIONS

main()
double x double square double cube
3.0 9.0 27.0
3
__________________________ J
sqcube(double 3.0 double * |*
X pcube

. double

Figure 6.17: Trace for sqcube — Step 4

275

276 CHAPTER 6. POINTERS

Figures 6.14 — 6.17 show a step-by-step trace of the changes in objects, both in the calling
function and in the called function. In the first step (Figure 6.14), the declarations for the function,
main() and the template for the function, sqcube() are shown with the initialization of the
variable, x, in main(). In the second step (Figure 6.15), the function, sqcube() is called from
main() passing the value of x (3.0) to the first parameter, (called x in sqcube()), and the value of
&cube, namely a pointer to cube, as the second argument to the parameter, pcube. In the third
step (Figure 6.16), the first statement in sqcube () has been executed, computing the cube of the
local variable, x, and storing the value indirectly in the cell pointed to by pcube. Finally, Figure
6.17 shows the situation just as sqcube() is returning, computing the square of x and returning
the value which is assigned to the variable, square, by the assignment in main().

While only one value can be returned as the value of a function, we loosely say that this
function “returns” two values: the square and the cube of x. The distinction between a formally
returned value and an indirectly or loosely “returned” value will be clear from the context.

Sample Session:

¥*kDirectly and Indirectly Returned Valuesx*
x = 3.000000, square = 9.000000, cube = 27.000000

6.2.3 A function to Swap Values

We have already seen how values of two objects can be swapped directly in the code in main().
We now write a function, swap(), that swaps values of two objects defined in main() (or any
other function) by accessing them indirectly, i.e. through pointers. The function main() calls the
function, swap(), passing pointers to the two variables. The code is shown in Figure 6.18. (We
assume integer type objects in main()).

The function, swap(), has two formal parameters, integer pointers, ptrl and ptr2. A tempo-
rary variable is needed in the function body to save the value of one of the objects. The objects
are accessed indirectly and swapped. Figures 6.19 — 6.22 show the process of function call, passed
values, and steps in the swap.

Sample Session:

Original values: datl = 100, dat2 = 200
Swapped values: datl = 200, dat2 = 100

6.3 Returning to the Payroll Task with Pointers

We will now modify our pay calculation program so that the driver calls upon other functions to
perform all subtasks. The driver, main(), represents only the overall logic of the program; the

6.3. RETURNING TO THE PAYROLL TASK WITH POINTERS 277

/* File: swapfnc.c
Program uses a function to swap values of two objects.
*/
#include <stdio.h>
/* arguments of swap() are integer pointers */
void swap(int * pl, int * p2);

main()
{ int datl = 100, dat2 = 200;

printf("Original values: datl = %d, dat2 = Jd\n", datl, dat2);
swap (&datl, &dat2);
printf ("Swapped values: datl = Jd, dat2 = %d\n", datl, dat2);

/* Function swaps values of objects pointed to by ptrl and ptr2 */
void swap(int * ptrl, int * ptr2)
{ int temp;

temp = *ptri;
*ptril *ptr2;
*ptr2 = temp;

Figure 6.18: Code for a Function, swap ()

278 CHAPTER 6. POINTERS

main()
int datl int dat2
100 200
A A
swap(int * | ° int * | ¢)
ptrl ptr2
int temp
77

Figure 6.19: Trace for swap() — Step 1

6.3. RETURNING TO THE PAYROLL TASK WITH POINTERS

main()

int datl int dat2
100 200
A A
swap(int * | ¢ int * |[°¢)
ptrl ptr2
int temp
100

Figure 6.20:

Trace for swap() — Step 2

279

280 CHAPTER 6. POINTERS

main()
int datl int dat2
200 200
A A
swap(int * | ° int * | ¢)
ptrl ptr2
int temp
100

Figure 6.21: Trace for swap() — Step 3

6.3. RETURNING TO THE PAYROLL TASK WITH POINTERS

main()

int datl int dat2
200 100
A A
swap(int * | ¢ int * |[°¢)
ptrl ptr2
int temp
100

Figure 6.22:

Trace for swap() — Step 4

281

282 CHAPTER 6. POINTERS

details are hidden in the functions that perform the various subtasks. The algorithm for the driver
is:

get data

repeat the following while there is more data
calculate pay
print data and results
get data

For each step of the algorithm, we will use functions to do the tasks of getting data, printing
data and results, and calculating pay. We have already written functions in Chapters 3 and 4 to
calculate pay and to print data and results, and will repeat them here for easy reference, making
some modifications and improvements. We have postponed until now writing a function to read
data as such a function would require returning more than one value. By using pointers, we now
have the tool at our disposal to implement such a function.

Before we write these functions, we should design them by describing what the functions do
and specifying the interface to these functions; i.e. by indicating the arguments and their types
to be passed to the functions (the information given to the functions) and the meaning and type
of the return values (the information returned from the function). Here are our choices:

get_data(): This function reads the id number, hours worked, and rate of pay for one employee
and stores their values indirectly using pointers. Since these values are returned indirectly,
the arguments must be pointers to appropriate objects in the calling function (main() in
our case). The function returns True, if it found new data in the input; it returns False
otherwise. Here is the prototype:

int get_data(int * pid, float * phrs, float * prate);

We use names pid, phrs, and prate, to indicate that they are pointers to cells for the id,
hours and rate, respectively. It is a good habit to distinguish between object names and
pointer names whenever there is a possibility of confusion.

print_data(): This function writes the id number, hours worked, and rate of pay passed to it. It
has no useful information to return so returns a void type. Here is the prototype:

void print_data(int id, float hrs, float rate, float pay);

print_pay(): This function is given values for the regular pay, overtime pay, and total pay and
writes them to the output. It also returns a void type.

void print_pay(float regular, float overtime, float total);

calc_pay(): Given the necessary information (hours and rate), this function calculates and returns
the total pay, and indirectly returns the regular and overtime pay. In addition to the values
of hours worked and rate of pay, pointers to regular pay and overtime pay are passed to the
function. The prototype is:

6.3. RETURNING TO THE PAYROLL TASK WITH POINTERS 283

/* File: payutil.h =/

#define REG_LIMIT 40

#define OT_FACTOR 1.5

int get_data(int *pid, float *phrs, float *prate);

void print_data(int id, float hrs, float rate);

void print_pay(float regular, float overtime, float total);

float calc_pay(float hours, float rate, float * pregular,
float * povertime);

Figure 6.23: Header file payutil.h

float calc_pay(float hours, float rate, float * pregular,
float * povertime);

Here, pregular and povertime are pointers to cells for regular and overtime pay objects in
the calling function.

All of these functions will be defined in a file, payutil.c and their prototypes are included in
payutil.h. Figure 6.23 shows the header file. We have also included the definitions for symbolic

constants REG_LIMIT and OT_FACTOR in the header file. This header file will be included in all
relevant source files.

With the information in this file (and the preceding discussion of the function) we have sufficient
information to write the driver for the program wusing the functions prior to writing the actual
code for them. Figure 6.24 shows the driver. It also includes the file, tfdef .h which defines the
macros, TRUE and FALSE.

The logic of the driver is as follows. After the program title is printed, the first statement calls
get_data() to get the id_number, hours_worked, and rate_of pay. Asindicated in the prototype,
pointers to these objects are passed as arguments so that get_data() can indirectly access them
and store values. The function, get_data(), returns True or False depending on whether there
is new data. The True/False value is assigned to the variable, moredata. The while loop is
executed as long as there is more data; i.e. moredata is True. The loop body calls on calc_pay()
to calculate the pay, print_data() to print the input data, print_pay() to print the results, and
get_data() again to get more data. Since calc_pay() returns the values of overtime and total
pay indirectly, main() passes pointers to objects which will hold these values.

The overall logic in the driver is easy to read and understand; at this top level of logic,
the details of the computations are not important and would only complicate understanding the
program. The driver will remain the same no matter how the various functions are defined. The
actual details in one or more functions may be changed at a later time without disturbing the
driver or the other functions. This program is implemented in functional modules. Such a modular
programming style makes program development, debugging and maintenance much easier.

284 CHAPTER 6. POINTERS

/* File: pay6.c
Other Files: payutil.c
Header Files; tfdef.h, payutil.h
The program gets payroll data, calculates pay, and prints out
the results for a number of people. Modular functions are used
to get data, calculate total pay, print data, and print results.
*/
#include <stdio.h>
#include "tfdef.h"
#include "payutil.h"
main()
{
/* declarations */
int id_number, moredata;
float hours_worked, rate_of_pay, regular_pay, overtime_pay, total_pay;

/* print title */
printf ("***Pay Calculation***\n\n");

/* get data and initialize loop variable */
moredata = get_data(&id_number, &hours_worked,
&rate_of_pay);

/* process while moredata */

while (moredata) {
total_pay = calc_pay(hours_worked, rate_of_pay, ®ular_pay,

&overtime_pay) ;
print_data(id_number, hours_worked, rate_of_pay);
print_pay(regular_pay, overtime_pay, total_pay) ;
moredata = get_data(&id_number, &hours_worked,
&rate_of_pay);

Figure 6.24: Code for the Driver for pay6.c

6.3. RETURNING TO THE PAYROLL TASK WITH POINTERS 285

/* File: payutil.c */

#include <stdio.h>

#include "tfdef.h"

#include "payutil.h"

/* Function prints out the input data */

void print_data(int id, float hours, float rate)

{
printf ("\nID Number = %d\n", id);
printf ("Hours Worked = %f, Rate of Pay = Jf\n",
hours, rate);
t

/* Function prints pay data */
void print_pay(float regular, float overtime, float pay)

{
printf ("Regular Pay = %f, Overtime Pay = %f\n",
regular, overtime);
printf("Total Pay = %f\n", pay);
by

Figure 6.25: Code for print_data() and print_pay()

Of course, we still have to write the various functions used in the above driver. We write each
of these functions in turn. Figure 6.25 shows the code for print_data() and print_pay() in the
file payutil.c which are simple enough.

The next two functions require indirect access. The function, calc_pay(), must indirectly
store the regular and overtime pay so the formal parameters include two pointers: preg (pointing
to the cell for regular pay) and pover (pointing to the cell for overtime pay). The function returns
the value of the total pay. It is shown in Figure 6.26. Finally, get_data() must indirectly store the
values of the id number, hours worked, and rate of pay, and return True if id number is positive,
and False otherwise. Figure 6.27 shows the code. The formal parameters pid, phrs, and prate
are pointers to objects in the calling function (main() in our case). Recall, when scanf () is called
to read data, it requires arguments that are pointers to the objects where the data is to be placed
so that it can indirectly store the values. Therefore, when get_data() calls scanf (), it must
pass pointers to relevant objects as arguments, i.e. it passes the pointers, pid, phrs, and prate.
These pointer variables point to the objects where values are to be stored. We do NOT want to
pass &pid, &phrs, &prate as these are the addre