
Programming in C�

Bharat Kinariwala

University of Hawai�i

Tep Dobry

University of Hawai�i

January �� ����

�Copyright c����� by B� Kinariwala and T� Dobry� All rights reserved�

Contents

Table of Contents i

List of Figures vii

List of Tables xiii

Preface xvii

� Introduction �

��� Computer System Organization �

����� Computer Hardware �

����� Computer Software � The Operating System � � � � � � � � � � � � � � � � � �

����� Utility Programs �

����� User Programs and Applications �

��� Representing Data and Program Internally �

����� Representing Data �

����� Main Memory ��

����� Representing Programs ��

��� Designing Programs and the C Language �	

����� Designing The Algorithm �	

����� The C Language ��

��� Summary ��

i

ii CONTENTS

��� References ��

��� Exercises ��

��
 Problems ��

� Basic Concepts ��

��� A Simple C Program ��

����� Developing the Algorithm ��

����� Translating the Algorithm to C ��

����� Running the Program ��

��� Organization of C Programs
 Simple Statements � � � � � � � � � � � � � � � � � � ��

����� Comment Statements ��

����� De�ning a Function
 main�� ��

����� Variable Declarations ��

����� The Assignment Statement �

����� Generating Output ��

��� Testing the Program ��

����� Debugging the Program ��

����� Documenting the Code �

��� Input� Reading Data �

��� More C Statements ��

����� Making Decisions with Branches ��

����� Simple Compiler Directives ��

����� More on Expressions �

����� A Simple Loop
 while ��

����� Controlling Loop Termination �
�

����� More Complex Loop Constructs
 Nested Loops � � � � � � � � � � � � � �
�

��� Common Errors �
�

CONTENTS iii

��
 Summary ��

��� Exercises ��

��	 Problems ��

� Designing Programs Top Down ��

��� Designing the Algorithm with Functions � 	�

����� Implementing the Program with Functions � � � � � � � � � � � � � � � � � � 	�

��� De�ning Functions � 	�

����� Passing Data to and from Functions � 	�

����� Call by Value and Local Variables � 		

��� Coding Programs for Readability ���

����� The C Preprocessor ���

����� Macros ���

����� Including Header Files ���

����� Conditional Compilation ���

��� Interacting with the Operating System ��	

����� Standard Files and EOF ��	

����� Standard Files and Redirection ���

��� Debugging Guidelines ���

��� Common Errors ��

��
 Summary ���

��� Exercises ���

��	 Problems ���

� Processing Character Data ���

��� A New Data Type� char ���

����� The ASCII Character Set ���

iv CONTENTS

����� Operations on Characters ���

����� Character I�O Using getchar�� and putchar�� � � � � � � � � � � � � � � � ��

����� Strings vs Characters ���

��� Sample Character Processing Functions ���

����� Converting Letter Characters ���

����� Converting Digit Characters to Numbers ���

����� Counting Words ���

����� Extracting Words ��	

��� New Control Constructs �
�

����� The switch Statement �
�

����� The break Statement �
�

����� The continue Statement ���

��� Mixing Character and Numeric Input ���

��� Menu Driven Programs �	�

��� Common Errors �	�

��
 Summary �		

��� Exercises ���

��	 Problems ���

� Numeric Data Types and Expression Evaluation �	

��� Representing Numbers ��

����� Signed and Unsigned Integer Types ��	

����� Single and Double Precision Floating Point Numbers � � � � � � � � � � � � ���

��� New Control Constructs ���

����� The for Statement ���

����� The do���while Statement ���

��� Scalar Data Types ���

CONTENTS v

����� Data Type void ���

����� Enumeration ���

����� De�ning User Types� typedef ���

��� Operators and Expression Evaluation ��	

����� Precedence and Associativity ���

����� The Data Type of the Result ���

����� Some New Operators ���

��� Common Errors ���

��� Summary ���

��
 Exercises ���

��� Problems ���

� Pointers ���

��� What is a Pointer� ���

����� Data vs Address ���

����� Indirect Access of Values ��	

��� Passing Pointers to Functions ���

����� Indirectly Incrementing a Variable ���

����� Computing the Square and Cube ���

����� A function to Swap Values �
�

��� Returning to the Payroll Task with Pointers �
�

��� Common Errors ��

��� Summary ���

��� Exercises �	�

��
 Problems �	�

 Arrays ���

vi CONTENTS

�� A Compound Data Type
 array �	�

���� Declaring Arrays �	�

���� Character Strings as Arrays �	�

�� Passing Arrays to Functions ���

�� Arrays� Pointers� Pointer Arithmetic ���

���� Pointers� Increment and Decrement ���

���� Array Names vs Pointer Variables ���

�� String Assignment and I�O ��	

�� Array Initializers ���

�� Arrays for Databases ���

�
 Common Errors ��

�� Summary ��	

�	 Exercises ���

��� Problems ���

� Functions and Files ���

� Sorting and Searching ���

�	 String Processing ���

�� Two Dimensional Arrays ���

�� Structures and Unions ��

�� File Input�Output ���

�� Storage Class and Scope ���

�� Engineering Programming Examples ���

CONTENTS vii

A C Language Reference ���

B ANSI C vs Old C ��

C The C Standard Library ���

viii CONTENTS

List of Figures

��� Computer System Block Diagram �

��� Memory and Addresses ��

��� CPU and Memory Con�guration �

��� Machine and Assembly Language Program Fragment � � � � � � � � � � � � � � � � �	

��� Structural Diagram for Payroll Task ��

��� Flow Chart for Payroll Task ��

��� Code for pay��c ��

��� Allocation of Memory Cells or Objects ��

��� Assignment of Values �

��� Computation of pay ��

��� Program Trace for pay��c ��

��� Keyboard Bu�er �	

��
 Code for pay��c ��

��� If statement control �ow ��

��	 Code for pay��c �	

���� Control Flow for while statement ��

���� Coding a While Loop �

���� Code for pay��c �
�

���� Code for pay��c �
�

���� Code for prime�c �

ix

x LIST OF FIGURES

��� Structural Diagram for Payroll Task � 	�

��� Code for pay��c driver � 	�

��� Function Call to calc pay�� 	�

��� Code for calc pay�� 	�

��� Function Call Trace � 	

��� Trace for calc pay�� 		

��
 Call by value variable allocation ���

��� Local Variables in Blocks ���

��	 Driver for niceday�c ���

���� Functions for niceday�c ���

���� Using Directives in niceday�c ���

���� End of File Marker ���

���� Code for maxabs�c ���

��� Code for copy��c ��

��� Code for ASCII Attributes ���

��� Printing character representations ���

��� Alternate code for attributes program ���

��� Using getchar�� and putchar�� ���

��� Strings ���

��
 Code for upper case ���

��� Code for Character Utilities ���

��	 Header �le for Character Utilities ���

���� Code for getint�� ���

���� Revised Character Utility Header File ���

���� Revised Character Utility Code ���

���� Code for Count Words Driver ���

LIST OF FIGURES xi

���� Header Files for Word Count ��

���� Code for Word Count Utility Functions ���

���� Code fore extracting words �
�

���
 Control Flow for switch statement �
�

���� Code for vowelp�� Using a switch Statement �
�

���	 Code for encrypt�c �
�

���� Implementing print next�� Using a switch Statement � � � � � � � � � � � � � � � �
�

���� New Implementation of print category using switch � � � � � � � � � � � � � � � �
	

���� Extracting Words Using break ���

���� Code for Revised encrypt�c ���

���� Code for Testing scanf�� ���

���� Revised Code for Reading Integers ���

���� Mixing Numeric and Character Data �	�

���
 Revised Code for Mixing Data �	�

���� A Better Revision for Mixing Data �	�

���	 Code for menu driven program �	�

���� Menu Driven Functions �	

��� Control Flow of for Loop ���

��� Code for factorial ���

��� Control Flow of do���while Loop ���

��� Code for Square Root ��	

��� Code for Math Utilities ���

��� Modi�ed Square Root Driver ���

��
 Modi�ed Square Root Utilities ���

��� Code for Simple Post�x Calculator ���

��	 Code for get operator�� ���

xii LIST OF FIGURES

���� Factorial Function Using Composite Operators ��	

���� Function maxdbl Using a Conditional Expression � � � � � � � � � � � � � � � � � � ���

���� Revised Fibonacci ���

���� Testing sizeof Operator ���

��� Declaring Pointer Variables ���

��� Declaration of Pointer Variables ���

��� Assignments of pointers ���

��� E�ect of Pointer to Pointer Assignment ���

��� E�ect of Pointer Reassignment ���

��� E�ect of Indirect Pointer Access and Assignment � � � � � � � � � � � � � � � � � � ���

��
 E�ect of Indirect Assignment ���

��� E�ect of Indirect Pointer Access and Assignment � � � � � � � � � � � � � � � � � � ���

��	 Example Code with Direct and Indirect Access ���

���� Trace for Direct and Indirect Access ��

���� Code for Indirect Access by a Function ��	

���� Trace for Indirect Access by a Function �
�

���� Code for Indirectly Returned Values �
�

���� Trace for sqcube �
�

���� Trace for sqcube �
�

���� Trace for sqcube �
�

���
 Trace for sqcube �
�

���� Code for a Function� swap�� �

���	 Trace for swap�� �
�

���� Trace for swap�� �
	

���� Trace for swap�� ���

���� Trace for swap�� ���

LIST OF FIGURES xiii

���� Header �le payutil�h ���

���� Code for the Driver for pay��c ���

���� Code for print data�� and print pay�� ���

���� Code for calc pay�� ���

���
 Code for get data�� ���

�� Code for scores�c �	�

�� An Array of size MAX �	�

�� A String Stored in Memory �		

�� Code for string�c ���

�� Code fore scores�c ���

�� Code for string��c ���

�
 Pointer Arithmetic ��

�� Array Pointers as Function Parameters ��	

�	 Pointer to a Sub�array ���

��� Pointer Variables and Arrays ��

��� Pointer Variables and Strings ���

��� Data Record Spread Over Several Arrays ���

��� Code for paytab�c ���

��� Code for payutil�c ���

xiv LIST OF FIGURES

List of Tables

��� Number Representations ��

��� Arithmetic Operators ��

��� Relational Operators ��

��� Precedence and Associativity of Operators �	

��� Logical Operator Symbols in C ��

��� Truth Table for Logical Combinations ��

��� Escape Sequences ���

��� ASCII Table ��	

��� Escape sequences with Octal � Hexadecimal values � � � � � � � � � � � � � � � � � ���

��� Precedence and Associativity Table ���

��� Composite Assignment Operators and Their Equivalents � � � � � � � � � � � � � � ���

��� Space allocation in Bytes for data types ���

�� Pointer Arithmetic and Indirect Access ��

xv

xvi LIST OF TABLES

Preface

The C language has boomed in popularity and availability since its creation in the
��s� It
has largely become the language of choice for systems programming as well as general purpose
programming in both the numeric and symbolic realms� As a result� all programmers today should
have some working knowledge of C� particularly in engineering�

This book is intended to be a �rst text in programming in general with emphasis on the C
language� It is meant for students with little or no previous programming experience and as such�
a primary focus is on the top down design of programs� beginning with the development of an
algorithm� proceeding to the translation of the algorithm into a programming language �C�� and
the subsequent testing and debugging of the resulting code� Throughout the text� emphasis is
placed on organization and readability of code as well as debugging aids in program development�
In addition� understandable and functional user interfaces are described�

As an introductory text on programming� our approach is to motivate the introduction of
features of the language through example problems� We start with meaningful but simple tasks�
develop an algorithm to solve the task and then introduce the necessary language constructs to
implement the algorithm� We then re�ne the task� adding complexity or desirable features to mo�
tivate introduction of new language constructs� As such� the text is not meant to be a C reference
manual� but a text on program design utilizing the available language features to implement the
design� However� for student�s reference� the key constructs introduced are summarized at the end
of each chapter� The intent is for the student to be able to design and code programs from the
very beginning�

The book is organized as follows�

� Chapter � is an introduction to computers and some of the terminology used throughout the
text�

� Chapter � begins the development of a simple C program and the introduction to the orga�
nization and basic statements of the language�

� Chapter � stresses the top down approach to design and introduces functions at an early
stage to emphasize their relation to algorithms�

� Chapter � introduces the character data type and algorithms for processing characters�

xvii

xviii PREFACE

� Chapter � presents numeric data types and their limitations and discusses the details of C
expression evaluation�

� Chapter � addresses the important concept of pointers and their use in C in functions�

� Chapter
 introduces compound data types with arrays and discusses their relation with
pointers�

� Chapter � describes some of the standard library functions provided in C for character and
math processing as well as giving a detailed description of the standard I�O functions printf��
and scanf�� and their variations for �le I�O�

� Chapter 	 presents some standard sorting and searching techniques�

� Chapter �� describes the powerful string processing utilities in C and the concept of libraries
of functions�

� Chapter �� returns to arrays presenting two dimensional arrays�

� Chapter �� discusses the remaining compound data type� structures and unions�

� Chapter �� presents advanced �le Input�Output features of the language�

� Chapter �� describes the memory organization of C programs and discusses the details of
storage classes and scope�

� Finally� Chapter �� provides several examples of algorithms useful in Engineering computa�
tion� It makes use of the concepts presented in earlier Chapters and these examples may be
discussed with the appropriate Chapter�

In addition� three Appendices are provided as follows�

� Appendix A provides a summary of the C language constructs discussed in the text�

� Appendix B contrasts the language features of ANSI C as presented in this text to �old� C
which is still available on many Unix systems�

� Appendix C summarizes the standard library functions available in C�

Chapter �

Introduction

In our modern society Electronic Digital Computer Systems� commonly referred to as computer

systems or computers� are everywhere� We �nd them in o�ces� factories� hospitals� schools�
stores� libraries� and now in many homes� Computers show up in sometimes unexpected places
� in your car� your television and your microwave� for example� We use computers to perform
tasks in science� engineering� medicine� business� government� education� entertainment� and many
other human endeavors� Computers are in demand wherever complex and�or high speed tasks are
to be performed�

Computers have become indispensable tools of modern society� They work at high speed� are
able to handle large amounts of data with great accuracy� and have the ability to carry out a
speci�ed sequence of operations� i�e� a program without human intervention and are able to
change from one program to another on command�

Computer systems are general purpose information processing machines used to solve problems�
Solving these problems may involve processing information �i�e�� data	 which represent numbers�
words� pictures� sounds� and many other abstractions� Because we are talking about digital
computers� the information to be processed must be represented as discrete values selected from a
�possibly very large but �nite	 set of individual values� For example� integer numbers �the counting
numbers	 can be represented in a computer by giving a unique pattern to each integer up to the
maximum number of patterns available to the particular machine� We will see how these patterns
are de�ned in a later section of this Chapter� This mapping of an internal machine pattern to a
meaning is refered to as a data type�

Given a representation of information� we would like to be able to perform operations on this
data such as addition or comparison� The fundamental operations provided in a computer are
very simple logical and arithmetic operations
 however� these simple operations can be combined
to perform more complex operations� For example� multiplication can be performed by doing
repeated additions� The basic operations provided by a particular computer are called instruc�

tions and a well de�ned sequence of these instructions is called a program� It is the job of the
programmer� then� to represent the information of the problem using the data types provided and
to specify the sequence of operations which must be performed to solve the problem� As we will

�

� CHAPTER �� INTRODUCTION

Hardware

Software

Word Processing Spread Sheet Etc�

Applications

� �� �Peripherals CPU
Memory

Main

Memory

Secondary

Shell Editor Compiler File System

Scheduler Memory Manager I�O System Protection

Operating System

Utilities

User Programs

Figure ���
 Computer System Block Diagram

see in Section ������ because of the simple nature of the operations available� specifying the proper
sequence of instructions to perform a task can be a very complex and tedious task� Fortunately
for us� this task has been made simpler these days �using the computers themselves	 through the
use of high level programming languages� It is one of these languages� the C language that we will
discuss in this text�

��� Computer System Organization

Before we look at the C language� let us look at the overall organization of computing systems�
Figure ��� shows a block diagram of a typical computer system� Notice it is divided into two
major sections
 hardware and software�

����� Computer Hardware

The physical machine� consisting of electronic circuits� is called the hardware� It consists of
several major units
 the Central Processing Unit �CPU	� Main Memory� Secondary Memory and
Peripherals�

The CPU is the major component of a computer
 the �electronic brain� of the machine� It
consists of the electronic circuits needed to perform operations on the data� Main Memory is
where programs that are currently being executed as well as their data are stored� The CPU

���� COMPUTER SYSTEM ORGANIZATION �

fetches program instructions in sequence� together with the required data� from Main Memory
and then performs the operation speci�ed by the instruction� Information may be both read
from and written to any location in Main Memory so the devices used to implement this block
are called random access memory chips �RAM	� The contents of Main Memory �often simply
called memory	 are both temporary �the programs and data reside there only when they are
needed	 and volatile �the contents are lost when power to the machine is turned o�	�

The Secondary Memory provides more long term and stable storage for both programs and
data� In modern computing systems this Secondary Memory is most often implemented using
rotating magnetic storage devices� more commmonly called disks �though magnetic tape may also
be used	
 therefore� Secondary Memory is often referred to as the disk� The physical devices
making up Secondary Memory� the disk drives� are also known as mass storage devices because
relatively large amounts of data and many programs may be stored on them�

The disk drives making up Secondary Memory are one form of Input�Output �I�O	 device since
they provide a means for information to be brought into �input	 and taken out of �output	 the CPU
and its memory� Other forms of I�O devices which transfer information between humans and the
computer are represented by the Peripherals box in Figure ���� These Peripherals include of devices
such as terminals � a keyboard �and optional mouse	 for input and a video screen for output� high�
speed printers� and possibly �oppy disk drives and tape drives for permanent� removable storage of
data and programs� Other I�O devices may include high�speed optical scanners� plotters� multiuser
and graphics terminals� networking hardware� etc� In general� these devices provide the physical
interface between the computer and its environment by allowing humans or even other machines
to communicate with the computer�

����� Computer Software � The Operating System

Hardware is called �hard� because� once it is built� it is relatively di�cult to change� However�
the hardware of a computer system� by itself� is useless� It must be given directions as to what
to do� i�e� a program� These programs are called software
 �soft� because it is relatively easy to
change both the instructions in a particular program as well as which program is being executed
by the hardware at any given time� When a computer system is purchased� the hardware comes
with a certain amount of software which facilitates the use of the system� Other software to run
on the system may be purchased and�or written by the user� Some major vendors of computer
systems include
 IBM� DEC� HP� AT�T� Sun� Compaq� and Apple�

The remaining blocks in Figure ��� are typical software layers provided on most computing
systems� This software may be thought of as having a hierarchical� layered structure� where each
layer uses the facilities of layers below it� The four major blocks shown in the �gure are the
Operating System� Utilities� User Programs and Applications�

The primary responsibility of the Operating System �OS	 is to �manage� the �resources� pro�
vided by the hardware� Such management includes assigning areas of memory to di�erent programs
which are to be run� assigning one particular program to run on the CPU at a time� and con�
trolling the peripheral devices� When a program is called upon to be executed �its operations

� CHAPTER �� INTRODUCTION

performed	� it must be loaded� i�e� moved from disk to an assigned area of memory� The OS may
then direct the CPU to begin fetching instructions from this area� Other typical responsibilities
of the OS include Secondary Storage management �assignment of space on the disk	� a piece of
software called the �le system� and Security �protecting the programs and data of one user from
activities of other users that may be on the same system	�

Many mainframe machines normally use proprietary operating systems� such as VM and CMS
�IBM	 and VAX VMS and TOPS �� �DEC	� More recently� there is a move towards a standard�
ized operating system and most workstations and desktops typically use Unix �AT�T and other
versions	� A widely used operating system for IBM PC and compatible personal computers is DOS
�Microsoft	� Apple Macintosh machines are distinguished by an easy to use proprietary operating
system with graphical icons�

����� Utility Programs

The layer above the OS is labeled Utilities and consists of several programs which are primarily
responsible for the logical interface with the user� i�e� the �view� the user has when interacting
with the computer� �Sometimes this layer and the OS layer below are considered together as the
operating system	� Typical utilities include such programs as shells� text editors� compilers� and
�sometimes	 the �le system�

A shell is a program which serves as the primary interface between the user and the operating
system� The shell is a �command interpreter�� i�e� is prompts the user to enter commands for
tasks which the user wants done� reads and interprets what the user enters� and directs the OS to
perform the requested task� Such commands may call for the execution of another utility �such as
a text editor or compiler	 or a user program or application� the manipulation of the �le system� or
some system operation such as logging in or out� There are many variations on the types of shells
available� from relatively simple command line interpreters �DOS	 or more powerful command line
interpreters �the Bourne Shell� sh� or C Shell� csh in the Unix environment	� to more complex� but
easy to use graphical user interfaces �the Macintosh or Windows	� You should become familiar
with the particular shell�s	 available on the computer you are using� as it will be your primary
means of access to the facilities of the machine�

A text editor �as opposed to a word processor	 is a program for entering programs and data
and storing them in the computer� This information is organized as a unit called a �le similar to a
�le in an o�ce �ling cabinet� only in this case it is stored on the disk� �Word processors are more
complex than text editors in that they may automatically format the text� and are more properly
considered applications than utilities	� There are many text editors available �for example vi and
emacs on Unix systems	 and you should familiarize yourself with those available on your system�

As was mentioned earlier� in today�s computing environment� most programming is done in
high level languages �HLL	 such as C� However� as we shall see in Section ������ the computer
hardware cannot understand these languages directly� Instead� the CPU executes programs coded
in a lower level language called the machine language� A utility called a compiler is program
which translates the HLL program into a form understandable to the hardware� Again� there are

���� REPRESENTING DATA AND PROGRAM INTERNALLY �

many variations in compilers provided �for di�erent languages� for example	 as well as facilities
provided with the compilers �some may have built�in text editors or debugging features	� Your
system manuals can describe the features available on your system�

Finally� another important utility �or task of the operating system	 is to manage the �le system
for users� A �le system is a collection of �les in which a user keeps programs� data� text material�
graphical images� etc� The �le system provides a means for the user to organize �les� giving them
names and gathering them into directories �or folders	 and to manage their �le storage� Typical
operations which may be done with �les include creating new �les� destroying� renaming� and
copying �les�

����� User Programs and Applications

Above the utilities in Figure ��� is the block labeled User Programs� It is at this level where a
computer becomes specialized to perform a task to solve a user�s problem� Given a task that
needs to be performed� a programmer can design and code a program to perform that task using
the text editors� compilers� debuggers� etc� The program so written may make use of operating
system facilities� for example to do I�O to interact with the program user� It is at this level that
the examples� exercises and problems in this text will be written�

However� not everyone who uses a computer is a programmer or desires to be a programmer� As
well� if every time a new task was presented to be programmed� one had to start from scratch with
a new program� the utility and ease of using the computers would be reduced� These days packages
of prede�ned software� or Applications� are available from many vendors in the industry� Highly
functional word processors� desktop publishing packages� spread sheet and data base programs and�
yes� games are readily available for computer users as well as programmers� In fact� perhaps most
computer users these days access their machines exclusively through these application programs�

A computer system is typically purchased with an operating system� a variety of utilities �such
as compilers for high level languages and text editors	 and application programs� Without the
layers of software in modern computers� computer systems would not be as useful and popular as
they are today� While the complexity of these underlying layers has increased greatly in recent
years� the net e�ect has been to make computers easier for people to use�

In the remainder of this Chapter we will take a more detailed look at how data and programs
are represented within the machine� We �nally discuss the design of programs and their coding in
the C language before beginning a detailed description in Chapter ��

��� Representing Data and Program Internally

In a computer� it is the hardware discussed in the previous section that stores data items and
programs and that performs operations on these items� This hardware is implemented using
electronic circuits called gates which� because we are talking about digital computers� represent

� CHAPTER �� INTRODUCTION

information using only two values
 True and False� In most machines� these two values are
represented by two di�erent voltages with in the circuit
 for example � Volts representing a False
value� and �� Volts representing a True value� One such value is called a binary digit or bit
and each such bit can be considered to be a symbol for a piece of information� However� in
computer applications we need to represent information that can have more than just two values�
i�e� we have more than � symbols� So bits are grouped together and the pattern of values on
the group is used to represent a symbol� For example� a group of � bits� called a byte can have
��� di�erent patterns �we will see how below	 and therefore represent ��� di�erent symbols� In
modern computers� groupings of bytes �usually � or �	� called words can represent larger �chunks�
of information�

Simply representing symbols in a computer� however� is not su�cient� We also need to process
the information� i�e� perform operations on it� The designers of the hardware make use of an
algebra� called Boolean Algebra� which uses two values� � and �� and logical operations �AND�
OR and NOT	 to design the circuits that perform more complex operations on bytes and words
of data� These complex operations are the instruction set of the computer and are the basic
tools the programmer has to write software for the computer� All executable programs must be
sequences of instructions from this set which includes basic arithmetic� logical� store and retrieve�
and program control instructions� The instructions themselves can also be represented in the
machine as patterns of bits�

This section �rst discusses how di�erent types of data are represented using patterns of bits�
then describes how data� as well as instructions� are stored in memory� and �nally gives a short
example of how instructions are represented�

����� Representing Data

Standard methods for representing commonly used numeric and non�numeric data have been
developed and are widely used� While a knowledge of internal binary representation is not required
for programming in C� an understanding of internal data representation is certainly helpful�

Binary Representation of Integers

As mentioned above� all data� including programs� in a computer system is represented in terms
of groups of binary digits� A single bit can represent one of two values� � or �� A group of two
bits can be used to represent one of four values

�� ��� �

�� ��� �

�� ��� �

�� ��� �

If we have only four symbols to represent� we can make a one�to�one correspondence between the
patterns and the symbols� i�e�� one and only one symbol is associated with each binary pattern�

���� REPRESENTING DATA AND PROGRAM INTERNALLY �

For example� the numbers �� �� �� and � are mapped to the patterns above�

Such a correspondence is called a code and the process of representing a symbol by the
corresponding binary pattern is called coding or encoding� Three binary digits can be used to
represent eight possible distinct values using the patterns

��� ���

��� ���

��� ���

��� ���

A group of k binary digits �bits	 can be used to represent �k symbols� Thus� � bits are used to
represent �� � ��� values� �� bits to represent ��� � ���� values� and so on� It should be clear by
now that powers of two play an important role because of the binary representation of all data�
The number ���� is close to one thousand� and it is called �K� where K stands for Kilo
 nK equals
n � ����� and if n � �m� then nK is �����m��

We will �rst present a standard code for natural numbers� i�e�� unsigned integers �� �� �� �� ��
etc� There are several ways to represent these numbers as groups of bits� the most natural way
is analogous to the method we use to represent decimal numbers� Recall� a decimal �or base ��	
representation uses exactly ten digit symbols �� �� �� �� �� �� �� �� �� and �� Any decimal number
is represented using a weighted positional notation�

For example� a single digit number� say �� represents just nine� because the weight of the
rightmost position is �� A two digit number� say ��� represents thirty plus nine� The rightmost
digit has a weight �� and the next digit to the left has a weight of ��� So� we multiply � by ���
and add � multiplied by �� Thus� for decimal notation the weights for the digits starting from the
rightmost digit and moving to the left are �� ��� ���� and so on� as shown below�

� � � � � � digit position
������ ����� ���� ��� �� � position weight

Thus�

���� � �� � �	 � �� � ��	 � �� � ���	 � �� � ����	

The positional weights are the powers of the base value ��� with the rightmost position having
the weight of ���� the next positions to the left having in succession the weight of ���� ���� ����
and so on� Such an expression is commonly written as a sum of the contribution of each digit�
starting with the lowest order digit and working toward the largest weight
 that is� as sums of
contributions of digits starting from the rightmost position and working toward the left�

Thus� if i is an integer written in decimal form with digits dk

� CHAPTER �� INTRODUCTION

i � dn��dn�� � � � d�d�d�

then i represents the sum

i �
n��X

k	�

dk � ��k

where n is the total number of digits� and dk is the kth digit from the rightmost position in the
decimal number�

Binary representation of numbers is written in exactly the same manner� The base is �� and
a number is written using just two digits symbols� � and �� The positional weights� starting from
the right are now powers of the base �� The weight for the rightmost digit is �� � �� the next digit
has the weight of �� � �� the next digit has the weight of �� � �� and so on� Thus� the weights for
the �rst ten positions from the right are as follows

�� � � � � � � � � � � position
���� ��� ��� ��� �� �� �� � � � � pos� weights

A natural binary number is written using these weights� For example� the binary number

� � � � �

represents the number whose decimal equivalent is

�� � �
 � � � �� � ��

and the binary number
� � � � � � � �

represents the number whose decimal equivalent is

�� � �� � �� � � � �� � ��� � ���

When a binary number is stored in a computer word with a �xed number of bits� unused bits
to the left �leading bits	 are set to �� For example� with a �� bit word� the binary equivalent of
��� is

���� ���� ���� ����

We have shown the bits in groups of four to make it easier to read�

In general� if i is an integer written in binary form with digits bk

i � bn��bn�� � � � b�b�b�

���� REPRESENTING DATA AND PROGRAM INTERNALLY �

then its decimal equivalent is

i �
n��X

k	�

bk � �k

As we said� a word size of k bits can represent �k distinct patterns� We use these patterns to
represent the unsigned integers from � to �k � �� For example� � bits have �� distinct patterns
representing the equivalent decimal unsigned integers � to ��� � bits for decimal numbers � through
���� and so forth�

Given this representation� we can perform operations on these unsigned integers� Addition of
two binary numbers is straightforward� The following examples illustrate additions of two single
bit binary numbers�

� � � �

�� �� �� ��

��� ��� ��� ���

� � � ��

The last addition� � � �� results in a sum digit of � and a carry forward of �� Similarly� we can
add two arbitrary binary numbers� b� and b�

������ �carry forward �

b� ������ �base �� value	
��

�b� ������� �base �� value	 ���

��� ��������

sum ������ �base �� value	 �
�

Decimal to Binary Conversion

We have seen how� given a binary representation of a number� we can determine the decimal
equivalent� We would also like to go the other way
 given a decimal number� �nd the corresponding
binary pit pattern representing this number� In general� there are two approaches
 one generates
the bits from the most signi�cant �the leftmost bit	 to the least signi�cant
 the other begins with
the rightmost bit and proceeds to the leftmost�

In the �rst case� to convert a decimal number� n� to a binary number� determine the highest
power� k� of � that can be subtracted from n

r � n� �k

�� CHAPTER �� INTRODUCTION

and place a � in the kth binary digit position� The process is repeated for the remainder r� and
so forth until the remainder is zero� All other binary digit positions have a zero� For example�
consider a decimal number ���� The largest power of � less than ��� is �� ��
	

��� � �
 � ��� � �� � ��
�� � �� � �� � �� � �
� � �� � � � � � �
� � �� � � � � � �
� � �� � � � � � �

So we get

weights ��� �
 �� �� �
 � �

� � � � �

which� for an � bit representation give

���� ����

In the alternate method� we divide n by �� using integer division �discarding any fractional
part	� and the remainder is the next binary digit moving from least signi�cant to most� In the
example below� the � operation is called mod and is the remainder from integer division�

��� � � � � ��� � � � ��
�� � � � � �� � � � ��
�� � � � � �� � � � ��
�� � � � � �� � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

Reading the bits top to bottom �lling right to left� the number is

���� ����

Representing Signed Integers

The binary representation discussed above is a standard code for storing unsigned integer numbers�
However� most computer applications use signed integers as well
 i�e� integers that may be either
positive or negative� There are several methods used for representing signed numbers�

The �rst� and most obvious� is to represent signed numbers as we do in decimal� with an
indicator for the sign followed by the magnitude of the number as an unsigned quantity� For
example� we write

����

����

���� REPRESENTING DATA AND PROGRAM INTERNALLY ��

In binary we can use one bit within a representation �usually the most signi�cant or leading bit	
to indicate either positive ��	 or negative ��	� and store the unsigned binary representation of the
magnitude in the remaining bits� So for an �� bit word� we can represent the above numbers as

����
 ���� ���� ���� ����

����
 ���� ���� ���� ����

However
 for reasons of ease of design of circuits to do arithmetic on signed binary numbers
�e�g� addition and subtraction	� a more common representation scheme is used called two�s

complement� In this scheme� positive numbers are represented in binary� the same as for unsigned
numbers� On the other hand� a negative number is represented by taking the binary representation
of the magnitude� complementing all bits �changing ��s to ��s and ��s to ��s	� and adding � to the
result�

Let us examine the ��s complement representation of ���� and ���� using �� bits� For �����
the result is the same as for unsigned numbers

����
 ���� ���� ���� ����

For ����� we begin with the unsigned representation of ���

���� ���� ���� ����

complement each bit

���� ���� ���� ����

and add � to the above to get ��s complement

����
 ���� ���� ���� ����

This operation is reversible� that is� the magnitude �or absolute value	 of a two�s complement
representation of a negative number can be obtained with the same procedure
 complement all
bits

���� ���� ���� ����

and add �

���� ���� ���� ����

In a two�s complement representation� we can still use the most signi�cant bit to determine
the sign of the number
 � for positive� and � for negative� Let us determine the decimal value of
a negative ��s complement number

���� ���� ���� ����

This is a negative integer since the leading bit is �� so to �nd its magnitude we complement all
bits
�

���� ���� ���� ����

�� CHAPTER �� INTRODUCTION

and add �

���� ���� ���� ����

The decimal magnitude is ��� and the sign is negative� so� the original integer represents decimal
����

In determining the range of integers that can be represented by k bits� we must allow for the
sign bit� Only k � � bits are available for positive integers� and the range for them is � through
��k���� �� The range of negative integers representable by k bits is �� through ���k���� Thus� the
range of integers representable by k bits is ���k��� through ��k���� �� For example� for � bits� the
range of signed integers is ������� through ������ � �� or ���� to �����

It can be seen from the above analysis that� due to a �nite number of bits used to represent
numbers� there are limits to the largest and�or smallest numbers that can be represented in the
computer� We will discuss this further in Chapter ��

Octal and Hexadecimal Representations

One important thing to keep in mind at this point is that we have been discussing di�erent
representations for numbers� Whether a number is expressed in binary� e�g� ������� or decimal�
��� it is still the same number� namely nineteen� It is simply more convenient for people to
think in decimal and for the computer to use binary� However� converting the computer binary
representation to the human decimal notation is somewhat tedious� but at the same time writing
long strings of bits is also inconvenient and error prone� So two other representation schemes
are commonly used in working with binary representations� These schemes are call octal and
hexadecimal �sometimes called hex	 representations and are simply positional number systems
using base � and ��� respectively�

In general� an unsigned integer� i� consisting of n digits di written as

i � dn��dn�� � � � d�d�d�d�

in any base is interpreted as the sum

i �
n��X

k	�

dk � basek

If the base is � �binary	� the symbols which may be used for the digits di are �� �!� If the base
is �� �decimal	 the digit symbols are �� �� �� �� �� �� �� �� �� �!� Likewise� for base � �octal	 the
digit symbols are �� �� �� �� �� �� �� �!
 and for hexadecimal �base ��	 they are �� �� �� �� �� �� ��
�� �� �� a� b� c� d� e� f!� The letter symbols� a� b� c� d� e� f! �upper case A� B� C� D� E� F! may
also be used	 give us the required �� symbols and correspond to decimal values ��� ��� ��� ��� ���
��! respectively� Using the above sum� it should be clear that the following are representations for
the same number

Base ��
 ���
Base �
 ���� ���� ���� ����
Base �
 ������
Base ��
 ��A�

���� REPRESENTING DATA AND PROGRAM INTERNALLY ��

For hexadecimal numbers� the positional weights are� starting from the right� �� ��� ���� etc�
Here are a few examples of converting hex to decimal

Hexadecimal Decimal
�� � " � � � " �� � ��
�E �� " � � � " �� � ��

�C� � " � � �� " �� � � " ��� � ���

Similarly� octal numbers are base � numbers with weights �� �� ��� etc� The following are some
examples of converting octal to decimal

Octal Decimal
�� � " � � � " � � �
�� � " � � � " � � ��

��� � " � � � " � � � " �� � ���

The reason octal and hex are so common in programming is the ease of converting between
these representations and binary� and vice versa� For hexadecimal numbers� exactly four bits are
needed to represent the symbols � through F� Thus� segmenting any binary number into � bit
groups starting from the right� and converting each group to its hexadecimal equivalent gives the
hexadecimal representation�

Binary
 ���� ����
Hex
 A �

�� " �� � � " �
Decimal
 ���

As a side e�ect� conversion from binary to decimal is much easier by �rst converting to hex and
then to decimal� as shown above�

Similarly� segmenting a binary number into three bit groups starting from the right gives us
the octal representation� Thus� the same number can be expressed in octal as

Binary
 �� ��� ���
Octal
 � � �

� " �� � � " � � � " �
Decimal
 ���

Conversion of base � or base �� numbers to binary is very simple
 for each digit� its binary
representation is written down� Conversion between octal and hex is easiest done by converting
to binary �rst

�� CHAPTER �� INTRODUCTION

Decimal ��� ��� �� ��

Binary �������� �������� ������ ������

Hexadec� ���� ���� ���� ���� ���� ���� ���� ����

�X
A �XC
 �X�� �X�F

Octal �� ��� ��� �� ��� ��� �� ��� ��� �� ��� ���

��
� ���
 ��� �

Table ���
 Number Representations

Hex
 � f �
Binary
 ���� ���� ����

Binary
 ��� ��� ��� ���
Octal
 � � � �

Some additional examples of equivalent hexadecimal� octal� binary� and decimal numbers are
shown in Table ��� In a programming language we need a way to distinguish numbers written in
di�erent bases �base �� ��� ��� or �	� In C source programs� a simple convention is used to write
constants in di�erent bases� Decimal numbers are written without leading zeros� Octal numbers
are written with a leading zero� e�g� ���� is octal ���� Hexadecimal numbers are written with
a leading zero followed by an x or X� followed by the hexadecimal digits� Thus� �xA� will mean
hexadecimal A�� �Binary numbers are not used in source programs	�

Representing Other Types of Data

So far we have discussed representations of integers� signed and unsigned
 however� many appli�
cations make use of other types of data in their processing� In addition� some applications using
integers require numbers larger than can be stored in the available number of bits� To address
these problems� another representation scheme� called �oating point is used� This scheme allows
representation of numbers with fractional parts �real numbers	 as well as numbers that may be
very large or very small�

Representation of �oating point numbers is analogous to decimal scienti�c notation� For
example

����� � �� � �

���� REPRESENTING DATA AND PROGRAM INTERNALLY ��

����� � �� � �

By adjusting the decimal place� as in the last case above� a number of this form consists of
just three parts
 a fractional part called the mantissa� a base� and an exponent� Over the years�
several schemes have been devised for representing each of these parts and storing them as bits in
a computer� However� in recent years a standard has been de�ned by the Institute for Electrical
and Electronics Engineers �IEEE Standard ���	 which is gaining in acceptance and use in many
computers� A detailed description of these schemes� and their relative tradeo�s� is beyond the
scope of this text
 however� as programmers� it is su�cient that we realize that we can express
�oating point numbers either in decimal with a fractional part

���������

or using exponential form

���������E � �

���������E � �

where E or e refers to exponent of the base ��� in this case	� As with integers� due to the �xed
number of bits used in the representation� there are limits to the range �largest and smallest
numbers	 and the precision �number of digits of accuracy	 for the numbers represented�

Another widely used data type is character data which is non�numeric and includes all the sym�
bols normally used to represent textual material such as letters� digits and punctuation� Chapter
� discusses the representation of character data in detail� however� the principle is the same
 some
pattern of bits is selected to represent each symbol to be stored�

These are the principle data types provided by programming languages� but as we will see
in future Chapters� languages also provide a means for the programmer to de�ne their own data
types and storage schemes�

����� Main Memory

Now that we have seen that information �data	 can be represented in a computer using binary
patterns� we can look at how this information is stored within the machine� An electronic circuit
that can be switched ON or OFF can represent one binary digit or one bit of information� A
class of such devices �called �ip��ops	 which can retain the value of a bit� even after the input
to them changes �though only as long as power is applied to them	� can be used to store a bit�
The Main Memory block of Figure ��� is constructed of many of these devices� organized so that
data �and instructions	 may be stored there and subsequently accessed� Memory in present day
computers is usually organized as a sequence of bytes �a byte is a group of eight bits	� Each byte
in memory is given a unique unsigned integer address� which may be considered its �name�� �See
Figure ���	� A row of houses on a street with street addresses or a row of numbered mailboxes
are reasonable analogies to memory addresses� The CPU �or any other device wishing to access
memory	 may place an address on a set of wires connected to the memory �called the address
bus	 in order to either read �load	 or write �store	 information in memory� Once information

�� CHAPTER �� INTRODUCTION

���� ���� ���� ����

���� ���� ���� ����
���� ���� ���� ����
���� ���� ���� ����

���� ���� ���� ����
���� ���� ���� ����
���� ���� ���� ����
���� ���� ���� ����
���� ���� ���� ����
���� ���� ���� ����

FFFF

���B
���A
����

����
����
����
����
����
����

Binary Hex

Address

Memory

Bytes

� � �

� � �

Figure ���
 Memory and Addresses

has been written to a particular location �address	 in memory� it will remain unchanged unless
a subsequent write is performed to the same address� Multiple bytes may be accessed �either
simultaneously or sequentially	 for data items large than a single byte� Like other information in
the computer� an address is represented internally in binary� In the �gure� we have shown the
addresses both in binary and in hexadecimal form�

Computers are often classi�ed by how many bits may be accessed simultaneously� e�g� �� bits
or �� bits� The maximum number of bytes directly addressable in a computer depends on the
number of bits in the memory address� A �� bit machine usually allows �� bits for address and a
�� bit machine usually allows anywhere form �� to �� bits for address� Since n bits can represent
�n values� �� bit addresses can address �� KBytes �i�e� ������ bytes from byte addresses � to
�����	 and �� bit addresses can address � GigaBytes �over ������������� bytes	 directly�

����� Representing Programs

As has been mentioned� in addition to data being stored in memory� the program to be executed is
also stored there in the form of a sequence of instructions� It is the CPU shown in Figure ��� that
is responsible for fetching instructions� one at a time� from memory and performing the speci�ed
operation on data� A more detailed picture of the CPU with its memory is shown in Figure ����
Within the CPU are several key components
 the ALU� a set of Registers� and a Control Unit�

The ALU �Arithmetic Logic Unit	 is a digital circuit which is designed to perform arithmetic

���� REPRESENTING DATA AND PROGRAM INTERNALLY ��

A
A�
� �

�
��A

A
AA

Opcode Address

� �

�

Control

Unit

Registers

Alu

CPU Memory

Instruction

Address

Data

Figure ���
 CPU and Memory Con�guration

�add� subtract	 operations as well as logic �AND� OR	 operations on data� The registers in the
CPU are a small scratchpad memory to temporarily store data while it is in use� The Control
Unit is another circuit which determines what operation is being requested by an instruction and
controls the other circuitry to carry out that operation
 i�e� the Control Unit directs all operations
within the machine�

Also shown in the �gure are the connections between the CPU and Memory� They consist of
an address bus� as mentioned in the previous Section� and a data bus� over which all information
�data and program	 passes between the CPU and Memory�

This Section describes how programs are stored in the machine as a sequence of instructions
coded in binary� Such an encoding is called the machine language of the computer and is
described below�

Machine Language

The basic operations that the CPU is capable of performing are usually quite simple and the set
of these operations provided on a particular computer is called the instruction set� Within this
set are instructions which can move data from one place to another� for example from memory to
a CPU register
 an operation called load� Similarly there are store instructions for moving data
from the CPU to a location in memory� In addition there are instructions directing arithmetic

�� CHAPTER �� INTRODUCTION

operations� such as add� on data values� There are also instructions which control the �ow of the
program
 i�e� that determine from where in memory the next instruction should be fetched� Nor�
mally instructions are fetched sequentially � the next instruction is fetch from the next memory
address
 however� these control instructions may test a condition and direct that the next instruc�
tion be fetched from somewhere else in memory instead� Finally� there may also be instructions in
the set for �housekeeping� operations within the machine� such as controlling external I�O devices�

To encode these instructions in binary form for storage in memory� some convention must be
adopted to describe the meaning of the bits in the instruction� Most of the instructions described
above require at least � pieces of information � a speci�cation of what particular instruction this
is� called the opcode or operation code� and the address of the data item on which to operate�
These parts can be seen in Figure ��� in the block labeled instruction�

Instructions coded in binary form are called machine language instructions and the col�
lection of these instructions that make up a program is called a machine language program�
Such a program is very di�cult for a person to understand or to write� Just imagine thinking in
terms of binary codes for very low level instructions and in terms of binary memory addresses for
data items� It is not practical to do so except for very trivial programs� Humans require a higher
level of programming languages that are more adapted to our way of thinking and communicating�
Therefore� at a level a little higher than machine language� is a programming language called as�
sembly language which is very close to machine language� Each assembly instruction translates
to one machine language instruction� The main advantage is that the instructions and memory
cells are not in binary form
 they have names� Assembly instructions include operational codes�
�i�e�� mnemonic or memory aiding names for instructions	� and they may also include addresses of
data� An example of a very simple program fragment for the machine described above is shown in
Figure ���� The �gure shows the machine language code and its corresponding assembly language
code� De�nitions of memory cells are shown below the program fragment�

The machine language code is shown in binary� It consists of � bits of opcode and �� bits of
address for each instruction� From the assembly language code it is a little easier to see what this
program does� The �rst instruction loads the data stored in memory at a location known as �Y�
into the CPU register �for CPU�s with only one register� this is often called the accumulator	� The
second instruction adds the data stored in memory at location �X� to the data in the accumulator�
and stores the sum back in the accumulator� Finally� the value in the accumulator is stored back
to memory at location �Y�� With the data values shown in memory in the �gure� at the end of
this program fragment� the location known as �Y� will contain the value ���

A utility program is provided to translate the assembly language code �arguably	 readable
by people into the machine language code readable by the CPU� This program is called the
assembler� The program in the assembly language or any other higher language is called the
source program� whereas the program assembled into machine language is called the object
program� The terms source code and object code are also used to refer to source and object
programs�

Assembly language is a decided improvement over programming in machine language� however�
we are still stuck with having to manipulate data in very simple steps such as load� store� add�
etc�� which can be a tedious� error prone process� Fortunately for us� programming languages at

���� DESIGNING PROGRAMS AND THE C LANGUAGE ��

Program Fragment	 Y � Y � X

Machine Language Code Assembly Language

�Binary Code� Code

Opcode Address

���� ���� ���� ���� ���� ���� LOAD Y

���� ���� ���� ���� ���� ���� ADD X

���� ���� ���� ���� ���� ���� STORE Y

Memory Cell Definitions	

Addr� Name Cell Contents

���� X ��

���� Y ��

Figure ���
 Machine and Assembly Language Program Fragment

higher levels still� languages closer to the way we think about programming� have been developed
along with translators �called compilers	 for converting to object programs� One such language
is C� which is the subject of this text and is introduced in the next Section�

��� Designing Programs and the C Language

We de�ned a program as an organized set of instructions stating the steps to be performed by
a computer to accomplish a task� Computer programming is the process of planning� im�
plementing� testing� and revising �if necessary	 the sequences of instructions in order to develop
successful programs� In writing computer programs we must specify with precise� unambiguous
instructions exactly what we want done and the order in which it should be done� Before we can
write the actual program� we must either know or develop a step�by�step procedure� or algorithm�
that will accomplish the task� We can then implement the algorithm by coding it into a source
language program�

����� Designing The Algorithm

An algorithm is a general solution of a problem which can be written as a verbal description of
a precise� logical sequence of actions� Cooking recipes� assembly instructions for appliances and

�� CHAPTER �� INTRODUCTION

pay

calculate

cum� total

update

pay

print

data

read

Payroll

Task

pay disbursed

print

� �� �

� �
�loop	

proc � empl�

Figure ���
 Structural Diagram for Payroll Task

toys� or precise directions to reach a friend�s house� are all examples of algorithms� A computer
program is an algorithm expressed in a speci�c programming language� An algorithm is the key
to developing a successful program�

Suppose a business o�ce requires a program for computing its payroll� There are several people
employed� They work regular hours� and sometimes overtime� The task is to compute pay for
each person as well as compute the total pay disbursed�

Given the problem� we may wish to express our recipe or algorithm for solving the payroll
problem in terms of repeated computations of total pay for several people� The logical modules
involved are easy to see�

Algorithm	 PAYROLL

Repeat the following while there is more data	

get data for an individual�

calculate the pay for the individual from the current data�

and� update the cumulative pay disbursed so far�

print the pay for the individual�

After the data is exhausted� print the total pay disbursed�

Figure ��� shows a structural diagram for our task� This is a layered diagram showing the
development of the steps to be performed to solve the task� Each box corresponds to some subtask
which must be performed� On each layer� it is read from left to right to determine the performance
order� Proceeding down one layer corresponds to breaking a task up into smaller component steps
� a re�nement of the algorithm� In our example� the payroll task is at the top and that box
represents the entire solution to the problem� On the second layer� we have divided the problem
into two subtasks
 processing a single employee�s pay in a loop �to be described below	� and

���� DESIGNING PROGRAMS AND THE C LANGUAGE ��

HHH���HH
H�
��more�

no
�

�
read data

start

�

�

�

�

�

�

�

calc pay

update

cum total

print pay

print pay

disbursed

read data

end

yes

Figure ���
 Flow Chart for Payroll Task

printing the total pay disbursed for all employees� The subtask of processing an individual pay
record is then further re�ned in the next layer� It consists of� �rst reading data for the employee�
then calculating the pay� updating a cumulative total of pay disbursed� and �nally printing the
pay for the employee being processed�

The structural diagram is useful in developing the steps involved in designing the algorithm�
Boxes are re�ned until the steps within the box are �doable�� Our diagram corresponds well with
the algorithm developed above� However� this type of diagram is not very good at expressing the
sequencing of steps in the algorithm� For example� the concept of looping over many employees
is lost in the bottom layer of the diagram� Another diagram� called a �ow chart is useful for
showing the control �ow of the algorithm� and can be seen in Figure ���� Here the actual �ow
of control for repetitions is shown explicitly� We �rst read data since the control �ow requires us
to test if there is more data� If the answer is �yes� we proceed to the calculation of pay for an
individual� updating of total disbursed pay so far� and printing of the individual pay� We then
read the next set of data and loop back to the test� If there is more data� repeat the process�
otherwise control passes to the printing of total disbursed pay and the program ends�

�� CHAPTER �� INTRODUCTION

From this diagram we can write our re�ned algorithm as shown below� However� one module
may require further attention
 the one that calculates pay� Each calculation of pay may involve
arithmetic expressions such as multiplying hours worked by the rate of pay� It may also involve
branching to alternate computations if the hours worked indicate overtime work� Incorporating
these speci�cs� our algorithm may be written as follows

Algorithm	 PAYROLL

get �first� data� e�g�� id� hours worked� rate of pay

while more data �repeat the following�

if hours worked exceeds
�

�then� calculate pay using overtime pay calculation

otherwise calculate pay using regular pay calculation

calculate cumulative pay disbursed so far

print the pay statement for this set of data

get �next� data

print cumulative pay disbursed

The algorithm is the most important part of solving di�cult problems� Structural diagrams
and �ow charts are tools that make the job of writing the algorithm easier� especially in complex
programs� The �nal re�ned algorithm should use the same type of constructs as most programming
languages� Once an algorithm is developed� the job of writing a program in a computer language
is relatively easy
 a simple translation of the algorithm steps into the proper statements for the
language� In this text� we will use algorithms to specify how tasks will be performed� Programs
that follow the algorithmic logic will then be easy to implement� Readers may wish to draw
structural diagrams and �ow charts as visual aids in understanding complex algorithms�

There is a common set of programming constructs provided by most languages useful for
algorithm construction� including

� Branching
 test a condition� and specify steps to perform for the case when the condition is
satis�ed �True	� and �optionally	 when the condition is not satis�ed �False	� This construct
was used in our algorithm as

if overtime hours exceed
�

then calculate pay using overtime pay calculation

otherwise calculate pay using regular pay calculation

� Looping
 repeat a set of steps as long as some condition is True� as seen in

while new data repeat the following

���

���� DESIGNING PROGRAMS AND THE C LANGUAGE ��

� Read or print data from�to peripheral devices� Reading of data by programs is called data
input and writing by programs is called data output� The following steps were used in our
algorithm

read data

write�print data� individual pay� disbursed pay

Languages that include the above types of constructions are called algorithmic languages

and include such languages as C� Pascal� and FORTRAN�

A program written in an algorithmic language must� of course� be translated into machine
language� A Utility program� called a compiler� translates source programs in algorithmic lan�
guages to object programs in machine language� One instruction in an algorithmic language� called
a statement� usually translates to several machine level instructions� The work of the compiler�
the translation process� is called compilation�

To summarize� program writing requires �rst formulating the underlying algorithm that will
solve a particular problem� The algorithm is then coded into an algorithmic language by the
programmer� compiled by the compiler� and loaded into memory by the operating system� Finally�
the program is executed by the hardware�

����� The C Language

In this text� our language of choice for implementing algorithms is C� C was originally developed
on a small machine �PDP���	 by Dennis Ritchie for implementing the UNIX operating system
at Bell Laboratories in Murray Hill� New Jersey ��������	� C is now used for a wide range of
applications including UNIX implementations� systems programming� scienti�c and engineering
computation� spreadsheets� and word processing� In fact� the popularity of C has encouraged the
development of a C standard by the American National Institute of Standards �ANSI	� This text
adheres to ANSI C� Major di�erences between ANSI C and �old C� are pointed out in Appendix
B� References at the end of this chapter include books by Kernighan and Ritchie �� �!� which
de�ne both traditional C and ANSI C as well as a reference to the proposed ANSI C standard by
Harbison and Steele �!�

In keeping with the original intent� C is a small language
 however� it features modern control
�ow and data structures and a rich set of operators� C provides a wealth of constructs� or state�
ments� which correspond to good algorithmic structures� C uses a standard library of functions to
perform many routine tasks such as input and output and string operations� Since C is oriented
towards the use of a library of functions� programs in C tend to be modular with numerous small
functional modules� It is also possible for users to develop their own libraries of functions to
improve program development�

C is fairly standard
 programs written in C are easily moved from one machine to another� Such
portability of programs is a major advantage in that applications developed on one computer can be

�� CHAPTER �� INTRODUCTION

used elsewhere� This allows one to write clear and algorithmically well structured programs� Such a
structured programming approach is very important in developing complex� error�free applications�

C provides low level logic operations� normally available only in machine language or assembly
language� Low level operations are required for systems programming� such as writing operating
systems and other programs at the system level� Today� many operating systems are written in C�
C is also suitable for writing scienti�c and engineering programs� for example it provides double
precision computations of real numbers� as well as long integer computation which can be useful
in many applications where a large range of integers is required�

As a �rst programming language C has some weaknesses
 however� they can be overcome by
discipline in writing programs� In the text� we will indicate items that beginning programmers
need to watch out for�

��� Summary

In this Chapter we have given a brief overview of modern computing systems� including both the
hardware and software� We had described how information is represented in these machines� both
data and programs� We have discussed the development of algorithms as the �rst� and probably
most important step in writing a program� As we shall see� programming is a design process
 an
algorithm is written� coded� and tested followed by iteration� Programs are not written in one
step � initial versions are developed and then re�ned and improved�

One brief note about the organization of chapters in the text� In this chapter �following the
References	 are two sections labeled Exercises and Problems� These are very important sections in
learning to program� because the only way to learn and improve programming skills is to program�
The exercises are designed to be done with pencil�and�paper� They test the key concepts and
language constructs presented in the chapter� The problems are generally meant to be computer
exercises� They present problems for which programs should be written� By writing these programs
you will increase your experience in the methods and thought processes that go into developing
ever more complex applications�

With the background of this Chapter� we are ready to begin looking at the speci�cs of the C
language� so

E ho#omaka k$akou�
�Let�s start��

���� REFERENCES ��

��� References

 �! Kernighan� Brian W�� and Ritchie� Dennis M� The C Programming Language� First Edition�
Englewood Cli�s� N�J�
 Prentice�Hall� �����

 �! Kernighan� Brian W�� and Ritchie� Dennis M� The C Programming Language� Second Edition�
Englewood Cli�s� N�J�
 Prentice�Hall� �����

 �! Harbison� Samuel P�� and Steele� Guy L� Jr�� C
 A Reference Manual� Second Edition� Engle�
wood Cli�s� N�J�
 Prentice�Hall� �����

�� CHAPTER �� INTRODUCTION

��� Exercises

�� Convert the following binary numbers into decimal values

���� ���� ���� ����

���� ���� ���� ����

���� ���� ���� ����

�� Convert the following octal numbers into decimal

����
�

������

���

�� Convert the following hexadecimal numbers into decimal

�A

FF

��

�� Convert the following decimal integer values into binary� octal� and hexadecimal

���

��

���

�� Add the following binary numbers

���� ���� ���� ����

���� ���� ���� ����

���� ���� ���� ����

�� Add the following octal numbers

����
�

������

���

�� Add the following hexadecimal numbers

�A

FF

��

�� How many distinct binary strings can be formed with n bits%

���� EXERCISES ��

�� Find the negative of the following binary numbers in a two�s complement representation

���� ���� ���� ����

���� ���� ���� ����

���� ���� ���� ����

��� Represent the following in two�s complement form using �� bits

���

���

����

��� What is the largest positive integer that can be stored in n bits� with one leading bit reserved
for the sign bit% Explain� Negative integer% Assume two�s complement representations�

�� CHAPTER �� INTRODUCTION

��� Problems

�� Develop an algorithm for the calculation of the value of each stock and the total value of a
portfolio of stocks� Draw a structural diagram and write the algorithm using constructions
used in the text�

�� Develop an algorithm for calculating and printing the squares of a set of numbers� Draw a
structural diagram� a �ow chart� and write the algorithm�

�� Develop an algorithm for calculation of the grade point ratio for each student� i�e�� �total
grade points	 � �total credit hours	� Each student earns grades ����	 in a set of courses�
each course with di�erent credit hours ����	� Grade points in one course are given by the
product of the grade and the credit hours for the course� Draw a structural diagram and a
�ow chart�

�� Assume that an �add� operator is available� but not a �multiply� operator in a programming
language� Develop an algorithm that will multiply two positive integers using only the �add�
operator�

�� Assume that you are only able to read the numeric value of each successive digits of a decimal
integer one digit at a time� The objective is to �nd the overall numeric value of the number�
As each new digit is read� the overall numeric equivalent must be updated to allow for the
new digit� For example� if the digits read are ���� and �� the result printed should be ����
Extend the algorithm for a number in any speci�ed base�

�� Log in to the computer system available to you� Practice using the text editor available by
entering the following simple program and storing it in a �le

main��

�

printf��hello world�n���

�

�� Compile the program you entered in Problem �� Note which �le have been created during
compilation� Execute the compiled program�

�� Explore the computer you will be using� See what applications may be available to you such
as electronic mail� and news�

Chapter �

Basic Concepts

Learning to program is a lot like learning to speak a new language� You must learn new vocabulary�
i�e� the words of the language� the syntax� �also called the grammar�� i�e� the form of statements
in the language� as well as the semantics� i�e� the meaning of the words and statements� This
learning process usually begins slowly but often you �nd that with just a few basic words and
phrases you can begin conversing and getting your thoughts across� In this chapter we present a
few of the basic statements of the C language so that you can write programs from the beginning�

As in spoken languages� the �rst thing you need is something to say � an idea� In the program	
ming world� this idea is often in the form of a task� i�e� something you would like to have done
by the computer� The task may be described in terms of what information is to be provided to
the computer� what is to be done with this information� and what results should be produced by
the program� A program is often developed in small increments� starting with a relatively simple
version of the task and progressing to more complex ones� adding features until the entire task can
be solved� The focus is always on the task to be performed� The task must be clearly understood
in order to proceed to the next step� the development of an algorithm� As was discussed in the
previous chapter� an algorithm is a step by step description of what must be done to accom	
plish a task� These can be considered to be the most important steps in programming� specifying
and understanding the task �what is to be done�� and designing the algorithm �how it is to be
done�� We take this approach beginning in this chapter� and we will discuss task development and
algorithm design in more detail in Chapter
�

Once an algorithm is clearly stated� the next step is to translate the algorithm into a pro�

gramming language� In our case this will be the C language� Using the vocabulary� syntax� and
semantics of the language� we can code the program to carry out the steps in the algorithm� After
coding a program� we must test it by running it on the computer to ensure that the desired task is
indeed performed correctly� If there are bugs� i�e� errors in the program� they must be removed�
in other words an erroneous program must be debugged so it performs correctly� The job of pro	
gramming includes the entire process� algorithm development� and coding� testing and debugging
the program�

At the end of the Chapter� you should know�

�

� CHAPTER �� BASIC CONCEPTS

� How to code simple programs in C�

� How a program allocates memory to store data� called variables�

� How variables are used to store and retrieve data� and to make numeric calculations�

� How decisions are made based on certain events� and how a program can branch to di�erent
paths�

� How a set of computations can be repeated any number of times�

� How a program can be tested for errors and how the errors may be removed�

��� A Simple C Program

The easiest way to learn programming is to take simple tasks and see how programs are developed
to perform them� In this section we will present present one such program explaining what it does
and showing how it executes� A detailed description of the syntax of the statments used is given
in Section ����

����� Developing the Algorithm

In the previous chapter we introduced a payroll task which can be summarized as a task to
calculate pay for a number of people employed by a company� Let us assume that each employee
is identi�ed by an id number and that his�her pay is computed in terms of an hourly rate of
pay� We will start with a simple version of this task and progress to more complex versions� The
simplest version of our task can be stated as follows�

Task

PAY�� Given the hours worked and rate of pay� write a program to compute the pay for a person
with a speci�ed id number� Print out the data and the pay�

The algorithm in this case is very simple�

print title of program�

set the data� set id number� hours worked� and rate of pay�

set pay to the product of hours worked and rate of pay�

print the data and the results�

With this algorithm� it should be possible� without too much trouble� to implement the corre	
sponding program in almost any language since the fundamental constructs of most algorithmic

���� A SIMPLE C PROGRAM
�

programming languages are similar� While we will discuss the features of C� similar features are
usually available for most high level languages�

����� Translating the Algorithm to C

A program in a high level language� such as C� is called a source program or source code�
�Code is a generic term used to refer to a program or part of a program in any language� high or
low level�� A program is made up of two types of items� data and procedures� Data is information
we wish to process and is referred to using its name� Procedures are descriptions of the required
steps to process the data and are also given names� In C� all procedures are called functions� A
program may consist of one or more functions� but it must always include a function called main�
This special function� main��� acts as a controller� directing all of the steps to be performed and
is sometimes called the driver� The driver� like a conductor or a coordinator� may call upon other
functions to carry out subtasks� When we refer to a function in the text� we will write its name
followed by parentheses� e�g� main��� to indicate that this is the name of a function�

The program that implements the above algorithm in C is shown in Figure ���� Let us �rst
look brie�y at what the statements in the above program do during execution�

Any text between the markers� �� and �� is a comment or an explanation� it is not part of the
program and is ignored by the compiler� However� comments are very useful for someone reading
the program to understand what the program is doing� We suggest you get in the habit of including
comments in your programs right from the �rst coding� The �rst few lines between �� and ��

are thus ignored� and the actual program starts with the function name� main��� Parentheses are
used in the code after the function name to list any information to be given to the function� called
arguments� In this case� main�� has no arguments� The body of the function main�� is a number
of statements between braces f and g� each terminated by a semi	colon�

The �rst two statements declare variables and their data types� id number is an integer type�
and hours worked� rate of pay� and pay are �oating point type� These statements indicate that
memory should be allocated for these kinds of data and gives names to the allocated locations�
The next statement writes or prints the title of the program on the screen�

The next three statements set the variables id number� hours worked� and rate of pay to
some initial values� id number is set to ��
� hours worked to ����� and rate of pay to ���� The
next statement sets the variable pay to the product of the values of hours worked and rate of pay�
Finally� the last three statements print out the initial data values and the value of pay�

����� Running the Program

The program is entered and stored in the computer using an editor and saved in a �le called pay	
c�
The above source program must then be compiled� i�e� translated into a machine language object

program using a compiler� Compilation is followed� usually automatically� by a linking process
during which the compiled program is joined with other code for functions that may be de�ned

� CHAPTER �� BASIC CONCEPTS

�� File� pay	
c

Programmer� Programmer Name

Date� Current Date

This program calculates the pay for one person� given the hours worked

and rate of pay

��

main��

� �� declarations ��

int id�number�

float hours�worked�

rate�of�pay�

pay�

�� print title ��

printf�
���Pay Calculation����n�n
��

�� initialize variables ��

id�number � ����

hours�worked � �	
	

rate�of�pay � �
��

�� calculate pay ��

pay � hours�worked � rate�of�pay�

�� print data and results ��

printf�
ID Number � �d�n
� id�number��

printf�
Hours Worked � �f� Rate of Pay � �f�n
�

hours�worked� rate�of�pay��

prinf�
Pay � �f�n
� pay��

�

Figure ���� Code for pay��c

���� ORGANIZATION OF C PROGRAMS � SIMPLE STATEMENTS

elsewhere� The C language provides a library of standard functions which are linked to every
program and are available for use in the program� The end result is an executable machine
language program also in a �le� The executable machine language program is the only one that
can be executed on a machine� We will use the term compilation to mean both compiling and
linking to produce an executable program�

When the above program is compiled and executed on a computer� a sample session produces
the following on the terminal�

���Pay Calculation���

ID Number � ���

Hours Worked � �	
						� Rate of Pay � �
�					

Pay � ��	
						

Throughout this text� we will show all information printed by the computer in typewriter

style characters� As programs will frequently involve data entry by the user of the program
during execution� in a sample session� all information typed in by the user will be shown in slanted

characters�

��� Organization of C Programs � Simple Statements

We will now explain the syntax and semantics of the above program statements in more detail�
Refer back to the source program in Figure ��� as we explain the statements in the program�

����� Comment Statements

As already mentioned� the text contained within �� and �� is called a comment� When the
character pair �� is encountered� all subsequent text is ignored until the next �� is encountered�
Comments are not part of the program� they are private notes that the programmer makes about
the program to help one understand the logic� Comments may appear anywhere in a program but
cannot contain other comments� i�e�� they cannot be nested� For example�

�� This is a comment
 �� Nested comments are not allowed �� this part

is not in a comment
 ��

The comment starts with the �rst ��� When the �rst matching �� is encountered after the word
allowed� the comment is ended� The remaining text is not within the comment and the compiler
tries to interpret the remaining text as program statement�s�� most likely leading to errors�

� CHAPTER �� BASIC CONCEPTS

����� De�ning a Function � main��

To de�ne a function in C� the programmer must specify two things� the function header� giving
a name and other information about the function� and the function body� where the variables
used in the function are de�ned and the statements which perform the steps of the function are
speci�ed�

The Function Header

In C� main�� is the function that controls the execution of every program� The program starts
executing with the �rst statement of main�� and ends when main�� ends� As we shall soon see�
main�� may call upon� i�e� use� other functions to perform subtasks�

The �rst line of any function is the function header which speci�es the name of the function
together with a parenthesized �possibly empty� argument list� In the above case� there is no
argument list� We will discuss the concepts of arguments and argument lists in the next chapter�

The Function Body

The body of the function is contained within braces f and g� In C� a group of statements within
braces is called a block which may contain zero or more statements and which may be nested� i�e�
there may be blocks within blocks� A block is treated and executed as a single unit and is often
called a compound statement� Such a compound statement may be used anywhere a statement
can occur�

A program statement is like a sentence in English� except that it is terminated by a semi	colon�
Statements within a block may be written in free form� i�e� words in programs may be separated by
any amount of white space� �White space consists of spaces� tabs� or newlines �carriage returns���
Use of white space to separate statements and parts of a single statement makes programs more
readable and therefore easier to understand�

The function body �as for any block� consists of two parts� variable declarations and a list of

statements� Variable declarations will be described in more detail in the next section� however� all
such declarations must occur at the beginning of the block� Once the �rst executable statement
is encountered� no more declarations may occur for that block�

There are two types of statements used in our example �Figure ����� assignment statements
and statements for printing information from the program� These will be discussed more below�
The execution control �ow proceeds sequentially in this program� when the function is executed�
it begins with the �rst statement in the body and each statement is executed in succession� When
the end of the block is reached� the function terminates� As we will soon see� certain control
statements can alter this sequential control �ow in well de�ned ways�

���� ORGANIZATION OF C PROGRAMS � SIMPLE STATEMENTS
�

����� Variable Declarations

A variable is a language construct for identifying the data items used within a block� The
declaration statements give names to these data items and specify the type of the item� The �rst
two statements in our program are such declarations� The information we have in our task is the
employee ID� the number of hours worked by the employee and the rate of pay� In addition� we will
compute the total amount of pay for the employee and must declare a variable for this information�
We have named variables for this information� id number� hours worked� rate of pay� and pay�
We have also speci�ed the type of each� for example� id number is a whole number which requires
an integer type� so the keyword int is used� The remaining data items are real numbers �they
can have fractional values�� so the keyword float is used to specify �oating point type�

Variables of appropriate type �int� float� etc�� must be declared at the head of the block in
which they are used� Several variables of the same type may be grouped together in a declaration�
separated by commas�

int id�number�

float hours�worked�

rate�of�pay�

pay�

The names we have chosen for the variables are somewhat arbitrary� however� to make programs
readable and easier to understand� variable names should be descriptive and have some meaning
to the programmer� In programming languages� names are called identi�ers and must satisfy
certain rules�

First� identi�ers may not be keywords �such as int and float� which have special meaning
in C and are therefore reserved� All of these reserved words are listed in Appendix A� Otherwise�
identi�ers may include any sequence of lower and upper case letters� digits� and underscores�
but the �rst character must be a letter or an underscore �though the use of an underscore as
a �rst character is discouraged�� Examples of legal identi�ers include PAD��� pad��� room ��	�
etc� Alphabetic letters may be either lower case or upper case which are di�erent� i�e� PAY� Pay�
and pay are distinct identi�ers for three di�erent objects� There is no limit to the length of an
identi�er� however� there may be an implementation dependent limit to the number of signi�cant
characters that can be recognized by a compiler� �This means that if two identi�ers do not di�er
in their �rst n characters� the compiler will not recognize them as distinct identi�ers� A typical
value for n might be
���

The general form for a declaration statement is�

�type speci�er� �identi�er��� �identi�er�� � � ��

Throughout this text we will be presenting syntax speci�cations as shown above� The items
surrounded by angle brackets ���� are constructs of the language� for example �type speci�er�
is a type speci�er such as int or float� and �identi�er� is a legal identi�er� Items surrounded

� CHAPTER �� BASIC CONCEPTS

Size�

Type�

Name�

Addr�

�

int

id number

���

�

�oat

hours worked

���

�

�oat

rate of pay

���

�

�oat

pay

��A

�� �� �� ��
Mem

Cells

main��

Figure ���� Allocation of Memory Cells or Objects

by square brackets �� �� are optional� i�e� they may or may not appear in a legal statement� The
ellipsis �� � � � indicates one or more repetitions of the preceding item� Any other symbols are
included in the statement exactly as typed� So� in words� the above syntax speci�cation says that
a declaration statement consists of a type speci�er followed by an identi�er and� optionally� one
or more other identi�ers separated by commas� all terminated by a semicolon�

As for the semantics �meaning� of this statement� a declaration statement does two things�
allocates memory within the block for a data item of the indicated type� and assigns a name to
the location� As we saw in Chapter �� data is stored in the computer in a binary form� and di�erent
types of data require di�erent amounts of memory� Allocating memory for a data item means to
reserve the correct number of bytes in the memory for that type� i�e� choosing the address of the
memory cells where the data item is to be stored�

Figure ��� shows memory allocation for the declarations in our program as it might occur on
a �� bit machine� The outer box shows that these variables have been allocated for the function
main��� For each variable we show the size of the data item �in bytes�� its type� name and
assigned address assignment �in hex� above the box representing the cell itself� In the future�
we will generally show only the memory cell and its name in similar diagrams� Note that the
declaration statements do not put values in the allocated cells� We indicate this with the �� in
the boxes�

Memory cells allocated for speci�c data types are called objects� An object is identi�ed by its
starting address and its type� The type determines the size of the object in bytes and the encoding
used to represent it� A variable is simply a named object which can be accessed by using its name�
An analogy is gaining access to a house identi�ed by the name of the person living there� Smith
house� Anderson house� etc�

���� ORGANIZATION OF C PROGRAMS � SIMPLE STATEMENTS
�

main��

Size�

Type�

Name�

Addr�

�

int

id number

���

�

�oat

hours worked

���

�

�oat

rate of pay

���

�

�oat

pay

��A

��
Mem

Cells
��
 ���� ���

Figure ��
� Assignment of Values

Memory is automatically allocated for variables declared in a block when the block is entered
during execution� and the memory is freed when the block is exited� Such variables are called
automatic variables� The scope of automatic variables� i�e� the part of a program during
which they can be used directly by name� is the block in which they are de�ned�

����	 The Assignment Statement

The next three statements in our program assign initial values to variables� i�e� store initial values
into objects represented by the variables� The assignment operator is ��

id�number � ����

hours�worked � �	
	�

rate�of�pay � �
��

Each of the above statements stores the value of the expression on the right hand side of the
assignment operator into the object referenced by the variable on the left hand side� e�g� the
value stored in id number is ��
 �Figure ��
�� We will say the �current� value of id number is
��
� The value of a variable may change in the course of a program execution� for example� a
new assignment can store new data into a variable� Storing new data overwrites the old data�
otherwise� the value of a variable remains unchanged�

The �right hand side� of these three assignments is quite simple� a decimal constant� �The
compiler will take care of converting the decimal number we use in the source code into its

� CHAPTER �� BASIC CONCEPTS

main��

Size�

Type�

Name�

Addr�

�

int

id number

���

�

�oat

hours worked

���

�

�oat

rate of pay

���

�

�oat

pay

��A

Mem

Cells
��
 ���� ��� �����

Figure ���� Computation of pay

appropriate binary representation�� However� in general the right hand side of an assignment
may be an arbitrary expression consisting of constants� variable names and arithmetic operators
�functions may also occur within expressions�� For example� next� we calculate the product of the
value of hours worked and the value of rate of pay� and assign the result to the variable pay�
The multiplication operator is ��

pay � hours�worked � rate�of�pay�

The semantics of the assignment operator is as follows� the expression on the right hand side of
the assignment operator is �rst evaluated by replacing each instance of a variable by its current
value and the operators are then applied to the resulting operands� Thus� the above right hand
side expression is evaluated as�

�	
	 � �
�

The resulting value of the expression on the right hand side is then assigned to the variable on
the left hand side of the assignment operator� Thus� the value of ���� � ���� i�e� ������ is stored
in pay �Figure �����

The above assignment expression may be paraphrased in English as follows�

�SET pay TO THE VALUE OF hours worked � rate of pay�

or�

���� ORGANIZATION OF C PROGRAMS � SIMPLE STATEMENTS

�ASSIGN TO pay THE VALUE OF hours worked � rate of pay�

The syntax of an assignment statement is�

�Lvalue���expression��

The class of items allowed on the left hand side of an assignment operator is called an Lvalue�
a mnemonic for left value� Of course� �Lvalue� must always reference an object where a value is
to be stored� In what we�ve see so far� only a variable name can be an �Lvalue�� Later we will
see other ways of referencing an object which can be used as an �Lvalue��

As we can see from the above discussion� variables provide us a means for accessing information
in our program� Using a variable on the left hand side of an assignment operator allows us to
store a value in its memory cell� Variables appearing elsewhere in expressions cause the current
value of the data item to be read and used in the expression�

In C every expression evaluated during execution results in a value� Assignment is also an
expression� therefore also results in a value� Assignment expressions may be used anywhere ex	
pressions are allowed� The rule for evaluating an assignment expression is� evaluate the expression
on the right hand side of the assignment operator� and assign the value to the variable on the left
hand side� The value of the entire assignment expression is the value assigned to the left hand side
variable� For example� x � �	 assigns �� to x� and the value of the entire assignment expression
is ��� So if we wrote y � x � �	� the variable y would be assigned the value of the expression x �

�	� namely ��� In our programming example we have used assignment expressions as statements
but ignored their values�

Any expression terminated by a semi	colon is a statement� Of course� a statement is typically
written to perform some useful action� Some additional examples of expressions as statements
are�

�	�

� � �	�

z � �	 � � � �	�

�

The last statement is an empty statement which does nothing� The expressions in the �rst two
statements accomplish nothing since nothing is done with their values�

C has a rich set of operators for performing computations in expressions� The common arith	
metic operators and their meanings are shown in Table ���� Two types of operators are shown�
unary operators which take one operand� and binary operators which take two operands� The
unary operators� � and � a�ect the sign of the operand� The binary operators are those you are
familiar with� except possibly �� This is the mod operator� which we will describe below� but
�rst one other point to make is that for the division operator �� if both operands are type integer�
then integer division is performed� discarding and fractional part with the result also being type

�� CHAPTER �� BASIC CONCEPTS

Operator Name Example and Comments

� plus sign �x
� minus sign �x

� addition x � y
� subtraction x� y

� multiplication x � y
� division x�y

if x� y are both integers�
then x�y is integer�
e�g�� ��
 is ��

� modulus x�y
x and y MUST be integers�
result is remainder of
�x�y�� e�g�� ��
 is ��

Table ���� Arithmetic Operators

integer� Otherwise� a �oating point result is produced for division� The mod operator evaluates
to the remainder after integer division� Speci�cally� the following equality holds�

�x�y� � y � �x�y� � x�

In words� if x and y are integers� multiplying the result of integer division by the denominator
and adding the result of mod produces the numerator� We will see many more operators in future
chapters�

����
 Generating Output

Writing programs which declare variables and evaluate expressions would not be very useful if
there were no way to communicate the results to the user� Generally this is done by printing �or
writing� messages on the output�

Output of Messages

It is a good practice for a program to indicate its name or title when it is executed to identify the
task which is being performed� The next statement in our program is�

printf�
���Pay Calculation����n�n
��

���� ORGANIZATION OF C PROGRAMS � SIMPLE STATEMENTS ��

The statement prints the program title on the terminal� This statement invokes the standard
function printf�� provided by every C compiler in a standard library of functions� The function
printf�� performs the subtask of writing information to the screen� When this statement is
executed� the �ow of control in the program passes to the code for printf��� and when printf��

has completed whatever it has to do� control returns to this place in the program� These sequence
of events is called a function call�

As can be seen in this case� a function can be called by simply using its name followed by a
�possibly empty� pair of parentheses� Anything between the parentheses is called an argument

and is information being sent to the function� In the above case� printf�� has one argument�
a string of characters surrounded by double quotes� called a format string� As we shall soon
see� printf�� can have more than one argument� however� the �rst argument of printf�� must
always be a format string� This printf�� statement will write the following to the screen�

���Pay Calculation���

followed by two newlines� Note that all of the characters inside the double quotes have been
printed �but not the quotes themselves�� except those at the end of the string� The backslash
character� n�� in the string indicates an escape sequence� It signals that the next character
must be interpreted in a special way� In this case� �nn� prints out a newline character� i�e� all
further printing is done on the next line of output� We will encounter other escape sequences in
due time� Two newline escape sequences are used here� the �rst completes the line where ����Pay
Calculation���� was written� and the second leaves a blank line in the output�

Output of Data

In addition to printing �xed messages� printf�� can be used to print values of expressions by
passing the values as additional arguments separated by commas� We print out values of the initial
data and the result with the statements�

printf�
ID Number � �d�n
� id�number��

printf�
Hours Worked � �f� Rate of Pay � �f�n
�

hours�worked� rate�of�pay��

printf�
Pay � �f�n
� pay��

The �rst argument of printf�� must always be a format string and may be followed by any
number of addition argument expressions �in this case simple variable names�� As before� all
regular characters in the format string are printed until the symbol �� The � and the following
character� called a conversion speci�cation� indicate that the value of the next argument is to
be printed at this position in the output� The conversion character following � determines the
format to be printed� The combination �d signals that a decimal integer value is to be printed
at this position� Similarly� �f indicates that a decimal �oating point value is to be printed at the

�� CHAPTER �� BASIC CONCEPTS

indicated position� �To write a � character itself� use �� in the format string�� Each conversion
speci�er in the format string will print the value of one argument in succession�

The �rst printf�� statement prints the value of id number in the position where �d is located�
The internal form of the value of id number is converted to a decimal integer format and printed
out� The output is�

ID Number � ���

The next printf�� writes the value of hours worked at the position of the �rst �f� and the value
of rate of pay at the position of the second �f� The internal forms are converted to decimal real
numbers �i�e�� �oating point� and printed� The output is�

Hours Worked � �	
						� Rate of Pay � �
�					

Observe that all regular characters in the format string� including the newline� are printed as
before� Only the format conversion speci�cation� indicated by a � followed by a conversion
character d or f� is replaced by the value of the next unmatched argument� The �oating point
value is printed with six digits after the decimal point by default�

The �nal statement prints�

pay � ��	
						

��� Testing the Program

As mentioned� the above program must be typed using an editor and saved in a �le which we have
called pay	
c� The program in C� a high level language� is called the source program or source
code� It must be translated into the machine language for the particular computer being used�
The machine language program is the only one that can be understood by the hardware�

A special program called a compiler is used to compile� i�e� translate a source program into a
machine language program� The resulting machine language program is called the object code
or object program� The object code may be automatically or optionally saved in a �le� The
terms source �le and object �le refer to the �les containing the corresponding source code and
object code�

The compiled object code is usually still not executable� The object code needs to be linked to
machine language code for certain functions� e�g� code for library functions such as printf��� to
create an executable machine language code �le� A linker or a link editor is used for this step of
linking disparate object codes� The linking step is usually automatic and transparent to the user�
We will refer to the executable code variously as the object code� the compiled program� or
the load module�

���� TESTING THE PROGRAM �

The executable code is then loaded into memory and run� The loading step is also transparent
to the user� the user merely issues a command to run the executable code�

For many systems� the convention is that the source �le name should end in
c as in pay	
c�
Conventions for object �le names di�er� on some systems object �les end in
obj� on others
they end in
o� �Consult your system manuals for details�� For compilation and execution� some
systems require separate commands� one to compile a C program and the other to execute a
compiled program� Other systems may provide a single command that both compiles and executes
a program� Check your operating system and compiler manuals for details�

For Unix systems� the cc command� with many available options� is used for compilation�
Examples are�

cc filename
c

cc �o outname filename
c

The �rst command line compiles the �le filename
c and produces an executable �le a
out� The
second directs that the executable �le is to be named outname� These programs are then run by
typing the executable �le name to the shell�

����� Debugging the Program

A program may have bugs� i�e� errors� in any of the above phases so these bugs must be removed�
a process called debugging� Some bugs are easy to remove� others can be di!cult� These bugs
may appear at one of three times in testing the program� compile time� link time� and run time�

When a program is compiled� the compiler discovers syntax �grammar� errors� which occur
when statements are written incorrectly� These compile time errors are easy to �x since the
compiler usually pinpoints them reasonably well� The astute reader may have noticed there are
bugs in the program shown in Figure ���� When the �le pay	
c is compiled on a Unix C compiler�
the following message is produced�

pay	
c
� line ��� syntax error at or near variable name
rate�of�pay

This indicates some kind of syntax error was detected in the vicinity of line �� near the variable
name rate of pay� On examining the �le� we notice that there is a missing semi	colon at the end
of the previous statement�

hours�worked � �	
	

Inserting the semi	colon and compiling the program again eliminates the syntax error� In another
type of error� the linker may not be able to �nd some of the functions used in the code so the
linking process cannot be completed� If we now compile our �le pay	
c again� we receive the
following message�

�� CHAPTER �� BASIC CONCEPTS

�bin�ld� Unsatisfied symbols�

prinf �code�

It indicates the linker was unable to �nd the function prinf which must have been used in our
code� The linker states which functions are missing so link time errors are also easy to �x� This
error is obvious� we didn�t mean to use a function� prinf��� but merely misspelled printf�� in
the statement

prinf�
Pay � �f�n
� pay��

Fixing this error and compiling the program again� we can successfully compile and link the
program� yielding an executable �le� As you gain experience� you will be able to arrive at a program
free of compile time and link time errors in relatively few iterations of editing and compiling the
program� maybe even one or two attempts�

A program that successfully compiles to an executable does not necessarily mean all bugs have
been removed� Those remaining may be detected at run time� i�e� when the program is executed
and may be of two types� computation errors and logic errors� An example of the former is an
attempt to divide by zero� Once these are detected� they are relatively easy to �x� The more
di!cult errors to �nd and correct are program logic errors� i�e� a program does not perform its
intended task correctly� Some logic errors are obvious immediately upon running the program�
the results produced by the program are wrong so the statement that generates those results is
suspect� Others may not be discovered for a long time especially in complex programs where logic
errors may be hard to discover and �x� Often a complex program is accepted as correct if it works
correctly for a set of well chosen data� however� it is very di!cult to prove that such a program is
correct in all possible situations� As a result� programmers take steps to try to avoid logic errors
in their code� These techniques include� but are not limited to�

Careful Algorithm Development

As we have stated� and will continue to state throughout this text� careful design of of the algorithm
is perhaps the most important step in programming� Developing and re�ning the algorithm using
tools such as the structural diagram and �ow chart discussed in Chapter � before any coding
helps the programmer get a clear picture of the problem being solved and the method used for the
solution� It also makes you think about what must be done before worrying about how to do it�

Modular Programming

Breaking a task into smaller pieces helps both at the algorithm design stage and at the debugging
stage of program development� At the algorithm design stage� the modular approach allows the
programmer to concentrate on the overall meaning of what operations are being done rather than
the details of each operation� When each of the major steps are then broken down into smaller

���� TESTING THE PROGRAM ��

steps� again the programmer can concentrate on one particular part of the algorithm at a time
without worrying about how other steps will be done�

At debug time� this modular approach allows for quick and easy localization of errors� When
the code is organized in the modules de�ned for the algorithm� when an error does occur� the
programmer can think in terms of what the modules are doing �not how� to determine the most
likely place where something is going wrong� Once a particular module is identi�ed� the same
re�nement techniques can be used to further isolate the source of the trouble without considering
all the other code in other modules�

Incremental Testing

Just as proper algorithm design and modular organization can speed up the debugging process�
incremental implementation and testing can assist in program development� There are two ap	
proaches to this technique� The �rst is to develop the program from simpler instances of the task
to more complex tasks as we are doing for the payroll problem in this chapter� The idea is to
implement and test a simpli�ed program and then add more complicated features until the full
speci�cation of the task is satis�ed� Thus beginning from a version of the program known to be
working correctly �or at least thoroughly tested�� when new features are added and errors occur�
the location of the errors can be localized to added code�

The second approach to incremental testing stems from the modular design of the code� Each
module de�ned in the design can be implemented and tested independently so that there is high
con�dence that each module is performing correctly� Then when the modules are integrated
together for the �nal program� when errors occur� again only the added code need be considered
to �nd and correct them�

Program Tracing

Another useful technique for debugging programs begins after the program is coded� but before it
is compiled and run� and is called a program trace� Here the operations in each statement of the
program are veri�ed by the programmer� In essence� the programmer is executing the program
manually using pencil and paper to keep track changes to key variables� Diagrams of variable
allocation such as those shown in Figures ���"��� may be used for this manual trace� Another
way of manually tracing a program is shown in Figure ���� Here the changes in variables is seen
associated with the statement which caused that change�

Program traces are also useful later in the debug phase� When an error is detected� a selective
manual trace of a portion or module of a program can be very instrumental in pinpointing the
problem� One word of caution about manual traces " care must be taken to update the variables
in the trace according to the statement as written in the program� not according to the intention
of the programmer as to what that statement should do�

Manual traces can become very complicated and tedious �one rarely traces an entire program��

�� CHAPTER �� BASIC CONCEPTS

�� File� pay	
c

Programmer� Programmer Name

Date� Current Date

This program calculates the pay for one person� given the

hours worked and rate of pay

��

main�� PROGRAM TRACE

� hours� rate�of�

�� declarations �� id�number worked pay pay

int id�number� ��

float hours�worked� ��

rate�of�pay� ��

pay� ��

�� print title ��

printf�
���Pay Calculation����n�n
��

�� initialize variables ��

id�number � ���� ��� �� �� ��

hours�worked � �	� ��� �	
	 �� ��

rate�of�pay � �
�� ��� �	
	 �
� ��

�� calculate results ��

pay � hours�worked � rate�of�pay�

��� �	
	 �
� ��	
	

�� print data and results ��

printf�
ID Number � �d�n
� id�number��

printf�
Hours Worked � �f� Rate of Pay � �f�n
�

hours�worked� rate�of�pay��

printf�
Pay � �f�n
� pay��

�

Figure ���� Program Trace for pay��c

���� INPUT� READING DATA ��

however selective application of this technique is a valuable debugging tool� Later in this chapter
we will discuss how the computer itself can assist us in generating traces of a program�

����� Documenting the Code

As a programmer� there are several �good� habits to develop for translating an algorithm into
a source code program which support debugging as well as general understanding of the code�
These habits fall under the topic of �coding for readability�� We have already mentioned a few of
these such as commenting the code and good choices of names for variables and functions� With
good naming� the syntax of the C language allows for relatively good self documenting code� i�e�
C source statements which can be read and understood with little e�ort�

Well documented code includes additional comments which clarify and amplify the meaning
or intention of the statements� A good source for comments in your code are the steps of the
algorithm you designed for the program� A well placed comment identifying which statements
implement each step of the algorithm makes for easily understood programs�

Another good habit is to include judicious amounts of white space in your program� The C
compiler would accept your program all written on one line� however� this would be very di!cult
for someone to read� Instead� space out your statements� separating groups of statements that
perform logically di�erent operations� It is also good to indent the statements in your program so
that blocks are clearly identi�ed at a glance� You will notice we have done that in Figure ��� and
will continue throughout this text� There is no standard for indenting code� so you should choose
a convention that is natural for you� as long as it is clear and you are consistent�

One last point� even though we have concentrated on the documentation of the code at the
end of our discussion on this program� good documentation should be considered throughout the
programming process� A bad habit to get into is to write the code and document it after it is
working� A good habit is to include documentation in the code from the beginning�

In this section we have looked in detail at a C program that solves our simpli�ed version of
the payroll problem� The program in �le pay	
c is not very useful since it can only be used to
calculate pay for a speci�ed set of data values because the data values are assigned to variables
as constants in the program itself� If we needed to calculate the pay with some other employee�
we would have to modify the program with new values and recompile and execute the program�
For a program to be useful� it should be �exible enough to use any set of data values� In fact� the
user should be able to enter a set of data during program execution� and the program should read
and use these data values�

��� Input� Reading Data

To address the de�ciency in our program mentioned above� the next task is to write a program
that reads data typed by the user at the keyboard� calculates pay� and prints out the data and

�� CHAPTER �� BASIC CONCEPTS

the results� In this case� the program must communicate with the user to get the input data�

Task

PAY�� Same as PAY�� except that the data values id number� hours worked� and rate of pay

should be read in from the keyboard�

The algorithm is the same as before except that the data is read rather than set�

print title of program�

read the data for id�number� hours�worked� and rate�of�pay�

set pay to the product of hours worked and rate of pay�

print the data and the results�

In the implementation of the above algorithm� we must read in data from the keyboard� In a
C program� all communication with a user is performed by functions available in the standard
library� We have already used printf�� to write on the screen� Similarly� a function� scanf��� is
available to read data in from the keyboard and store it in some object� Printf�� performs the
output function and scanf�� performs the input function�

The function scanf�� must perform several tasks� read data typed at the keyboard� convert
the data to its internal form� and store it into an object� In C� there is no way for any function�
including scanf��� to directly access a variable by its name de�ned in another function� Recall
that we said the scope of a variable was the block in which it was de�ned� and it is only within
this scope that a variable name is recognized� But if scanf�� cannot directly access a variable in
main��� it cannot assign a value to that variable� So how does scanf�� store data into an object�
A function can use the address of an object to indirectly access that object�

Therefore�scanf�� must be supplied with the address of an object in which a data value is
to be stored� In C� the address of operator� �� can be used to obtain the address of an object�
For example� the expression �x evaluates to the address of the variable x� To read the id number
from the keyboard and store the value into id number� hours worked and rate of pay we use
the statements�

scanf�
�d
� �id�number��

scanf�
�f
� �hours�worked��

scanf�
�f
� �rate�of�pay��

The �rst argument of scanf�� is a format string as it was for printf��� The conversion speci�ca	
tion� �d� speci�es that the input is in decimal integer form� Scanf�� reads the input� converts it to
an internal form� and stores it into an integer object whose address is given by the next unmatched
argument� In this case� the value read is stored into the object whose address is �id number� i�e�
the value is stored into id number� The remaining two scanf statements work similarly� except
the conversion speci�cation is �f� to indicate that a �oating point number is to be read� converted

���� INPUT� READING DATA �

� � � � � � � nn

Figure ���� Keyboard Bu�er

to internal form and stored in the objects whose addresses are �hours worked and �rate of pay

respectively� The type of the object must match the conversion speci�cation� i�e� an integer value
must be stored into an int type object and a �oating point value into a float object�

To better understand how scanf�� works� let us look in a little more detail� As a user types
characters at the keyboard they are placed in a block of memory called a bu�er �most but not
all systems bu�er their input�� The function scanf�� does not have access to this bu�er until
it is complete which is indicated when the user types the newline character� i�e� the RETURN
key� �see Figure ����� The function scanf�� then begins reading the characters in the bu�er one
at a time� When scanf�� reads numeric input� it �rst skips over any leading white space and
then reads a sequence of characters that make up a number of the speci�ed type� For example�
integers may only have a sign ��or�� and the digits � to
� A �oating point number may possibly
have a decimal point and the e or E exponent indicators� The function stops reading the input
characters when it encounters a character that does not belong to the data type� For example� in
Figure ���� the �rst scanf�� stops reading when it sees the space character after the
� The data
is then converted to an internal form and stored into the object address speci�ed in the argument�
Any subsequent scanf�� performed will begin reading where the last left o� in the bu�er� in this
case at the space� When the newline character has been read� scanf�� waits until the user types
another bu�er of data�

At this point we can modify our program by placing the scanf�� statements in the code
replacing the assignments to those variables� However� when we compile and execute the new
program� nothing happens� no output is generated and the program just waits� The user does not
know when a program is waiting for input unless the program prompts the user to type in the
desired items� We use printf�� statements to print a message to the screen telling the user what
to do�

printf�
Type ID Number�
��

scanf�
�d
� �id�number��

printf�
Hours Worked�
��

scanf�
�f
� �hours�worked��

printf�
Hourly Rate�
��

scanf�
�f
� �rate�of�pay��

The prompts are not necessary to read the data� without them� scanf�� will read what is typed�
but the user will not know when to enter the required data� We can now incorporate these
statements into a program that implements the above algorithm shown as the �le pay�
c in
Figure ���� When the program is run� here is the sample output�

���Pay Calculation���

�� CHAPTER �� BASIC CONCEPTS

�� File� pay�
c

Programmer� Programmer Name

Date� Current Date

This program calculates the pay for one person with the

hours worked and the rate of pay read in from the keyboard

��

main��

�

�� declarations ��

int id�number�

float hours�worked�

rate�of�pay�

pay�

�� print title ��

printf�
���Pay Calculation����n�n
��

�� read data into variables ��

printf�
Type ID Number�
��

scanf�
�d
� �id�number��

printf�
Hours Worked�
��

scanf�
�f
� �hours�worked��

printf�
Hourly Rate�
��

scanf�
�f
� �rate�of�pay��

�� calculate results ��

pay � hours�worked � rate�of�pay�

�� print data and results ��

printf�
�nID Number � �d�n
� id�number��

printf�
Hours Worked � �f� Rate of Pay � �f�n
�

hours�worked� rate�of�pay��

printf�
Pay � �f�n
� pay��

�

Figure ���� Code for pay��c

��	� MORE C STATEMENTS ��

Type ID Number� ���

Hours Worked� �

Hourly Rate� ��	

ID Number � ���

Hours Worked � �	
						� Rate of Pay � �
�					

Pay � ��	
						

Everything the user types at the keyboard is also echoed to the screen� and is shown here in slanted
characters�

We have now seen two ways of storing data into objects� assignment to an object and reading
into an object� Assignment stores the value of an expression into an object� Reading into an
object involves reading data from the input� converting it to an internal form� and storing it in an
object at a speci�ed address�

The function scanf�� can read several items of data at a time just as printf�� can print
several items of data at a time� For example�

scanf�
�d �f �f
� �id�number� �hours�worked� �rate�of�pay��

would read an integer and store it in id number� read a �oat and store it in hours worked� and
read a �oat and store it in rate of pay� Of course� the prompt should tell the user to type the
three items in the order expected by scanf���

��� More C Statements

Our program pay�
c is still very simple� It calculates pay in only one way� the product of
hours worked and rate of pay� Our original problem statement in Chapter � called for com	
puting overtime pay and for computing the pay for many employees� In this section we will look
at additional features of the C language which will allow us to modify our program to meet the
speci�cation�

��
�� Making Decisions with Branches

Suppose there are di�erent pay scales for regular and overtime work� so there are alternate ways of
calculating pay� regular pay and overtime pay� Our next task is to write a program that calculates
pay with work over �� hours paid at ��� times the regular rate�

�� CHAPTER �� BASIC CONCEPTS

Task

PAY�� Same as PAY�� except that overtime pay is calculated at ��� times the normal rate�

For calculating pay in alternate ways� the program must make decisions during execution� so�
we wish to incorporate the following steps in our algorithm�

if hours�worked is greater than �	
	�

then calculate pay as the sum of

excess hours at the overtime rate plus

�	
	 hours at regular rate�

otherwise� calculate pay at the regular rate

The program needs to make a decision� is hours worked greater than ����� If so� execute one
computation� otherwise� execute the alternate computation� Each alternate computation is im	
plemented as a di�erent path for program control �ow to follow� called a branch� C provides a
feature for implementing this algorithm form as follows�

if �hours�worked � �	
	�

pay � �	
	 � rate�of�pay �

�
� � rate�of�pay � �hours�worked � �	
	��

else

pay � hours�worked � rate�of�pay�

The above if statement �rst evaluates the expression within parentheses�

hours�worked � �	
	

and if the expression is True� i�e� hours worked is greater than ����� then the �rst statement is
executed� Otherwise� if the expression is False� the statement following the else is executed� After
one of the alternate statements is executed� the statement after the if statement will be executed�
That is� in either case� the program control passes to the statement after the if statement�

The general syntax of an if statement is�

if ��expression�	 �statement� �else �statement��

The keyword if and the parentheses are required as shown� The two �statement�s shown are
often called the then clause and the else clause respectively� The statements may be any valid
C statement including a simple statement� a compound statement �a block�� or even an empty
statement� The else clause� the keyword else followed by a �statement�� is optional� Omitting
this clause is equivalent to having an empty statement in the else clause� An if statement can be
nested� i�e� either or both branches may also be if statements�

��	� MORE C STATEMENTS �

PPPPPP������PP
PP

PP
��
��
��

� �

�

�

statement

expression

statement

False �optional�True

Figure ���� If statement control �ow

The semantics of the if statement are that the expression �also called the condition� is
evaluated� and the control �ow branches to the then clause if the expression evaluates to True�
and to the else clause �if any� otherwise� Control then continues with the statement immediately
after the if statement� This control �ow is shown in Figure ����

It should be emphasized that only one of the two alternate branches is executed in an if

statement� Suppose we wish to check if a number� x� is positive and also check if it is big� say
greater than ���� Let us examine the following statement�

if �x � 	�

printf�
�d is a positive number�n
� x��

else if �x � �		�

printf�
�d is a big number greater than �		�n
� x��

If x is positive� say ���� the �rst if condition is True and the �rst printf�� statement is executed�
The control does not proceed to the else part at all� even though x is greater than ���� The else
part is executed only if the �rst if condition is False� When two conditions overlap� one must
carefully examine how the statement are constructed� Instead of the above� we should write�

if �x � 	�

printf�
�d is a positive number�n
� x��

if �x � �		�

printf�
�d is a big number greater than �		�n
� x��

Each of the above is a separate if statement� If x is positive� the �rst printf�� is executed�
In either case control then passes to the next if statement� If x is greater than ���� a message

�� CHAPTER �� BASIC CONCEPTS

is again printed� Another way of writing this� since �x � �		� is True only when �x � 	�� we
could write�

if �x � 	� �

printf�
�d is a positive number�n
� x��

if �x � �		�

printf�
�d is a big number greater than �		�n
� x��

�

If �x � 	� is true� the compound statement is executed� It prints a message and executes the if

�x � �		�

 statement� Suppose� we also wish to print a message when x is negative� We can
add an else clause to the �rst if statement since positive and negative numbers do not overlap�

if �x � 	� �

printf�
�d is a positive number�n
� x��

if �x � �		�

printf�
�d is a big number greater than �		�n
� x��

�

else if �x � 	�

printf�
�d is a negative number�n
� x��

Something for you to think about� is there any condition for which no messages will be printed
by the above code�

Returning to our payroll example� suppose we wish to keep track of both regular and overtime
pay for each person� We can write the if statement�

if �hours�worked � �	
	� �

regular�pay � �	
	 � rate�of�pay�

overtime�pay � �
� � rate�of�pay � �hours�worked � �	
	��

�

else �

regular�pay � hours�worked � rate�of�pay�

overtime�pay � 	
	�

�

pay � regular�pay � overtime�pay�

Note� both clauses in this case are compound statements� each block representing a branch
is treated as a single unit� Whichever branch is executed� that entire block is executed� If
hours worked exceeds ����� the �rst block is executed� otherwise� the next block is executed�
Note� both blocks compute regular and overtime pay so that after the if statement the total
pay can be calculated as the sum of regular and overtime pay� Also observe that we have used
consistent data types in our expressions to forestall any unexpected problems� Since variables in
the expressions are float type� we have used �oating point constants �	
	� �
�� and 	
	�

��	� MORE C STATEMENTS ��

Operator Meaning
� greater than
�� greater than or equal to
� less than
�� less than or equal to
�� equal to
� not equal to

Table ���� Relational Operators

Relational Operators

The greater than operator� �� used in the above expressions is called a relational operator�
Other relational operators de�ned in C� together with their meanings are shown in Table ��� Note
that for those relational operators having more than one symbol� the order of the symbols must
be as speci�ed in the table ��� not ���� Also take particular note that the equality relational
operator is ��� NOT �� which is the assignment operator�

A relational operator compares the values of two expressions� one on each side of it� If the
two values satisfy the relational operator� the overall expression evaluates to True� otherwise�
it evaluates to False� In C� an expression that evaluates to False has the value of zero and
an expression that evaluates to True has a non	zero value� typically �� The reverse also holds�
an expression that evaluates to zero is interpreted as False when it appears as a condition and
expression that evaluates to non	zero is interpreted as True�

��
�� Simple Compiler Directives

In some of the improvements we have made so far to our program for PAY�� we have used numeric
constants in the statements themselves� For example� in the code�

if �hours�worked � �	
	� �

regular�pay � �	
	 � rate�of�pay�

overtime�pay � �
� � rate�of�pay � �hours�worked � �	
	��

�

else �

regular�pay � hours�worked � rate�of�pay�

overtime�pay � 	
	�

�

pay � regular�pay � overtime�pay�

we use the constant �	
	 as the limit on the number of regular pay hours �hours beyond this are
considered overtime�� and the constant �
� as the overtime pay rate �time and a half�� Use of

�� CHAPTER �� BASIC CONCEPTS

numeric constants �sometimes called �magic numbers�� in program code is often considered bad
style because the practice makes the program logic harder to understand and debug� In addition�
the practice makes programs less �exible� since making a change in the values of numeric constants
requires that the entire code be reviewed to �nd all instances where the �magic number� is used�

C� like many other programming languages� allows the use of symbolic names for constants
in programs� This facility makes use of the C preprocessor and takes the form of compiler

directives� Compiler directives are not� strictly speaking� part of the source code of a program�
but rather are special directions given to the compiler about how to compile the program� The
directive we will use here� the define directive� has syntax�

de�ne �symbol name� �substitution string�

All compiler directives� including define� require a as the �rst non	white space character in
a line� �Some older compilers require that be in the �rst column of a line but most modern
compilers allow leading white space on a line before �� The semantics of this directive is to de�ne
a string of characters� �substitution string�� which is to be substituted for every occurrence of the
symbolic name� �symbol name�� in the code for the remainder of the source �le� Keep in mind�
a directive is not a statement in C� nor is it terminated by a semi	colon� it is simply additional
information given to the compiler�

In our case� we might use the following compiler directives to give names to our numeric
constants�

 define REG�LIMIT �	
	

 define OT�FACTOR �
�

These directives de�ne that wherever the string of characters REG LIMIT occurs in the source �le�
it is to be replaced by the string of characters �	
	 and that the string OT FACTOR is to be replaced
by �
�� With these de�nitions� it is possible for us to use REG LIMIT and OT FACTOR in the program
statements instead of numeric constants� Thus our code would become�

if �hours�worked � REG�LIMIT� �

regular�pay � REG�LIMIT � rate�of�pay�

overtime�pay � OT�FACTOR � rate�of�pay � �hours�worked � REG�LIMIT��

�

else �

regular�pay � hours�worked � rate�of�pay�

overtime�pay � 	
	�

�

pay � regular�pay � overtime�pay�

The code is now more readable� it says in words exactly what we mean by these statements� Before
compilation proper� the preprocessor replaces the symbolic constants with strings that constitute

��	� MORE C STATEMENTS ��

actual constants� the string of characters �	
	 for the string REG LIMIT and �
� for OT FACTOR

throughout the source program code�

The rules for the symbol names in directives are the same as those for identi�ers� A common
practice used by many programmers is to use upper case for the symbolic names in order to
distinguish them from variable names� Remember� define directives result in a literal substitution
without any data type checking� or evaluation� It is the responsibility of the programmer to use
de�nes correctly� The source code is compiled after the preprocessor performs the substitutions�

The implementation of the PAY� algorithm incorporating the above de�nes and other improve	
ments discussed so far is shown in Figure ��
� Note in the code� when the hours worked do not
exceed REG LIMIT� the overtime pay is set to zero� A constant zero value in a program code is not
unreasonable when the logic is clear enough�

Here is a sample session from the resulting executable �le�

���Pay Calculation���

Type ID Number� �	�

Hours Worked� 	

Hourly Rate� �

ID Number � ��!

Hours Worked � �	
						� Rate of Pay � �	
						

Regular Pay � �		
						� Overtime Pay � ��	
						

Total Pay � ��	
						

��
�� More on Expressions

Expressions used for computation or as conditions can become complex� and considerations must
be made concerning how they will be evaluated� In this section we look at three of these consider	
ations� precedence and associativity� the data type used in evaluating the expression� and logical
operators�

Precedence and Associativity

Some of the assignment statements in the last section included expressions with more than one
operator in them� The question can arise as to how such expressions are evaluated� Whenever there
are several operators present in an expression� the order of evaluation depends on the precedence
and associativity �or grouping� of operators as de�ned in the programming language� If operators
have unequal precedence levels� then the operator with higher precedence is evaluated �rst� If
operators have the same precedence level� then the order is determined by their associativity�
The order of evaluation according to precedence and associativity may be overridden by using
parentheses� expressions in parentheses are always evaluated �rst�

�� CHAPTER �� BASIC CONCEPTS

�� File� pay�
c

Programmer� Programmer Name

Date� Current Date

This program calculates the pay for one person� given the

hours worked and rate of pay

��

 define REG�LIMIT �	
	

 define OT�FACTOR �
�

main��

� �� declarations ��

int id�number�

float hours�worked�

rate�of�pay�

regular�pay� overtime�pay� total�pay�

�� print title ��

printf�
���Pay Calculation����n�n
��

�� read data into variables ��

printf�
Type ID Number�
��

scanf�
�d
� �id�number��

printf�
Hours Worked�
��

scanf�
�f
� �hours�worked��

printf�
Hourly Rate�
��

scanf�
�f
� �rate�of�pay��

�� calculate results ��

if �hours�worked � REG�LIMIT� �

regular�pay � REG�LIMIT � rate�of�pay�

overtime�pay � OT�FACTOR � rate�of�pay �

�hours�worked � REG�LIMIT��

�

else �

regular�pay � hours�worked � rate�of�pay�

overtime�pay � 	
	�

�

total�pay � regular�pay � overtime�pay�

��	� MORE C STATEMENTS �

�� print data and results ��

printf�
�nID Number � �d�n
� id�number��

printf�
Hours Worked � �f� Rate of Pay � �f�n
�

hours�worked� rate�of�pay��

printf�
Regular Pay � �f� Overtime Pay � �f�n
�

regular�pay� overtime�pay��

printf�
Total Pay � �f�n
� total�pay��

�

Figure ��
� Code for pay��c

Operator Associativity Type
� � � right to left unary arithmetic

� � � � � left to right binary arithmetic

� � � left to right binary arithmetic

� � �� � � � �� left to right binary relational

�� � # � left to right binary relational

Table ��
� Precedence and Associativity of Operators

�� CHAPTER �� BASIC CONCEPTS

Table ��
 shows the arithmetic and relational operators in precedence level groups separated by
horizontal lines� The higher the group in the table� the higher its precedence level� For example�
the precedence level of the binary operators �� �� and � is the same but it is higher than that of
the binary operator group �� �� Therefore� the expression

x � y � z

is evaluated as

x � �y � z�

Associativity is also shown in the table� Left to right associativity means operators with the
same precedence are applied in sequence from left to right� Binary operators are grouped from
left to right� and unary from right to left� For example� the expression

x � y � z

is evaluated as

�x � y� � z

The precedence of the relational operators is lower than that of arithmetic operators� so if we
had an expression like

x � y �� x � y

it would be evaluated as

�x � y� �� �x � y�

However� we will often include the parentheses in such expressions to make the program more
readable�

From our payroll example� consider the assignment expression�

overtime�pay � OT�FACTOR � rate�of�pay � �hours�worked � REG�LIMIT��

In this case� the parentheses are required because the product operator� �� has a higher precedence
than the sum operator� If these parentheses were not there� the expression would be evaluated as�

overtime�pay � ���OT�FACTOR � rate�of�pay� � hours�worked� � REG�LIMIT��

��	� MORE C STATEMENTS ��

where what we intended was�

overtime�pay � ��OT�FACTOR � rate�of�pay� � �hours�worked � REG�LIMIT���

That is� the subtraction to be done �rst� followed by the product operators� There are several
product operators in the expression� they are evaluated left to right in accordance with their
associativity� Finally� the assignment operator� which has the lowest precedence� is evaluated�

Precise rules for evaluating expressions will be discussed further in Chapter � where a complete
table of the precedence and associativity of all C operators will be given� Until then� we will point
out any relevant rules as we need them and we will frequently use parentheses for clarity�

Data Types in Expressions

Another important consideration in using expressions is the type of the result� When operands of
a binary operator are of the same type� the result is of that type� For example� a division operator
applied to integer operands results in an integer value� If the operands are of mixed type� they are
both converted to the type which has the greater range and the result is of that type� so� if the
operands are int and float� then the result is �oating point type� Thus� ��� is � and ����� is ����
The C language will automatically perform type conversions according to these rules� however�
care must be taken to ensure the intent of the arithmetic operation is implemented� Let us look
at an example�

Suppose we have a task to �nd the average for a collection of exam scores� We have already
written the code which sums all the the scores into a variable total scores and counted the
number of exams in a variable number exams� Since both of these data items are integer values�
the variables are declared as type int� The average� however is a real number �has a fractional
part� so we declared a variable average to be of type float� So we might write statements�

int total�scores� number�exams�

float average�

average � total�scores � number�exams�

in our program� However� as we saw above� since total scores and number exams are both
integers� the division will be done as integer division� discarding any fractional part� C will then
automatically convert that result to a �oating point number to be assigned to the variable average�
For example� if total scores is ��� and number exams is ��� the the right hand side evaluates
to the integer �� �the fractional part is truncated� which is then converted to a float� ���� when
it is assigned to average� The division has already truncated the fractional part� so our result
will always have � for the fractional part of average which may be in error� We could represent
either total scores or number exams as float type to force real division� but these quantities

�� CHAPTER �� BASIC CONCEPTS

Logical C
AND $$
OR ""

NOT #

Table ���� Logical Operator Symbols in C

are more naturally integers� We would like to temporarily convert one or both of these values to
a real number� only to perform the division� C provides such a facility� called the cast operator�
In general� the syntax of the cast operator is�

��type�speci�er�	 �expression�

which converts the value of �expression� to a type indicated by the �type�speci�er�� Only the
value of the expression is altered� not the type or representation of the variables used in the
expression� The average is then computed as�

average � �float� total�scores � �float� number�exams�

The values of the variables are �rst both converted to float �e�g� ����� and ������ the division
is performed yielding a float result ������ which is then assigned to average� We cast both
variables to make the program more understandable� In general� it is good programming practice
to cast variables in an expression to be all of the same type� After all� C will do the cast anyway�
the cast is simply making the conversion clear in the code�

Logical Operators

It is frequently necessary to make decisions based on a logical combination of True and False values�
For example� a company policy may not allow overtime pay for highly paid workers� Suppose only
those workers� whose rate of pay is not higher than a maximum allowed value� are paid overtime�
We need to write the pay calculation algorithm as follows�

if ��hours�worked � REG�LIMIT� AND �rate�of�pay �� MAXRATE��

calculate regular and overtime pay

else

calculate regular rate pay only� no overtime

If hours worked exceeds the limit� REG LIMIT� AND rate of pay does not exceed MAXRATE�
then overtime pay is calculated� otherwise� pay is calculated at the regular rate� Such logical
combinations of True and False values can be performed using logical operators� There are three
generic logical operators� AND� OR� and NOT� Symbols used in C for these logical operators are

��	� MORE C STATEMENTS �

e� e� e� $$ e� e� "" e� #e�
T T T T F
T F F T F
F T F T T
F F F F T

Table ���� Truth Table for Logical Combinations

shown in Table ��� Table ��� shows logical combinations of True and False values and the resulting
values for each of these logical operators� We have used T and F for True and False in the table�
From the table we can see that the result of the AND operation is True only when the two
expression operands are both True� the OR operation is True when either or both operands are
True� and the NOT operation� a unary operator� is True when its operand is False�

We can use the above logical operators to write a pay calculation statement in C as follows�

if ��hours�worked � REG�LIMIT� �� �rate�of�pay �� MAXRATE�� �

regular�pay � REG�LIMIT � rate�of�pay�

overtime�pay � OT�FACTOR � rate�of�pay �

�hours�worked � REG�LIMIT��

�

else �

regular�pay � hours�worked � rate�of�pay�

overtime�pay � 	�

�

�We assume that MAXRATE is de�ned using a de�ne directive�� We use parentheses to ensure
the order in which expressions are evaluated� The expressions in the innermost parentheses are
evaluated �rst� then the next outer parentheses are evaluated� and so on� If �hours worked �
REG LIMIT� is True AND �rate of pay �� MAXRATE� is True� then the whole if expression is
True and pay is calculated using the overtime rate� Otherwise� the expression is False and pay is
calculated using regular rate�

In C� an expression is evaluated for True or False only as far as necessary to determine the result�
For example� if �hours worked � REG LIMIT� is False� the rest of the logical AND expression need
not be evaluated since whatever its value is� the AND expression will be False�

A logical OR applied to two expressions is True if either expression is True� For example� the
above statement can be written in C with a logical OR operator� ""�

if ��hours�worked �� REG�LIMIT� "" �rate�of�pay � MAXRATE�� �

regular�pay � hours�worked � rate�of�pay�

overtime�pay � 	�

�

�� CHAPTER �� BASIC CONCEPTS

else �

regular�pay � REG�LIMIT � rate�of�pay�

overtime�pay � OT�FACTOR � rate�of�pay �

�hours�worked � REG�LIMIT��

�

If either hours worked does not permit overtime OR the rate exceeds MAXRATE for overtime�
calculate regular rate pay� otherwise� calculate regular and overtime pay� Again� if �hours worked

�� REG LIMIT� is True� the logical OR expression is not evaluated further since the result is
already known to be True� Precedence of logical AND and OR operators is lower than that
of relational operators so the parentheses in the previous two code fragments are not required�
however� we have used them for clarity�

Logical NOT applied to a True expression results in False� and vice versa� We can rewrite the
above statement using a logical NOT operator� #� as follows�

if ��hours�worked � REG�LIMIT� �� #�rate�of�pay � MAXRATE�� �

regular�pay � REG�LIMIT � rate�of�pay�

overtime�pay � OT�FACTOR � rate�of�pay �

�hours�worked � REG�LIMIT��

�

else �

regular�pay � hours�worked � rate�of�pay�

overtime�pay � 	�

�

If hours worked exceed REG LIMIT� AND it is NOT True that rate of pay exceeds MAXRATE� then
calculate overtime pay� etc� The NOT operator is unary and its precedence is higher than binary
operators� therefore� the parentheses are required for the NOT expression shown�

��
�	 A Simple Loop � while

Our latest program� pay�
c� still calculates pay for only one individual� If we have �� people on
the payroll� we must run the above program separately for each person� For our program to be
useful and �exible� we should be able to repeat the same logical process of computation as many
times as desired� i�e� it should be possible to write a program that calculates pay for any number
of people�

Task

PAY
� Same as PAY�� except that the program reads data� computes pay� and prints the data
and the pay for a known number of people�

��	� MORE C STATEMENTS ��

Let us �rst see how to repeat the process of reading data� calculating pay� and printing the
results a �xed number� say ��� times� To repeatedly execute an identical group of statements� we
use what is called a loop� To count the number of times we repeat the computation� we use an
integer variable� count� The logic we wish to implement is�

set count to 	

repeat the following as long as count is less than �	

read data

calculate pay

print results

increase count by �

Initially� we set count to zero and we will repeat the process as long as count is less than ���
Each time we execute the loop� we increment count so that for each value of count ��� �� �� ����

�� one set of data is processed� When count is ��� i�e� it is NOT less than ��� the repeating or
looping is terminated�

The C language provides such a control construct� a while statement is used to repeat a
statement or a block of statements� The syntax for a while statement is�

while � �expression� 	 �statement�

The keyword while and the parentheses are required as shown� The �expression� is a condition as
it was for the if statement� and the �statement� may be any statement in C such as an empty
statement� a simple statement� or a compound statement �including another while statement��

The semantics of the while statement is as follows� First� the while expression or condition�
�expression�� is evaluated� If True� the �statement� is executed and the �expression� is evaluated
again� etc� If at any time the �expression� evaluates to False� the loop is terminated and control
passes to the statement after the while statement� This control �ow for a while statement is
shown in Figure �����

To use the while statement to implement the algorithm above� there are several points to note
about loops� The loop variable�s�� i�e� variables used in the expression� must be initialized prior
to the loop� otherwise� the loop expression is evaluated with unknown �garbage� value�s� for the
variable�s�� Second� if the loop expression is initially True� the loop variable�s� must be modi�ed
within the loop body so that the expression eventually becomes False� Otherwise� the loop will be
an in�nite loop� i�e� the loop repeats inde�nitely� Therefore� a proper loop requires the following
steps�

initialize loop variable�s�

while � �expression� � �

update loop variable�s�

�

�� CHAPTER �� BASIC CONCEPTS

statement

PPPPPP������PP
PP

PP
��
��
��
�

�

�

�

expression
False

True

Figure ����� Control Flow for while statement

Keeping this syntax and semantics in mind� the code for the above algorithm fragment using
a while loop is shown in Figure �����

First� count is initialized to zero and tested for loop termination� The while statement will
repeat as long as the while expression� i�e� �count � �	�� is True� Since count is �� the condition
is true� so the body of the loop is executed� The loop body is a block which reads data� calculates
pay� prints results� and increases the value of count by one� Except for updating count� the
statements in the loop body are the same as those in the previous program in Figure ��
� The
count is updated by the assignment statement�

count � count � ��

In this statement� the right hand side is evaluated �rst� i�e� one is added to the current value
of count� then the new value is then stored back into count� Thus� the new value of count is
one greater than its previous value� For the �rst iteration of the loop� count is incremented
from � to � and the condition is tested again� Again �count � �	� is True� so the loop body
is executed again� This process repeats until count becomes ��� �count � �	� is False� and the
while statement is terminated� The program execution continues to the next statement� if any�
after the while statement�

The above while loop is repeated ten times� once each for count � �� �� �� ����
� We can also
count the number of iterations to be performed as follows�

count � �	�

while �count � 	� �

count � count � ��

�

��	� MORE C STATEMENTS ��

count � 	�

while �count � �	� �

�� read data into variables ��

printf�
Type ID Number�
��

scanf�
�d
� �id�number��

printf�
Hours Worked�
��

scanf�
�f
� �hours�worked��

printf�
Hourly Rate�
��

scanf�
�f
� �rate�of�pay��

�� calculate results ��

if �hours�worked � REG�LIMIT� �

regular�pay � REG�LIMIT � rate�of�pay�

overtime�pay � OT�FACTOR � rate�of�pay �

�hours�worked � REG�LIMIT��

�

else �

regular�pay � hours�worked � rate�of�pay�

overtime�pay � 	�

�

total�pay � regular�pay � overtime�pay�

�� print data and results ��

printf�
�nID Number � �d�n
� id�number��

printf�
Hours Worked � �f� Rate of Pay � �f�n
�

hours�worked� rate�of�pay��

printf�
Regular Pay � �f� Overtime Pay � �f�n
�

regular�pay� overtime�pay��

printf�
Total Pay � �f�n
� total�pay��

�� update the count ��

count � count � ��

�

Figure ����� Coding a While Loop

�� CHAPTER �� BASIC CONCEPTS

The initial value of count is �� and the loop executes while �count � 	�� Each time the loop
is processed� the value of count is decremented by one� Eventually� count becomes �� �count �
	� is False� and the loop terminates� Again� the loop is executed ten times for values of count �
���
� �� ���� ��

We can easily adapt the second approach to process a loop as many times as desired by the
user� We merely ask the user to type in the number of people� and read into count� Here is the
skeleton code�

printf�
Number of people�
��

scanf�
�d
� �count��

while �count � 	� �

count � count � ��

�

We use the latter approach to implement the program for our task� The entire program for pay�
c
is shown in Figure ���� A sample session from the execution of this program is shown below�

���Pay Calculation���

Number of people� �

Type ID Number� ���

Hours Worked� �

Hourly Rate� ��	

ID Number � ���

Hours Worked � �	
						� Rate of Pay � �
�					

Regular Pay � ��	
						� Overtime Pay � 	
						

Total Pay � ��	
						

Type ID Number� �	�

Hours Worked� 	

Hourly Rate� �

ID Number � ��!

Hours Worked � �	
						� Rate of Pay � �	
						

Regular Pay � �		
						� Overtime Pay � ��	
						

Total Pay � ��	
						

��	� MORE C STATEMENTS �

�� File� pay�
c

Programmer� Programmer Name

Date� Current Date

This program reads in hours worked and rate of pay and calculates

the pay for a specified number of persons

��

 define REG�LIMIT �	
	

 define OT�FACTOR �
�

main��

�

�� declarations ��

int id�number� count�

float hours�worked� rate�of�pay�

regular�pay� overtime�pay� total�pay�

�� print title ��

printf�
���Pay Calculation����n�n
��

printf�
Number of people�
��

scanf�
�d
� �count��

while �count � 	� �

�� read data into variables ��

printf�
�nType ID Number�
��

scanf�
�d
� �id�number��

printf�
Hours Worked�
��

scanf�
�f
� �hours�worked��

printf�
Hourly Rate�
��

scanf�
�f
� �rate�of�pay��

�� calculate results ��

if �hours�worked � REG�LIMIT� �

regular�pay � REG�LIMIT � rate�of�pay�

overtime�pay � OT�FACTOR � rate�of�pay �

�hours�worked � REG�LIMIT��

�

else �

regular�pay � hours�worked � rate�of�pay�

overtime�pay � 	
	�

�

total�pay � regular�pay � overtime�pay�

�� CHAPTER �� BASIC CONCEPTS

�� print data and results ��

printf�
�nID Number � �d�n
� id�number��

printf�
Hours Worked � �f� Rate of Pay � �f�n
�

hours�worked� rate�of�pay��

printf�
Regular Pay � �f� Overtime Pay � �f�n
�

regular�pay� overtime�pay��

printf�
Total Pay � �f�n
� total�pay��

�� update the count ��

count � count � ��

�

�

Figure ����� Code for pay
�c

��
�
 Controlling Loop Termination

The program in the last section illustrates one way to control how many times a loop is executed�
namely counting the iterations� Rather than build the number of iterations into the program
as a constant� pay�
c requires the user to type in the number of people for whom pay is to be
computed� That technique may be su!cient sometimes� but the user may not be happy if each
time a program is used� one has to count tens or hundreds of items� It might be more helpful to
let the user signal the end of data input by typing a special value for the data� For example� the
user can be asked to type a zero for the id number of the employee to signal the end of data �as
long as zero is not an otherwise valid id number�� This suggests another re�nement to our task�

Task

PAY�� Same as PAY
� except that pay is to be calculated for any number of people� In addition�
we wish to keep a count of the number of people� calculate the gross total of all pay disbursed�
and compute the average pay� The end of data is signaled by a negative or a zero id number�

Logic for the while loop is quite simple� The loop repeats as long as id number is greater than
�� This will also require us to initialize the id number to some value before the loop starts and to
update it within the loop body to ensure loop termination� For our task� we must also keep track
of the number of people and the gross pay� After the while loop� we must calculate the average
pay by dividing gross pay by the number of people� Here is the algorithm logic using the while

loop construct�

set gross pay and number of people to zero

prompt user and read the first id number

while �id number � 	� �

��	� MORE C STATEMENTS ��

read remaining data� compute pay� print data

update number of people

update gross pay

prompt user and read next id number

�

set average pay to �gross pay � number of people�

Values of gross pay and number of people must be kept as cumulative values� i�e� each time pay
for a new person is computed� the number of people must be increased by one� and gross pay must
be increased by the pay for that person� Cumulative sum variables must be initialized to zero
before the loop� similar to our counting variable in the last example� otherwise those variables
will contain garbage values which will then be increased each time the loop is processed� Our
algorithm is already �code like�� and its implementation should be straightforward� but �rst let
us consider the debugging process for the program�

As programs get more complex� manual program tracing becomes tedious� so let�s let the
program itself generate the trace for us� During program development� we can introduce printf��
statements in the program to trace the values of key variables during program execution� If
there are any bugs in program logic� the program trace will alert us� Such printf�� statements
facilitating the debug process are called debug statements� Once the program is debugged� the
debug statements can be removed so that only relevant data is output� In our example� we will
introduce debug statements to print values of gross pay and number of people�

In the program� we should not only prompt the user to type in an ID number but should
also inform him�her that typing zero will terminate the data input� �Always assume that users
do not know how to use a program�� Prompts should be clear and helpful so a user can use a
program without any special knowledge about the program� Figure ���
 shows the program that
implements the above algorithm�

Much of the code is similar to our previous program� We have introduced two additional
variables� number� an integer counting the number of employees processed� and gross� a float

to hold the cumulative sum of gross pay� Before the while loop� these variables are initialized to
zero� otherwise only garbage values will be updated� Each time the loop body is executed� these
values are updated� number by one� and gross by the new value of total pay�

A debug statement in the while loop prints the updated values of gross and number each
time the loop is executed� The output will begin with the word debug just to inform us that
this is a debug line and will be removed in the �nal version of the program� Enough information
should be given in debug lines to identify what is being printed� �A debug print out of line after
line of only numbers isn�t very useful for debugging�� The values can alert us to possible bugs
and to probable causes� For example� if we did not initialize gross to zero before the loop� the
�rst iteration will print a garbage value for gross� It would instantly indicate to us that gross

is probably not initialized to zero� We have also not indented the debug printf�� statement to
make it stand out in the source code�

Once the while loop terminates� the average pay must be computed as a ratio of gross and
number� We have added another declaration at the beginning of the block for average and the

�� CHAPTER �� BASIC CONCEPTS

�� File� pay�
c

Programmer� Programmer Name

Date� Current Date

This program reads in hours worked and rate of pay and calculates

the pay for several persons
 The program also computes the gross pay

disbursed� number of people� and average pay
 The end of data is

signaled by a negative or a zero id number

��

 define REG�LIMIT �	
	

 define OT�FACTOR �
�

main��

�

�� declarations ��

int id�number� number�

float hours�worked� rate�of�pay�

regular�pay� overtime�pay� total�pay�

gross� average�

�� print title ��

printf�
���Pay Calculation����n�n
��

�� initialize cumulative sum variables ��

number � 	�

gross � 	�

�� initialize loop variables ��

printf�
Type ID Number� 	 to quit�
��

scanf�
�d
� �id�number��

while �id�number � 	� �

�� read data into variables ��

printf�
Hours Worked�
��

scanf�
�f
� �hours�worked��

printf�
Hourly Rate�
��

scanf�
�f
� �rate�of�pay��

�� calculate results ��

if �hours�worked � REG�LIMIT� �

regular�pay � REG�LIMIT � rate�of�pay�

overtime�pay � OT�FACTOR � rate�of�pay �

�hours�worked � REG�LIMIT��

�

else �

regular�pay � hours�worked � rate�of�pay�

overtime�pay � 	�

�

��	� MORE C STATEMENTS �

total�pay � regular�pay � overtime�pay�

�� print data and results ��

printf�
�nID Number � �d�n
� id�number��

printf�
Hours Worked � �f� Rate of Pay � $�f�n
�

hours�worked� rate�of�pay��

printf�
Regular Pay � $�f� Overtime Pay � $�f�n
�

regular�pay� overtime�pay��

printf�
Total Pay � $�f�n
� total�pay��

�� update cumulative sums ��

number � number � ��

gross � gross � total�pay�

�� debug statements� print variable values ��

printf�
�ndebug� gross � �f� number � �d�n
� gross� number��

�� update loop variables ��

printf�
�nType ID Number� 	 to quit�
��

scanf�
�d
� �id�number��

�

if �number � 	� �

average � gross � �float� number�

printf�
�n���Summary of Payroll����n
��

printf�
Number of people � �d� Gross Disbursements � $�f�n
�

number� gross��

printf�
Average pay � $�f�n
� average��

�

�

Figure ���
� Code for pay��c

appropriate assignment statement to compute the average at the end� Note we have used the cast
operator to cast number to a float for the division� This is not strictly necessary� the compiler
will do this automatically� however� it is good practice to cast operands to like type in expressions
so that we are aware of the conversion being done�

It is possible that no data was entered at all� i�e� the user enters � as the �rst id� in which case
number is zero� If we try to divide gross by number� we will have a �divide by zero� run time
error� Therefore� we check that number is greater than zero and only calculate the average and
print the result when employee data has been entered�

With all of these changes made as shown in Figure ���
� the program is compiled� and run
resulting in the following sample session�

���Pay Calculation���

�� CHAPTER �� BASIC CONCEPTS

Type ID Number� 	 to quit� ���

Hours Worked� �

Hourly Rate� ��	

ID Number � ���

Hours Worked � �	
						� Rate of Pay � $�
�					

Regular Pay � $��	
						� Overtime Pay � $	
						

Total Pay � $��	
						

debug� gross � ��	
						� number � �

Type ID Number� 	 to quit� �	�

Hours Worked� 	

Hourly Rate� �

ID Number � ��!

Hours Worked � �	
						� Rate of Pay � $�	
						

Regular Pay � $�		
						� Overtime Pay � $��	
						

Total Pay � $��	
						

debug� gross � �		
						� number � �

Type ID Number� 	 to quit�

���Summary of Payroll���

Number of people � �� Gross Disbursements � $�		
						

Average pay � $��	
						

The debug lines show the changes in gross and number each time the loop is executed� The
�rst such line shows the value of gross the same as that of the total pay and the value of number
as �� The next pass through the loop shows the variables are updated properly� The program
appears to be working properly� nevertheless� it should be thoroughly tested with a variety of data
input� Once the program is deemed satisfactory� the debug statements should be removed from
the source code and the program recompiled�

��
�� More Complex Loop Constructs � Nested Loops

As we mentioned above� the �statement� that is the body of the loop can be any valid C statement
and very often it is a compound statement� This includes a while statement� or a while statement
with the block� Such a situation is called a nested loop� Nested loops frequently occur when
several items in a sequence are to be tested for some property� and this testing itself requires
repeated testing with several other items in sequence� To illustrate such a process� consider the
following task�

��	� MORE C STATEMENTS ��

Task

Find all prime numbers less than some maximum value�

The problem statement here is very simple� however� the algorithm may not be immediately
obvious� We must �rst understand the problem�

A prime number is a natural number� i�e� �� ��
� �� etc�� that is not exactly divisible by any
other natural number� except � and itself� The number � is a prime by the above de�nition� The
algorithm must �nd the other primes up to some maximum� One way to perform this task is to
use a process called generate and test� In our algorithm� we will generate all positive integers
in the range from � to a maximum �constant� value PRIME LIM� Each generated integer becomes a
candidate for a prime number and must be tested to see if it is indeed prime� The test proceeds as
follows� divide the candidate by every integer in sequence from � up to� but not including itself�
If the candidate is not divisible by any of the integers� it is a prime number� otherwise it is not�

The above approach involves two phases� one generates candidates and the other tests each
candidate for a particular property� The generate phase suggests a loop� each iteration of which
performs the test phase� which is also a loop� thus we have a nested loop� Here is the algorithm�

set the candidate to �

while �candidate � PRIME�LIM� �

test the candidate for prime property

print the result if a prime number

generate the next candidate

�

In testing for the prime property� we will �rst assume that the candidate is prime� We will
then divide the candidate by integers in sequence� If it is divisible by any of the integers excluding
itself� then the candidate is not prime and we may generate the next candidate� Otherwise� we
print the number as prime and generate the next candidate�

We need to keep track of the state of a candidate� it is prime or it is not prime� We can use
a variable� let�s call it prime which will hold one of two values indicating True or False Such a
state variable is often called a �ag� For each candidate� prime will be initially set to True� If
the candidate is found to be divisible by one of the test integers� prime will be changed to False�
When testing is terminated� if prime is still True� then the candidate is indeed a prime number
and can be printed� This testing process can be written in the following algorithm�

set prime flag to True to assume candidate is a prime

set test divisor to �

while �test divisor � candidate� �

if remainder of �candidate�test divisor� �� 	

candidate is not prime

else get the next test divisor in sequence

�

�� CHAPTER �� BASIC CONCEPTS

We will use the modulus �mod� operator� � described earlier� to determine the remainder of
�candidate � divisor�� Here is the code fragment for the above algorithm�

prime � TRUE�

divisor � ��

while �divisor � candidate� �

if ��candidate � divisor� �� 	�

prime � FALSE�

else

divisor � divisor � ��

�

where TRUE and FALSE are symbolic constants de�ned using the define compiler directive� The
complete program is shown in Figure �����

The program follows the algorithm step by step� We have de�ned symbols TRUE and FALSE to
be � and �� respectively� The �nal if statement uses the expression �prime� instead of �prime
�� TRUE�� the result is the same� The expression �prime� is True �non	zero� if prime is TRUE�
and False �zero� if prime is FALSE� Of course� we could have written the if expression as �prime

�� TRUE�� but it is clear� and maybe more readable� as written�

We have included a debug statement in the inner loop to display the values of candidate�
divisor� and prime� Once the we are satis�ed that the program works correctly� the debug
statement can be removed�

Here is a sample session with the debug statement and PRIME LIM set to ��

���Prime Numbers Less than ����

� is a prime number

� is a prime number

debug� candidate � �� divisor � � prime � �

� is a prime number

debug� candidate � �� divisor � � prime � �

debug� candidate � �� divisor � � prime � 	

debug� candidate � �� divisor � � prime � �

debug� candidate � �� divisor � � prime � �

debug� candidate � �� divisor � � prime � �

� is a prime number

debug� candidate � !� divisor � � prime � �

debug� candidate � !� divisor � � prime � 	

debug� candidate � !� divisor � � prime � 	

debug� candidate � !� divisor � � prime � 	

debug� candidate � �� divisor � � prime � �

debug� candidate � �� divisor � � prime � �

debug� candidate � �� divisor � � prime � �

��	� MORE C STATEMENTS ��

�� File� prime
c

Programmer� Programmer Name

Date� Current Date

This program finds all prime numbers less than PRIME�LIM

��

 define PRIME�LIM �	

 define TRUE �

 define FALSE 	

main��

� int candidate� divisor� prime�

printf�
���Prime Numbers Less than �d����n�n
� PRIME�LIM��

printf�
�d is a prime number�n
� ��� �� print � ��

candidate � �� �� start at candidate �� � ��

while �candidate � PRIME�LIM� � �� stop at candidate �� �	 ��

prime � TRUE� �� for candidate� set prime to True ��

divisor � �� �� initialize divisor to � ��

�� stop when divisor �� candidate ��

while �divisor � candidate� �

printf�
debug� candidate � �d� divisor � �d prime � �d�n
�

candidate� divisor�prime��

�� if candidate is divisible by divisor� ��

�� candidate is not prime� set prime to False ��

if �candidate � divisor �� 	�

prime � FALSE�

divisor � divisor � �� �� update divisor ��

�

if �prime� �� if prime is set to True� ��

�� print candidate
 ��

printf�
�d is a prime number�n
� candidate��

candidate � candidate � �� �� update candidate ��

�

�

Figure ����� Code for prime�c

�� CHAPTER �� BASIC CONCEPTS

debug� candidate � �� divisor � � prime � �

debug� candidate � �� divisor � ! prime � �

� is a prime number

We have shown part of a sample session with debug printing included� Notice� that the values
printed for prime are � or �� remember� TRUE and FALSE are symbolic names for � and � used
in the source code program only� In this output the nested loops are shown to work correctly�
For example� for candidate �� divisor starts at � and progresses to �� the loop terminates and the
candidate is a prime number� A sample session without the debug statement is shown below�

���Prime Numbers Less than �	���

� is a prime number

� is a prime number

� is a prime number

� is a prime number

� is a prime number

�� is a prime number

�� is a prime number

�� is a prime number

�� is a prime number

In looking at the debug output� you might see that the loop that tests for the prime property
of a candidate is not an e!cient one� For example� when candidate is �� we know that it is not
prime immediately after divisor � is tested� We could terminate the test loop as soon as prime

becomes false �if it ever does�� In addition� it turns out that a candidate needs to be tested for an
even more limited range of divisors� The range of divisors need not exceed the square root of the
candidate� �See Problem � at the end of the chapter��

��	 Common Errors

In this section we list some common problems and programming errors that beginners often make�
We also suggest steps to avoid these pitfalls�

�� Program logic is incorrect� This could be due to an incorrect understanding of the problem
statement or improper algorithm design� To check what the program is doing� manually
trace the program and use debug statements� Introduce enough debug statements to narrow
down the code in which there is an error� Once an error is localized to a critical point in the
code or perhaps to one or two statements� it is easier to �nd the error� Critical points in the
code include before a loop starts� at the start of a loop� at the end of a loop and so forth�

�� Variables are used before they are initialized� This often results in garbage values occurring
in the output of results� For example�

���� COMMON ERRORS �

int x� y�

x � x � y�

There is no compiler error� x and y have unknown� garbage values� Be sure to initialize all
variables�

� The assignment operator� �� is used when an �equal to� operator� ��� is meant� e�g��

while �x � y�

if �x � y�

printf�
x is equal to y�n
��

There will be no compiler error since any valid expression is allowed as an if or while

condition� The expression is True if non	zero is assigned� and False if zero is assigned�
Always double check conditions to see that a correct equality operator� ��� is used�

�� Object names are passed� instead of addresses of objects� in function calls to scanf���

scanf�
�d
� n�� �� should be �n ��

Again this is not a compile time error� the compiler will assume the value of n is the address
of an integer object and will attempt to store a value in it� This often results in a run time
addressing error� Make sure the passed arguments in scanf�� calls are addresses of the
objects where data is to be stored�

�� Loop variables are not initialized�

while �i � n�

i is garbage� the while expression is evaluated with unknown results�

�� Loop variables are not updated�

i � 	�

while �i � n� �

�

i is unchanged within the loop� it is always �� The result is an in�nite loop�

�� Loop conditions are in error� Suppose� a loop is to be executed ten times�

�� CHAPTER �� BASIC CONCEPTS

n � �	�

i � 	�

while �i �� n� �

i � i � ��

�

�i �� n� will be True for i � �� �� ���� ��� i�e� �� times� The loop is executed one more
time than required� Loop expressions should be examined for values of loop variables at the
boundaries� Suppose n is zero� should the loop be executed� Suppose it is �� suppose it is
��� etc�

�� User types in numbers incorrectly� This will be explained more fully in Chapter �� Consider
the loop�

while �x #� 	� �

scanf�
�d
� �x��

�

Suppose a user types� ��r� An integer is read by scanf�� until a non	digit is reached� in this
case� until r is reached� The �rst integer read will be �
� However� the next time scanf��

is executed it will be unable to read an integer since the �rst non	white space character is a
non	digit� The loop will be an in�nite loop�

� Expressions should use consistent data types� If necessary� use a cast operator to convert
one data type to another�

int sum� count�

float avg�

avg � sum � count�

Suppose sum is
� and count is �� The operation sum � count will be the integer value of

� � �� i�e� �� the fractional part is truncated� The result � is assigned to a float variable
avg as ���� If a �oating point value is desired for the ratio of sum � count� then cast the
integers to float�

avg � �float� sum � �float� count�

Now� the expression evaluates to
��� � ��� whose result is a �oating point value �����
assigned to avg

���� SUMMARY ��

��
 Summary

In this chapter we have begun looking at the process of designing programs� We have stressed the
importance of a correct understanding of the problem statement� and careful development of the
algorithm to solve the problem� This is probably the most important� and sometimes the most
di!cult part of programming�

We have also begun introducing the syntax and semantics of the C language� We have seen how
to de�ne the special function� main�� by specifying the function header followed by the function

body� a collection of statements surrounded by brackets� f and g� The function body begins with
variable declarations to allocate storage space and assign names to the locations� followed by the
executable statements� Variable declarations take the form�

�type speci�er� �identi�er��� �identi�er�� � � ��

where �type spec� may be either int or float for integers or �oating point variables� respectively�
�We will see other type speci�ers in later chapters�� We gave rules for valid �identi�er�s used as
variable names�

We have discussed several forms for executable statements in the language� The simplest
statement is the assignment statement�

�Lvalue���expression��

where �for now� �Lvalue� is a variable name and �expression� consists of constants� variable
names and operators� We have presented some of the operators available for arithmetic computa	
tions and given rules for how expressions are evaluated� The assignment statement evaluates the
expression on the right hand side of the operator � and stores the result in the object referenced
by the �Lvalue�� We pointed out the importance of variable type in expressions and showed the
cast operator for specifying type conversions within them�

��type�speci�er�	 �expression�

We also described how the library function printf�� can be used to generate output from the
program� as well as how information may be read by the program at run time using the scanf��

function�

We next discussed two program control constructs of the language� the if and while state	
ments� The syntax for if statements is�

if ��expression�	 �statement� �else �statement��

where the �expression� is evaluated and if the result is True �non	zero� then the �rst �statement�
�the �then� clause� is executed� otherwise� the �statement� after the keyword else �the �else�
clause� is executed� For a while statement� the syntax is�

�� CHAPTER �� BASIC CONCEPTS

while � �expression� 	 �statement�

where the �expression� is evaluated� and as long as it evaluates to True� the �statement� is
repeatedly executed�

In addition we discussed one of the simple compiler directives�

de�ne �symbol name� �substitution string�

which can be used to de�ne symbolic names to character strings within the source code� used here
for de�ning constants in the program�

With these basic tools of the language you should be able to begin developing your own
programs to compile� debug and execute� Some suggestions are provided in the Problems Section
below� In the next chapter� we will once again concentrate on the proper methods of designing
programs� and in particular modular design with user de�ned functions�

��
� EXERCISES �

��� Exercises

Given the following variables and their initializations�

int a� x� y� z�

float b� u� v� w�

x � �	� y� �	� z � �	�

u � �
	� v � �	
	�

What are the values of the expressions in each of the following problems�

�� �a� a � x � y � z�

�b� a � x � y � z�

�c� a � z � y � y�

�d� a � x � y � z�

�e� a � x � y � z

�� �a� a � �int� �u � v��

�b� a � �int� �v � u��

�c� b � v � u�

�d� b � v � u � w�

� What are the results of the following mod operations�

�a� � � �

�b� �� � �

�c� � � ��

�d� �� � ��

�item

�begin�verbatim�

�a� �x �� y �� x �� z�

�b� �x �� y "" x �� z�

�c� �x �� y �� #�x �� z��

�d� �x � y �� z � y�

�e� �x �� y �� z � y�

�� Under what conditions are the following expressions True�

�a� �x � y �� y � z�

�b� �x �� y �� y �� z�

�c� �x �� y "" y �� z�

�d� �x �� y �� x �� z�

�e� �x � y �� x � z�

�� CHAPTER �� BASIC CONCEPTS

�� Make required corrections in the following code�

�a�

main��

� int n�

scanf�
�d
� n��

�

�b�

main��

� float n�

printf�
�d
� n��

�

�c�

main��

� int n�� n��

if �n� � n��

printf�
Equal�n
��

else

printf�
Not equal�n
��

�

�� Find and correct errors in the following program that is supposed to read ten numbers and
print them�

main��

� int n� count�

scanf�
�d
� �n��

while �count � �	� �

printf�
�d�n
� n��

scanf�
�d
� �n��

�

�

�� We wish to print integers from � through ��� Check if the following loop will do so correctly�

i � ��

while �i � �	� �

printf�
�d�n
� i��

i � i � ��

�

��
� EXERCISES ��

�� Suppose a library �ne for late books is� �� cents for the �rst day� �� cents per day thereafter�
Assume that the number of late days is assigned to a variable late days� Check if the
following will compute the �ne correctly�

if �late�days �� ��

fine � 	
�	�

else

fine � late�days � 	
���

�� CHAPTER �� BASIC CONCEPTS

��� Problems

�� Write a program that reads three variables x� y� and z� The program should check if all
three are equal� or if two of the three are equal� or if none are equal� Print the result of the
tests� Show the program with manual trace�

�� Velocity of an object traveling at a constant speed can be expressed in terms of distance
traveled in a given time� If distance� s� is in feet and time� t� is in seconds� the velocity in
feet per second is�

v � d�t

Write a program to read distance traveled and time taken� and calculate the velocity for a
variety of input values until distance traveled is zero� Print the results for each case� Show
a manual trace�

� Acceleration of an object due to gravity� g� is
� feet per second per second� The velocity of
a falling body starting from rest at time� t� is given by�

v � g � t

The distance traveled in time� t� by a falling body starting from rest is given by�

d � g � t � t��

Write a program that repeatedly reads experimental values of time taken by a body to hit
the ground from various heights� The program calculates for each case� the height of the
body and the velocity of the body when it hits the ground�

�� Write a program that reads a set of integers until a zero is entered� Excluding zero� the
program should print a count of and a sum of�

�a� positive numbers

�b� negative numbers

�c� even numbers

�d� odd numbers

�e� positive even numbers

�f� negative odd numbers�

�g� all numbers

Use debug statements to show cumulative sums as each new number is read and processed�

�� We wish to convert miles to kilometers� and vice versa� Use the loose de�nition that a
kilometer is ��� � ��� of a mile� Write a program that generates two tables� a table for
kilometer equivalents to miles for miles � through ��� and a table for mile equivalents of
kilometers for kilometers from � to ���

�� Improve the program prime
c of Section ����� in the following ways�

���� PROBLEMS ��

�a� Terminate the inner loop as soon as it is detected that the number is not prime�

�b� Test each candidate only while �divisor � divisor �� candidate��

�c� Test only candidates that are odd numbers greater than
�

For each of these improvements� how many times is the inner loop executed when PRIME LIM

is ��� How does that compare to our original program�

�� Write a program to generate Fibonacci numbers less than ���� Fibonacci numbers are ��
�� ��
� �� �� �
� ��� etc� The �rst two Fibonacci numbers are � and �� All other numbers
follow the pattern� a Fibonacci number is the sum of previous two Fibonacci numbers in the
sequence� In words� the algorithm for this problem is as follows�

We will use two variables� prev� and prev�� such that prev� is the last �bonacci number
and prev� is the one before the last� Print the �rst two �bonacci numbers� � and �� and
initialize prev� and prev� as � and �� The new fib number is the sum of the two previous
numbers� prev� and prev�� the new fib number is now the last �bonacci number and prev�

is the one before the last� So� save prev� in prev� and save fib number in prev�� Repeat
the process while fib number is less than ����

�� �Optional� Write a program to determine the largest positive integer that can be stored in
an int type variable� An algorithm to do this is as follows�

Initialize a variable to �� Multiply by � and add � to the variable repeatedly until a negative
value appears in the variable� The value of the variable just before it turned negative is the
largest positive value�

The above follows from the fact that multiplying by � shifts the binary form to the left by
one position� Adding one to the result makes all ones in the less signi�cant part and all zeros
in the more signi�cant part� Eventually a � appears in the leading sign bit� i�e� a negative
number appears� The result just before that happens is the one with all ones except for the
sign bit which is �� This is the largest positive value�

� �Optional� Write a program to determine the negative number with the largest absolute
value�

��� Write a program that reads data for a number of students and computes and prints their
GPR� For each student� an id number and transcript data for a number of courses is read�
Transcript data for each course consists of a course number �range ���	
���� number of
credits �range �	��� and grade �range �	��� The GPR is the ratio of number of total grade
points for all courses and the total number of credits for all courses� The number of grade
points for one course is the product of grade and credits for the course� The end of transcript
data is signaled by a zero for the course number� the end of student data is signaled by a
zero id number�

�� CHAPTER �� BASIC CONCEPTS

Chapter �

Designing Programs Top Down

As program tasks become more complex� it is easier to think about the problem and design the
algorithm for the task at hand by breaking the complex task into smaller and simpler subtasks

and then solve each of the subtasks independently� We do this all the time in everyday life� for
example� suppose you need milk for your kid�s dinner� A complete algorithm for solving this
problem might begin�

find the car keys

go to the garage

get in the car

put the key in the ignition

start the car

back the car out of the driveway

���

However� when we are worried about feeding the kids� we do not plan our algorithm in such detail�
Instead our algorithm might be�

drive to the store

buy milk

drive home

where each of the steps in this algorithm is a subtask that may involve many steps itself�

We can do the same kind of modular design for our programming tasks� begin by thinking at a
more abstract level about the major steps to be done� and then for each of these subtasks� design a
separate algorithm to solve it� Each program subtask may then be implemented either by a set of
statements or by a separate function� The advantages of a function are that it hides details of the
actual computations from the main body of the code� and it can even be called upon to perform
a subtask repeatedly by one or more other functions� In particular� well designed functions can

��

�	 CHAPTER �� DESIGNING PROGRAMS TOP DOWN

pay

calculate

cum� total

update

pay

print

data

read

Payroll

Task

pay disbursed

print

� �� �

� �

loop�

proc � empl�

Figure
��� Structural Diagram for Payroll Task

be used in a variety of programs�
An example from the above might be driving� it is the same
operation in the �rst and last steps of our algorithm� only the start and destination are di�erent��

In this chapter we will discuss this method of modular design of algorithms and the programs
that implement them� We will see how functions may be used in a C program� and how new
functions may be de�ned in the program� As usual� we will look at both the syntax and semantics
of this programming construct� Next we will look in more detail at the macro facilities provided by
the C preprocessor
brie�y discussed in Chapter �� and how these can be used to make programs
more readable� The we describe how your programs can interact with the Operating System to
perform I�O� Finally we continue our discussion of guidelines for debugging and common errors�

��� Designing the Algorithm with Functions

As mentioned above� for complex problems our goal is to divide the task into smaller and simpler
tasks during algorithm design� We have seen this technique already in Chapter � in our use of
a structural diagram while developing the algorithm� Figure
�� repeats the structural diagram
for our payroll task� Here we have divided the payroll task at �rst into � subtasks� processing
employees one at a time in a loop� and printing the results� The �processing one employee� subtask
is then further divided into four steps� reading data� calculating pay� updating the cumulative total�
and printing the pay� In the �nal implementation of our algorithm� pay��c� we implemented each
step using a sequence of statements� The resulting code grew to be rather large� especially for
the �calculate pay� step where we had to consider details such as overtime and regular pay� Such
details are not important to our understanding of the overall logic of the program� However it is
to be done� all that we want to do in that step is calculate the pay for one employee as is simply
and clearly stated in the algorithm� Calculating pay is an ideal candidate for being implemented
as a function�

���� DESIGNING THE ALGORITHM WITH FUNCTIONS ��

We will show how to do this shortly� but �rst it should be pointed out that we have already
been using functions to hide the details of tasks in the code we have written� For both the �read
data� and �print pay� blocks in the diagram
and the corresponding steps in the algorithm� we
have used the built�in library functions� scanf�� and printf��� Many operations are involved in
reading the user�s typed in data� converting it to its internal representation� and storing it in a
variable� however all of this processing is hidden by the function scanf��� At this point� we do
not need to know
and maybe don�t care� how it is done� just that it is done correctly�

The important thing here is that top level program logic can use functions without regard to
their details� At the next lower level� each function used in the top level program logic can be
written in terms of yet lower level functions� and so on� The goal is to arrive at subtasks that
are simple to implement with relatively few statements� This approach is called the top down
approach or modular programming� A top down approach is an excellent aid to program
development� If the subtasks are simple enough� it also helps produce bug�free reliable programs�

����� Implementing the Program with Functions

Abstractly� a function can be viewed a a piece of code which� when given su�cient information�
performs some subtask and returns the result� a value� Returning to our example� if a function�
calc pay��� is used to calculate pay� it will need enough information to perform the computation�
In this case the data it needs is the number of hours worked and the rate of pay� As we have stated
before� variables� such as hours worked and rate of pay� de�ned in a block are only known� i�e�
can be accessed� within that block� So we cannot give calc pay�� direct access to variables de�ned
in other functions� in this case main��� However� calc pay�� does not need direct access to the
variables� it only needs the values to be used for the computation� So we can give a function the
values it needs by passing them as arguments� We can do this by writing an expression� called a
function call� giving the name of the function and expressions for the values of the arguments�
e�g��

calc�pay�hours�worked� rate�of�pay�

The arguments passed are the values of hours worked as the �rst argument� and rate of pay as
the second argument� Given this data we know
or at this point simply believe� that the function
does the right thing and returns with a value� the total pay� We say that the function call evaluates
to a value just as any other expression� The function calc pay�� can now be used in main�� as
follows�

total�pay � calc�pay�hours�worked� rate�of�pay�	

In summary� the function main�� calls calc pay�� to perform a task using a set of values� The
values are passed as a parenthesized list of data items
which can be any valid expressions� sepa�
rated by commas� The expressions that appear in such a statement calling the function are called
arguments� The values of these arguments are received by the called function� calc pay��� which

�� CHAPTER �� DESIGNING PROGRAMS TOP DOWN

uses them to perform the desired subtask� Finally� calc pay�� returns the value of total pay to
the calling function� main��� where it is assigned to the variable� total pay�

The value returned by calc pay��will be the total pay calculated using the values of arguments
passed to it� Here are a few additional examples of function calls used in an assignment expression�

total�pay � calc�pay�
���� �����	
� calc�pay�� returns
����� �

� which is stored in total�pay� �

total�pay � calc�pay������ �����	
� total�pay is assigned ������ �

A function call is an expression and has a value� Just as we had to declare the data types of
variables to the compiler� we must also declare the data type of a function� This declaration also
includes the number of arguments the function requires and their types� For example� here is a
declaration for calc pay���

float calc�pay�float hours� float rate�	

The declaration states that calc pay�� is a function because the identi�er calc pay is followed
by a parenthesized list of arguments� that it requires two float arguments� and that it is of
float type� i�e� it returns a float value� This declaration statement for a function
notice it
is terminated by a semi�colon� is called a prototype statement because it gives the prototype

or the form� for calls to the function� In general� we will refer to the list of data expected to be
passed to a function as speci�ed in the prototype statement as a parameter list and an individual
data item in this list as a parameter�
Sometimes� however� the terms parameter and argument
are used interchangeably�� The names of the parameters in a prototype statment are optional�
but including well chosen names for parameters can make the declaration more meaningful� These
parameter names are dummy names which have no relation to the names of arguments in a function
call or parameters in the function de�nition
described in the next section��

Let us implement the top level program logic using the function calc pay�� to calculate pay�
The code is shown in Figure
�� and for simplicity� we have not included calculation of gross and
average pay�

Figure
�
 shows the behavior of the function call pictorially� The box labeled main�� rep�
resents the function main�� in our program and contains memory cells for variables declared in
main�� labeled with their names
e�g� hours worked�� The box labeled calc pay�� represents
the function calc pay��� At this point we do not know anything about the internals of this box
such as what variables are declared� and what statements will be executed� but at this point we
do not need to know this information� The box shows all of the information we need to know�
namely that the function expects two float type arguments to be passed and will return a float
type result� The dashed lines in the �gure show that� for the call we have written in main���

total�pay � calc�pay�hours�worked� rate�of�pay�	

���� DESIGNING THE ALGORITHM WITH FUNCTIONS �

� File� pay��c

Programmer� Programmer Name

Date� Current Date

The program gets payroll data� calculates pay� and prints out

the results for a number of people� A separate function is used

to calculate total pay�

�

�define REG�LIMIT ����

�define OT�FACTOR ���

main��

�

� declarations �

int id�number	

float hours�worked� rate�of�pay� total�pay	

float calc�pay�float hours� float rate�	

� print title �

printf�����Pay Calculation����n��	

� initialize loop variables �

printf���nType ID Number� zero to quit� ��	

scanf���d�� �id�number�	

while �id�number � �� �

� read data into variables �

printf��Hours Worked� ��	

scanf���f�� �hours�worked�	

printf��Hourly Rate� ��	

scanf���f�� �rate�of�pay�	

� calculate pay �

total�pay � calc�pay�hours�worked� rate�of�pay�	

� print data and results �

printf���nID Number � �d�n�� id�number�	

printf��Hours Worked � �f� Rate of Pay � �����f�n��

hours�worked� rate�of�pay�	

printf��Total Pay � ������f�n�� total�pay�	

� update loop variables �

printf���nType ID Number� zero to quit� ��	

scanf���d�� �id�number�	

�

�

Figure
��� Code for pay��c driver

�� CHAPTER �� DESIGNING PROGRAMS TOP DOWN

calc pay� �oat �oat �

id number hours worked rate of pay total pay

�

�

�

�oat

main��

Figure
�
� Function Call to calc pay��

the �rst argument� the value of hours worked� is passed to the �rst parameter of calc pay��� and
the second argument� the value of rate of pay� is passed to the second parameter� The return
value from calc pay�� is placed in the variable total pay by main���

In summary� the function main�� represents the overall logic of the program� The details of
how pay is actually computed does not change the overall logic� Of course� the program in Figure

�� is not yet complete since we have not written the function calc pay��� If an attempt is made
to compile the program at this point� there will be a linker error message stating that the function
calc pay�� cannot be found� Only when the function is written is the program complete and may
be compiled and executed�

��� De�ning Functions

A function is de�ned by writing the source code for it� Just as for main��� de�ning the function
consists of giving a function header and a function body� The code for calc pay�� is shown in
Figure
���
It is included in the same source �le as the code in Figure
���� Let us look at the
function header �rst�

���� DEFINING FUNCTIONS ��

� File� pay��c � continued �

� Function calculates and returns total pay �

float calc�pay�float hours� float rate�

� float regular� overtime� total	

printf���ndebug�entering calc�pay��� hours � �f� rate � �f�n��

hours� rate�	

if �hours � REG�LIMIT� �

regular � REG�LIMIT � rate	

overtime � OT�FACTOR � rate � �hours � REG�LIMIT�	

�

else �

regular � hours � rate	

overtime � �	

�

total � regular � overtime	

printf��debug�returning from calc�pay��� �f�n�� total�	

return total	

�

Figure
��� Code for calc pay��

float calc�pay�float hours� float rate�

The header speci�es that the name of the function is calc pay� and that the function returns
a float value� It also lists the parameters and their types� in this case there are two formal
parameters� hours and rate� each of type float� Notice that the function header is very similar
to the prototype statement for the function� with two notable exceptions� First� there is no semi�
colon at the end� indicating that this is the de�nition of the function� not a declaration� Second� in
the function header� the variable names in the parameter list are required� and this list is sometimes
called the formal parameter list� These formal parameters act as variable declarations for the
function with the additional feature that they receive initial values from the arguments when the
function is called� the �rst parameter gets the value of the �rst argument� the second parameter
the value of second argument� and so on� The formal parameters in a function de�nition behave
in the same manner as automatic variables� and their scope is limited to the function itself� The
names in this list are the names used within the function body to access these values�

The body of the function is de�ned� as with main��� within brackets� f and g and consists
of the variable declarations for the block followed by the executable statements to perform the
subtask of the function� In our case� we declare variables regular� overtime� and total which
are called local variables because their scope is local� i�e� limited to within the function� We
then calculate regular pay� overtime pay and total pay as before� but we use the formal parameter
names and the names of the local variables in our computations� Finally� since a function can

�� CHAPTER �� DESIGNING PROGRAMS TOP DOWN

return only one value� we return only the value of total pay�

return total	

The above return statement returns the value of the variable� total� to the calling function� In
general� a return statement can be used to return the value of any expression� When the return
statement is executed� the program control returns immediately to the calling function where the
function call evaluates to the returned value�

When a function is �rst written� it is a good practice to include debug statements in the function
de�nition showing the name of the function entered� the values of the parameters received� and the
value returned by the function� When the program is run� these debug statements will produce a
trace of all function calls and returns and as such are invaluable for debugging� particularly when
a program uses many functions� We have included printf�� statements for this purpose in the
code for calc pay�� shown in the �gure�

The above function� together with main�� in the �le pay��c� forms a complete program which
may be compiled and executed� A sample session shown below is similar to the one for pay��c�
The only change is that calc pay�� calculates and returns total pay� whereas in pay��c total pay
was calculated in main���

���Pay Calculation���

Type ID Number� zero to quit� ���

Hours Worked� ��

Hourly Rate� ���

debug�entering calc pay��� hours � ���������� rate � ��������

debug�returning from calc pay��� ����������

ID Number � ��

Hours Worked � ���������� Rate of Pay � � ����

Pay � � ������

Type ID Number� zero to quit� �

The debug printing clearly shows argument values at entry to calc pay�� and the returned value�
If there are any bugs in a function� such debug printing helps detect and remove them�

����� Passing Data to and from Functions

As we can see from the above description� and also in Figure
��� information is passed to a
function as arguments speci�ed in the calling expression� This information is received by the
function in the cells reserved for the formal parameters� In our case� the values of hours worked

���� DEFINING FUNCTIONS ��

id number rate of pay total payhours worked

main��

�

�
calc pay� �oat �oat �

hours

regular overtime total

rate

�oat

return value

��� ���� 	�
 �
���

�
��� ��� �
���

���� 	�

�
���

Figure
��� Function Call Trace

and rate of pay
the arguments of the call� are copied to the cells called hours and rate within
the function calc pay��� Remember� these names are only known internally to the function� All
that main�� sees of the function is a black box as was shown in Figure
�
�

The names of the formal parameters are arbitrary� For example� calc pay�� may be de�ned
with any names for formal arguments�

float calc�pay�float x� float y�

�

if �x � REG�LIMIT� ���

�

or�

float calc�pay�float hours�worked� float rate�of�pay�

�

�� CHAPTER �� DESIGNING PROGRAMS TOP DOWN

if �hours�worked � REG�LIMIT� ���

�

As long as the function uses the formal parameters names internally for computations� the function
de�nitions behave the same� In the last case� even though the formal parameters have the same
names as variables de�ned in main��� they represent distinctly di�erent variables� as shown in
Figure
��� In summary� the scope of automatic variables de�ned in a block is local to that block�
i�e� the objects can be directly accessed by name only within that block and in blocks nested
within it�

As we stated earlier� the arguments in a function call can be any valid expressions� Only the
values of the argument expressions are passed to the called function� For example� these are valid
function calls�

printf��Pay � �f�n�� hours�worked � rate�of�pay�	

printf��Pay � �f�n�� calc�pay�hours�worked� rate�of�pay��	

calc�pay�hours�worked� rate�of�pay � �����	

The argument in the �rst printf�� call is a product expression� The result of evaluating that
expression is passed to printf��� The second statement uses an argument that is itself a function
call� The function call evaluates to a value which is then passed to printf��� The second argument
in the last statement is an expression whose value is passed to calc pay���

Information is returned from a function using the return statement which can also return the
value of any valid expression� The syntax of the return statement is�

return �expression��

For example� we could have combined the last two statements in the function de�nition of
calc pay���

return regular � overtime	

where calc pay�� would then return the value of the expression regular � overtime�

When writing functions� tools such as shown in Figure
�� can be very useful in tracing the
behavior of the function� Another way to check a function for bugs is to manually trace its
execution with representative values for the formal parameters� Figure
�� shows such a trace for
calc pay��� Note� the variables hours and rate
the formal parameters� receive values during
the function calls� Other local variables get values as the function is executed�

In our payroll program� the overall logic can be made even more apparent if functions are used
to get the input data and to print the results� The driver� i�e� main��� can then follow the overall
logic and use function call statements to get the data� calculate the pay� and print the results� A
function that prints data is simple to write� Writing a function that reads data is somewhat more
involved� We will delay writing such functions until Chapter ��

���� DEFINING FUNCTIONS ��

hours rate regular overtime total

float calc�pay�float hours� float rate� ���� ��� �� �� ��

� float regular� overtime� total	

printf��debug�entering calc�pay��� hours � �f� rate � �f�n��

hours� rate�	

if �hours � REG�LIMIT� �

regular � REG�LIMIT � rate	

overtime � OT�FACTOR � rate �

�hours � REG�LIMIT�	

�

else �

regular � hours � rate	 ���� ��� ����� �� ��

overtime � �	 ���� ��� ����� ��� ��

�

total � regular � overtime	 ���� ��� ����� ��� �����

printf��debug�returning from calc�pay��� �f�n�� total�	

return total	

�

Figure
��� Trace for calc pay��

����� Call by Value and Local Variables

This section reviews and formalizes several features of variables that we have already encountered�
We know that direct access of objects is performed by using variable names in expressions� The
use of a variable on the left side of an assignment operator stores a new value in that object� the
use of a variable anywhere else retrieves the value of the object� Objects de�ned in one function
are not directly accessible to other functions� A calling function passes values of arguments to
a called function� Only the values of these arguments� and NOT the arguments themselves� are
available to the called function� The values of the arguments are stored in the parameters� and
only the called function has access to these parameters� When called functions have access only to
argument values� and not to arguments themselves� the function calls are termed call by value�
In C� all function calls are call by value� It is impossible for a called function to have direct access
to an object de�ned in the calling function� Let us examine the implications� Consider a program
that uses a function to increment the value of an argument�

� File� incr�c Program Trace

Program demonstrates call by value� x

�

�include stdio�h�

main��

� int x	 ��

int incr�int n�	

�		 CHAPTER �� DESIGNING PROGRAMS TOP DOWN

printf�����Call by Value����n��	

x � �	 �

printf��Original value of x is �d�n�� x�	 �

printf��Value of incr�x� is �d�n�� incr�x��	 �

printf��The value of x is �d�n�� x�	 �

�

� Function increments n �
 n

int incr�int n� �

�

n � n � �	 !

return n	 !

�

Compiling and executing this programs gives the following sample session�

���Call by Value���

Original value of x is �

Value of incr�x� is !

The value of x is �

The program trace shows that x in main�� is assigned a value of � prior to a function call to
incr�� which increments its parameter to � and returns that value� After the function call� the
value of x in main�� is still �� unchanged because only the value of x is passed to incr��� It was
the cell� n� in incr�� that was incremented as seen in Figure
��

We see that a called function cannot directly change the value of an object de�ned in the calling
function� This is true even if the formal parameter in incr�� were called x� Formal parameters
represent new and distinct objects unrelated to any other objects de�ned elsewhere�

The variables declared at the beginning of a block
e�g� a function body� have all been of
a storage class called automatic� This means that these variables are automatically created
and destroyed each time the function is executed� When the execution of a function begins�
the variables declared at the beginning of the function block as well as the formal parameters
are created� i�e� memory cells for these variable names are allocated� When the execution of a
function is completed
e�g� when a return statement is executed�� the memory allocated for these
variables is freed� i�e� these variables and their values no longer exist�

Automatic variables can be de�ned at the beginning of any block within the primary function
block and exist only in the block in which they are de�ned� Memory for automatic variables
declared in a block is allocated when the block is entered� and freed when the block is exited�

���� DEFINING FUNCTIONS �	�

�

x

n

�

�
��
��
��
��
��
��
��
��
��
��
��
��
�

main��

incr� int �

return value

int

	

	 �

�

Figure
��� Call by value variable allocation

The scope of a variable is that part of the program where the variable is visible� i�e� where
the variable can be accessed directly by name� The scope of automatic variables is local to the
block in which they are de�ned as well as any blocks nested within it� Automatic variables are
frequently referred to as local variables� since their scope is local�

A variable of automatic storage class can be explicitly de�ned in a declaration by preceding it
with the keyword auto� Thus� the following declarations declare automatic variables�

auto int x� y	

auto float r	

If no storage class is speci�ed in a declaration� automatic storage class is assumed by default� In
all of our programs� so far� declarations have been for automatic variables by default� In general�
most variables used in programs are automatic� and the default declaration without the keyword
auto is a standard practice� Other storage classes will be discussed in Chapter ��� Until then� we
will use only automatic variables�

�	� CHAPTER �� DESIGNING PROGRAMS TOP DOWN

As we stated before� a declaration only allocates a memory cell and associates the name with
the cell� the value in that cell is� in general� unknown� However� it is possible to specify initial
values of automatic variables in the declaration statements� Examples include�

int x � � � �	

int y � isquare�� � x�	

float z � ��!	

The �rst declaration initializes x to �	� and the second initializes y to the value returned by the
function call isquare�� � x�� If the function isquare�� returns the square of its argument� then
y in this case� is initialized to �		� i�e� the square of � � x� Finally� the last declaration initializes
the variable z to the value ����

The syntax for a declaration statement with initialization is�

�type speci�er��var name� ���init expr�� �� �var name� ���init expr��� � � ��

The declaration allocates memory for each �var name� of a type indicated by �type speci�er��
and initializes the variable to the value of the initializer expression� �init�expr�� The initializer
expression can be any C expression including function calls�

Consider the following example in which automatic variables are declared in nested blocks�

� File� auto�c

Program shows declarations of automatic variables in nested

blocks� Scope of automatic variables is the block in which they

are defined�

�

main��

�
� outer block �

auto int x � ��� z � ��	
� x and z are allocated and initialized �

printf�����Automatic Variables and Scope����n�n��	

�
� inner block �

int x � ��� y �
�	
� new variables x and y are allocated �

� only the new x can be accessed �

printf��In the inner block� �n��	

printf��x � �d� y � �d� z � �d�n��

x� y� z�	
� new x and y� and z are printed �

�
� new x and y are freed �

printf��In the outer block��n��	

printf��x � �d� z � �d�n�� x� z�	
� only the old x can be �

� accessed in the outer block��

� printf��y � �d�n�� y�	 error� y is not visible here� �

�

���� DEFINING FUNCTIONS �	

x

main��

x

z

y

�� �

�� ��

Figure
��� Local Variables in Blocks

The program contains an outer block� which is the function body for main��� and an inner block�
The scope rules say that an inner block can access variables declared within it plus any variables
declared in an enclosing block� However� if the same variable name is used in an inner and an outer
block� the local variable in the inner block is accessed� The outer block cannot access variables
de�ned in an inner block�

In the example� variables x and z are declared in the outer block and assigned values� The
outer block can access only these variables� Variables x and y are declared in the inner block and
assigned values� The inner block can access the variables z� y� and that x which is de�ned in the
inner block� As shown in a comment� if the outer block tried to access y� a compile time error
would occur� This behavior can be seen in Figure
��� The allocation of storage is shown when
the program is executing within the inner block as can be seen by the nested box containing x

and y� When this block is completed� the inner box� and all variables inside� is freed� A sample
output of the program shows the results�

���Automatic Variables and Scope���

In the inner block�

x � ��� y �
�� z � ��

In the outer block�

x � ��� z � ��

It is also possible to qualify an automatic variable as a constant using the keyword const� A
const quali�er allows initialization of a variable but the variable may not be otherwise changed
within the program� Here is an example�

const int x � ���	

�	� CHAPTER �� DESIGNING PROGRAMS TOP DOWN

In the above case� x is initialized to �		 and quali�ed as a constant� Its value may not be changed
elsewhere in the program� e�g� in an assignment statement� Constant quali�ers are used to ensure
that certain variable values are not altered by oversight�

Let us consider a somewhat more meaningful example that declares a variable in an inner
block� The task is to swap values of two objects� x and y� We need a temporary variable to save
one of the values� otherwise� assigning the value of y to x would overwrite the original value of x�
We can declare the temporary value in an inner block�

� File� swap�c

This program swaps values of two objects� It defines and uses a

temporary variable in an inner block�

�

�include stdio�h�

main��

� int x � ��� y � ��	

printf�����Swap Values����n�n��	

printf��Original values� x � �d� y � �d�n�� x� y�	

� int temp	

temp � x	

x � y	

y � temp	

�

printf��Swapped Values� x � �d� y � �d�n�� x� y�	

�

Here is the output of the program�

���Swap Values���

Original values� x � ��� y � ��

Swapped Values� x � ��� y � ��

De�ning variables in blocks other than a primary function block is not recommended unless
there are good reasons for it� In the above example� a temporary variable is declared closest to
its use and has no logical role in the rest of the program� When a function uses many variables�
declaring variables closest to their use may make it easier to understand the program behavior�
For the most part� we will declare all variables at the beginning of primary function blocks�

The formal parameters of a function are also variables that are automatically allocated during
a function call� and into which the argument values are passed� Their values� just like those of
any other variables� may be changed in the function� The scope of the formal parameters is the
body of the function� i�e� the scope is local to the function body�

���� CODING PROGRAMS FOR READABILITY �	�

��� Coding Programs for Readability

In the previous sections we have seen how to organize programs modularly� beginning with the
algorithm� and carrying that organization into the code using functions� This is a form of in�

formation hiding� i�e� the details of performing a particular operation are hidden from the more
abstract steps of the algorithm� Here we are hiding ideas or abstractions at the algorithm level�
Another form of information hiding at the source code level is described in this section� namely
hiding the details of the syntax of the language in order to make the source code more readable�

����� The C Preprocessor

We have already seen that in order for a program to be run� it must be compiled� i�e� translated
from the C language to the machine language of the computer being used� This compilation process
takes place in several steps� the source code is read from the �le� checked for proper syntax� and
analyized for the meaning of the statements in the code� The proper machine language steps
to perform these statements can then be generated
and optimized� and then linked with other
functions to produce the executable �le� At the beginning of this entire process� standard C
compilers provide an additional step called the preprocessor� The source code is read from the
�le and given to the preprocessor where it is translated into a modi�ed source code �le which
is then given to the compiler proper for translation to machine language� The transformations
performed by the preprocessor are directed by lines in the original source �le called compiler
directives� All such lines begin with the � character as the �rst non�white space character on the
line and are of one of three types of directives� macro de�nitions� �le inclusion� and conditional
compilation� Each of these are discussed in the following sections�

����� Macros

In Chapter � we introduced the define compiler directive which de�nes symbolic names for strings
of characters� Such a string of characters can be arbitrary� for example a sequence of characters
representing a numeric constant� These names can then be used anywhere in the program instead
of the string itself� The C preprocessor replaces these symbolic names with the speci�ed strings
prior to compiling the program� We have seen examples where using names for arbitrary strings
makes it easy to change all occurrences of these names by merely changing the de�nitions� It also
makes for easier reading and debugging of programs by allowing the programmer to use a name
which has some meaning rather than some �magic number��

The de�nition is called a macro and the preprocessor performs a macro expansion when it
substitutes the string for the name� A macro de�nition takes the form�

�de�ne �symbol name� �substitution string�

The macro names follow the same rules as identi�ers� however� a common convention observed

�	� CHAPTER �� DESIGNING PROGRAMS TOP DOWN

by most C programmers is to name macros in all upper case to distinguish them from program
variables� No quotation marks are used to delimit the string� nor is the directive terminated by a
semi�colon� Instead� the string extends to the end of the line
an escape character� n� can be used
to continue the string on the next line�� For example� the following are macro de�nitions�

�define PI
�����"

�define SIZE ����

�define RSQUARED radius � radius

�define AREA PI � RSQUARED

�define LONG This is a very long macro �

definition we continued to the next line

When directives such as these appear in the source �le� then the macros are said to have been
de�ned� We have de�ned macros for the symbols PI� SIZE� RSQUARED� AREA and LONG� With
the above de�nitions� the de�ned names may be used anywhere in program statements� The
preprocesser generates the expanded source code by string replacement� for example�

Original code Expanded code after preprocessing

circum � � � PI � radius	 circum � � �
�����" � radius	

y � x � SIZE	 y � x � ����	

printf��SIZE � ��SIZE�	 printf��SIZE � �������	

AREA	
�����" � radius � radius	

As can be seen� the preprocessor replaces the macro name with the speci�ed replacement string
in the entire source �le following the de�nition� The substitution is not made if a macro name�
occurs in double quotes as in the format string in the printf�� statement shown above�

The scope of the macro de�nition is the entire source �le following the de�nition line� The
de�nitions may be removed at any point in the program by a directive �undef� for example�

�undef SIZE

The above directive makes the preprocessor �forget� the previous de�nition for SIZE� If desired�
a new de�nition may be speci�ed for SIZE at this point� It is a common practice to put macro
de�nitions at the top of the source �le� unless the old de�nitions are removed at some point in the
source �le and new de�nitions are speci�ed�

�define SIZE ��
� SIZE is define to be the string �� �

���

�undef SIZE
� SIZE is undefine �

�define SIZE ���
� SIZE is defined to be ��� �

���� CODING PROGRAMS FOR READABILITY �	�

Identical de�nitions for identi�ers may appear in a �le without causing any problems� however�
two di�erent de�nitions for an identi�er represent an error�

�define SIZE ��

�define SIZE ��
� OK �

�define SIZE ���
� ERROR �

The only way to make a new de�nition for an identi�er is to �rst unde�ne it� i�e� remove its �rst
de�nition�

Macros with Arguments

Macro de�nitions may also have formal parameters which are replaced by the actual arguments
given in the macro call� This is similar to parameters in function calls� however� macro arguments
are treated as strings of characters and are substituted for parameters by the preprocessor� no
evaluation takes place� Consider the example�

�define READ�FLT�fvar� scanf���f�� �fvar�

The macro encapsulates the expression for reading a float number� i�e� a macro call is replaced
by a string that represents a correct scanf�� function call to read a float number into an object
passed to the macro� The actual argument in a macro call replaces fvar in the replacement string�
In other words� every time the macro is called� the expanded code is substituted literally except
that fvar in the de�nition is replaced by the argument given in the actual call� Here are some
examples of macro calls with parameters together with the expanded code�

macro call Expanded Code

READ�FLT�x�	 scanf���f�� �x�	

READ�FLT�rate�	 scanf���f�� �rate�	

Macro calls in these cases expand to C statements� Such calls are said to expand to in�line

code� because the resulting code represents statements in the source code� These types of macro
calls can be used in place of function calls� for example� instead of writing a function to square a
number� we can de�ne a macro�

�define SQ�x� �x � x�

We can use such a macro in any expression� e�g��

y � SQ�radius�	

printf��Square of �d is �d�n�� radius� SQ�radius��	

�	� CHAPTER �� DESIGNING PROGRAMS TOP DOWN

However� remember� macro calls are substitutions� and macro parameters are neither evaluated
nor checked for data type consistency� Therefore� proper placement of parentheses is important
in macro de�nitions� For example� consider the following macro call and expanded code�

SQ�x�y�

expanded becomes

�x � y � x � y�

The expanded code is not the square of �x � y�� as we would expect� By precedence rules� it is
a sum of three terms� x� y � x� and y� A proper de�nition of a macro for square should be�

�define SQ�x� ��x� � �x��

With this de�nition�

SQ�x�y�

will expand correctly to

��x � y� � �x � y��

Here is a simple example program�

� File� macro�c �

�define READ�FLT�fvar� scanf���f�� �fvar�

�define PI
�����"

�define SQ�x� ��x� � �x��

main��

�

float radius	

printf��Type Radius� ��	

READ�FLT�radius�	

printf��Area of a circle with radius ����f is ����f�n��

radius� PI � SQ�radius��	

�

The output of a sample run is�

���� CODING PROGRAMS FOR READABILITY �	�

Type Radius� ��

Area of a circle with radius ����� is
�����

Why use macros with arguments when functions will serve the same purpose� The advantage
is practical� NOT logical� When a function is called� there is a certain amount of run time
overhead� i�e� extra time needed during execution� The overhead comes from passing arguments�
transferring control� returning a value� and returning control� If a function is called just a few
times� the overhead is negligible� However� if a function is used numerous times� e�g� in a loop
executed many times� then the overhead can become signi�cant�

A macro on the other hand has no run time overhead� It is expanded at compile time into
in�line code which has no overhead at run time� If execution time for a program is a problem
because of a frequently used routine� then writing a macro for that routine makes good sense� as
long as the operation can be simply expressed as a macro�

An Example Program

Let us look at another example program to make use of these new facilities�

Task

Read a set of high temperature readings for some number of days and to count the number of
nice days� bad days� and the average temperature for the period� Nice days are those days whose
temperature falls within some �comfort zone��

The high level algorithm for this task is straight forward�

prompt the user and read first temperature

while there are more days to read

process one day#s temperature

accumulate total temperature

read the next temperature

print results

With this algorithm� we next consider what information we will be working with in this program�
We read daily temperatures� so we will need a variable for that� and variables to count the number
of nice and bad days� Since we compute the average temperature� we accumulate the total of all
the daily temperatures� so we need a variable for that� Next we consider how we will implement
the algorithm using functions to hide details� For example� the step to print results� printing
the number of nice and bad days as well as computing and printing the average temperature can
be done in a function� print results��� which is given the number of nice days� bad days� and
the cumulative total of temperatures� The step of processing one day�s temperature is another
candidate� however� this step involves updating our counts of nice and bad days� Since� as we

��	 CHAPTER �� DESIGNING PROGRAMS TOP DOWN

have seen� functions cannot access variables local to main� we re�ne our algorithm to �ll in some
of the details of this step�

prompt the user and read first temperature

while there are more days to read

if it#s a nice day� count a nice day

otherwise count a bad day

accumulate total temperature

read the next temperature

print results

We can use a function to test if a day is nice� thus hiding the details of this operation� We are
now ready to write the code for main�� as shown in Figure
��� It should be noted we have made
an additional design decision here� we use a zero value for the temperature read in as the loop
termination� Also not that we have provided prototype statements for our functions� nice day��

and print results��� This is su�cient information about these functions when considering the
logic of main���
We have speci�ed the return value of print results as type int� but the function
has no real meaningful return value��

We next turn out attention to the function� nice day��� This function is given the temperature
and should return True if this quali�es as a nice day� and False otherwise� The task speci�ed that
the temperature of a nice day is to fall within some �comfort zone�� i�e� not too cold and not too
hot� We can write the algorithm for this function from this information�

if temperature is too cold� return False

if temperature is too hot� also return False

otherwise� this is a nice day� return true

We choose to implement the too cold and too hot tests using macro�

�define TOO�COLD !�

�define TOO�HOT "�

�define HOT�DAY�t� ��t� � TOO�HOT�

�define COLD�DAY�t� ��t� TOO�COLD�

Coding of the function is straight forward� Similarly� for print results��� the algorithm is�

print number of nice days and bad days

if there are any days counted

compute the average temperature

print the average temperature

���� CODING PROGRAMS FOR READABILITY ���

� File� niceday�c

Programmer� Programmer Name

Date� Current Date

This program counts the number of nice days in a set of high

temperature data�

�

int nice�day�int temp�	

int print�results�int nice� int bad� int temp�sum�	

main��

�
� declarations �

int temperature�
� daily temperature �

total � ��
� cumulative total �

num�nice�days � ��

num�bad�days � �	

� print title and prompt �

printf�����Count Nice Days����n�n��	

printf��Type daily high temperature readings �� to quit�� ��	

� read the first temperature �

scanf���d�� �temperature�	

while �temperature $� �� �

� process one temperature �

if � nice�day�temperature��

num�nice�days � num�nice�days � �	

else

num�bad�days � num�bad�days � �	

� accumulate total of temperatures �

total � total � temperature	

� read next temperature �

scanf���d�� �temperature�	

�

print�results�num�nice�days� num�bad�days� total�	

�

Figure
��� Driver for niceday�c

��� CHAPTER �� DESIGNING PROGRAMS TOP DOWN

� File� niceday�c �continued� �

�define TRUE �

�define FALSE �

�define TOO�COLD !�

�define TOO�HOT "�

�define HOT�DAY�t� ��t� � TOO�HOT�

�define COLD�DAY�t� ��t� TOO�COLD�

�define ANY�DAYS�n�b� ���n� � �b�� � ��

� Function to test for a nice day given the temperature �

int nice�day�int temp�

�

if� COLD�DAY�temp�� return FALSE	

if� HOT�DAY�temp�� return FALSE	

return TRUE	

�

� Function to print results given number of nice and bad days �

� and total of temperatures �

int print�results� int nice�days� int bad�days� int total�

�

float average�temp	

printf��There were �d nice days and �d bad days�n��

nice�days� bad�days�	

if � ANY�DAYS� nice�days� bad�days�� �

average�temp � �float� total
 �float� �nice�days � bad�days�	

printf��The average temperature for �d days was �f�n��

nice�days � bad�days� average�temp�	

�

�

Figure
��	� Functions for niceday�c

���� CODING PROGRAMS FOR READABILITY ��

The resulting code for these functions is shown in Figure
��	

Compiling and executing this program with some sample data produces the following sample
session�

���Count Nice Days���

Type daily high temperature readings �� to quit�� 	�

	�

		

�

�

	�

	�

	�

�

�

There were � nice days and
 bad days

The average temperature for " days was !�������

����� Including Header Files

The second feature provided by the preprocessor allows us to break our source �les into smaller
pieces to be reassembled at compile time� Using functions to hide details of algorithms and macros
to hide the syntax and �magic numbers� to make our programs more readable often results in
many function prototype statements and macro de�nitions at the beginning of source code �les�
These may also be hidden in separate �les� and included in the source �le by the preprocessor�
The �les containing this information to be included are called include �les or header �les� and
by convention� are named with a �h extension on the �le name� Header �les are also often used to
provide common macro de�nitions and prototype statements that may be useful in may programs

or as we shall see later� in many �les making up a single program�� An example of the later case
are the standard library functions provided in C� the prototype statements for these functions
should be available to any program which chooses to use the functions� In many of our programs
so far� we have used the library functions printf�� and scanf��� Where are the prototypes for
these� As well as providing the code for library functions� all standard C implementations provide
a set of �h �les with this information� The �le stdio�h contains the prototypes and macros
needed to use the I�O library�
We have not needed this �le before because the compiler will make
assumptions about functions if prototypes are not provided� Sometimes these assumptions are
�safe�� but often they are not� It is a good idea� from now on� to include stdio�h in any program
using the I�O library��

The statements and directives in an include �le are inserted in a source �le when the preproces�
sor encounters an �include directive in the original source �le� To include stdio�h the directive
is�

��� CHAPTER �� DESIGNING PROGRAMS TOP DOWN

�include stdio�h�

The angle brackets� � and �� surrounding the �lename indicate to the preprocessor that the �le�
stdio�h� is to be found in �the usual place� where standard header �les are kept on the system

this is system dependent�� and its contents placed in the source code in place of the �include

directive� Any other directives within the included �le
such as �define or other �include

directives� are also processed at this time�

Besides the standard header �les� as a programmer you can create and include your own header
�les for your programs� For example� in our niceday�c program� we de�ned macros for TRUE and
FALSE� These macros are very common in many programs� so it would be convenient if we could
enter those de�nitions in a single header �le and simply include that header �le in any program
the uses those macros� This header �le might be called tfdef�h and contain�

� File� tfdef�h

Programmer� Programmer Name

This file contains the definitions of TRUE and FALSE

�

�define TRUE �

�define FALSE �

To include these de�nitions in a �c source �le� use the directive�

�include �tfdef�h�

Notice in this instance that the �le name is surrounded by double quote� �� characters rather than
the angle brackets used before� This syntax tells the preprocessor that the header �le is to be
found in the same directory as the �c source �le currently being processed�

Again� in our nice day program� all of the other macro de�nitions and prototypes relating just
to this program may also be placed in a header �le� say niceday�h�

� File� niceday�h

Programmer� Programmer Name

This file contains the definitions of macros and prototypes

for functions used by the niceday program�

�

�define TOO�COLD !�

�define TOO�HOT "�

���� CODING PROGRAMS FOR READABILITY ���

�define HOT�DAY�t� ��t� � TOO�HOT�

�define COLD�DAY�t� ��t� TOO�COLD�

�define ANY�DAYS�n�b� ���n� � �b�� � ��

int nice�day�int temp�	

int print�results�int nice� int bad� int temp�sum�	

and replaced in niceday�c with�

�include �niceday�h�

Thus� the beginning of niceday�c has been reduced to�

� File� niceday�c

Programmer� Programmer Name

Date� Current Date

This program counts the number of nice days in a set of high

temperature data�

�

�include stdio�h�

�include �tfdef�h�

�include �niceday�h�

main��

� ���

Notice we include stdio�h at the head of the source �le� Its contents are available for use by the
entire source �le� We also declare the function prototypes for nice day�� and print results��

in the �le niceday�h outside main��� A declaration outside a function is called an external
declaration� The scope of an external declaration is the entire �le from the point of the declaration�
i�e� all code that follows the external declaration can use the declared item� Since stdio�h is
included outside main��� the declarations for scanf�� and printf�� are also external� External
declaration of functions is convenient since it avoids repeated declarations of the same function�
On the other hand� external declarations of variables leads to poorly structured programs and
destroys modularity of functions� External declarations of variables is strongly discouraged�

In summary� the syntax of the �include directive is�

�include ��lename�
�include ��lename�

��� CHAPTER �� DESIGNING PROGRAMS TOP DOWN

with the semantics that the contents of the �le� �lename� is to be inserted in the source �le in place
of the �include directive�
Note� here the angle brackets are part of the syntax of the directive��
Other directives in the included �le are also processed� In the �rst form of the directive� the header
�le is searched for in the �usual place� for system header �les� and in the second case� it is to be
found in the current directory� The advantages of using the �include directive are twofold�

�� Information such as macro de�nitions and prototype statements that are useful in multiple
program �les need only be entered in a single place and then included where needed� This
also facilitates changes� the change need be made only in a single place�

�� Details of macro de�nitions and prototypes are hidden from the view of the reader� thus alle�
viating clutter and information overload and allowing a reader of the program to concentrate
on the logic of the code itself�

����� Conditional Compilation

The third useful facility provided by the preprocessor is conditional compilation� i�e� the
selection of lines of source code to be compiled and those to be ignored� While conditional
compilation can be used for many purposes� we will illustrate its use with debug statements� In
our previous programming examples� we have discussed the usefulness of printf�� statements
inserted in the code for the purpose of displaying debug information during program testing�
Once the program is debugged and accepted as �working�� it is desirable to remove these debug
statements to use the program� Of course� if later an undetected bug appears during program use�
we would like to put some or all debug statements back in the code to pinpoint and �x the bug�
One approach to this is to simply �comment out� the debug statements� i�e� surround them with
comment markers� so that if they are needed again� they can be �uncommented�� This is a vast
improvement over removing them and later having to type them back� However� this approach
does require going through the entire source �le
s� to �nd all of the debug statements and comment
or uncomment them�

The C preprocessor provides a better alternative� namely conditional compilation� Lines of
source code that may be sometimes desired in the program and other times not� are surrounded
by �ifdef��endif directive pairs as follows�

�ifdef DEBUG

printf��debug�x � �d� y � �f�n�� x� y�	

���

�endif

The �ifdef directive speci�es that if DEBUG exists as a de�ned macro� i�e� is de�ned by means of
a �define directive� then the statements between the �ifdef directive and the �endif directive
are retained in the source �le passed to the compiler� If DEBUG does not exist as a macro� then
these statements are not passed on to the compiler�

Thus to �turn on� debugging statements� we simply include a de�nition�

���� CODING PROGRAMS FOR READABILITY ���

�define DEBUG �

in the source �le� and to �turn o�� debug we remove
or comment� the de�nition� In fact� the
replacement string of the macro� DEBUG is not important� all that matters is the fact that its
de�nition exists� Therefore�

�define DEBUG

is a su�cient de�nition for conditional compilation purposes� During the debug phase� we de�ne
DEBUG at the head of a source �le� and compile the program� All statements appearing anywhere
between �ifdef and matching �endif directives will be compiled as part of the program� When
the program has been debugged� we take out the DEBUG de�nition� and recompile the program�
The program will be compiled excluding the debug statements� The advantage is that debug
statements do not have to be physically tracked down and removed� Also� if a program needs
modi�cation� the debug statements are in place and can simply be reactivated�

In general� conditional compilation directives begin with an if�part and end with an endif�part�
Optionally� an else�part or an elseif�part may be present before the endif�part� The keywords for
the di�erent parts are�

if
part	 if� ifdef� ifndef
else
part	 else
elseif
part	 elif
endif
part	 endif

The syntax is�

��if�part�
�statements�

� � �elseif�part�
�statements� �

� ��else�part�
�statements� �

��endif�part�

If the if�part is True� then all the statements until the next �else�part�� �elseif�part� or �endif�
part� are compiled� otherwise� if the �else�part� is present� the statements between the �else�
part� and the �endif�part� are compiled�

We have already discussed the keyword ifdef� The keyword ifndef means �if not de�ned�� If the
identi�er following it is NOT de�ned� then the statements until the next �else�part�� �elseif�part�
or �endif�part� are compiled�

��� CHAPTER �� DESIGNING PROGRAMS TOP DOWN

The keyword if must be followed by a constant expression� i�e� an expression made up of
constants and operators� If the constant expression is True� the statements until the next else�
part� elseif�part or endif�part are compiled� In fact� the keyword ifdef is just a special case of the if
form� The directive�

�ifdef ident

is equivalent to�

�if defined ident

We can also use �if to test for the presence of a device� for example� so that if it is present�
we can include an appropriate header �le�

�if DEVICE �� MOUSE

�include mouse�h

�endif

Here� both DEVICE and MOUSE are assumed to be constant identi�ers�

The �elif provides a multiway branching in conditional compilation analogous to else � � � if

in C� Suppose� we wish to write a program that must work with any one of a variety of printers�
We need to include in the program a header �le to support the use of a speci�c printer� Let us
assume that the speci�c printer used in an installation is de�ned by a macro DEVICE� We can then
write conditional compilation directives to include the appropriate header �le�

�if DEVICE �� IBM

�include ibmdrv�h

�elif DEVICE �� HP

�include hpdrv�h

�else

�include gendrv�h

�endif

Only constant expressions are allowed in conditional compilation directives� Therefore� in the
above code� DEVICE� IBM� and HP must be be de�ned constants�

The niceday Example Again

Using compiler directives is a convenience for the programmer and makes program source �les
easier to understand� One goal in understandable �les is to make them small� the less a reader
has to look at in trying to understand a program� the better� Good programming style includes

���� INTERACTING WITH THE OPERATING SYSTEM ���

the hiding of details at the algorithm level with functions� at the source code level using macros�
and at the source �le level using header �les and conditional compilation� One comment should
be made about header �les� The information stored in header �les is meant to be directives and
prototype statements� NOT code statements or function de�nitions� Also DO NOT�

�include �somefile�c�

The syntax of the �include directive allows these� but it is considered bad style� A �nal version
of our �le niceday�c using these compiler directives is shown in Figure
����

��� Interacting with the Operating System

In the programs we have developed so far� we have used C library functions scanf�� and printf��

to perform the input and output for our programs� These library routines are simply functions
that call on the facilities of the operating system to cause data to be the read from the keyboard
and written to the screen� In this section we look in more detail at these features of the operating
system�

����� Standard Files and EOF

In our payroll programs� we used a sentinel value of id number� namely 	� to indicate the end of
input data� There are many instances when it is not possible to use a special sentinel value of input
data to terminate the input� For example� suppose we wish to read a sequence of numbers and
determine the largest of them� It is impossible to select any one number as a signal to terminate
input since any selected number may be one of the valid numbers in our sequence and may appear
before the entire sequence of numbers is exhausted� We need a way to indicate that the end of
input is reached without entering any special value of input which may also be valid data�

C provides such mechanism to indicate the end of data input through the way it handles all
input and output� All data read by a C program or written from a program can be considered to
be simply a stream or sequence of characters� i�e� symbols we use to type or print information�
alphabetic letters� digits� punctuations� etc� This stream of characters is called a �le and is
organized like any other �le in the system� Three �les� called standard input� standard output�
and standard error� are prede�ned �les available to all programs� By default� standard input
is the keyboard� and standard ouput is the screen� The function scanf�� reads data from the
standard input �le� and printf��writes data to the standard output �le� Run time error messages
are written to standard error� which is also the screen� by default�

The end of a �le is indicated by a special marker which is an unusual character not commonly
used for any other purpose� When input is typed at the keyboard� an end of �le mark is indicated
by what is called a control character� A control character is typed by pressing the control key�

CTRL�� and pressing another key while keeping CTRL key pressed� For example� control�A is

��	 CHAPTER �� DESIGNING PROGRAMS TOP DOWN

� File� niceday�c

Programmer� Programmer Name

Date� Current Date

This program counts the number of nice days in a set of high

temperature data�

�

�include stdio�h�

�include �tfdef�h�

�include �niceday�h�

main��

�
� declarations �

int temperature�
� daily temperature �

total � ��
� cumulative total �

num�nice�days � ��

num�bad�days � �	

� print title and prompt �

printf�����Count Nice Days����n�n��	

printf��Type daily high temperature readings �� to quit�� ��	

� read the first temperature �

scanf���d�� �temperature�	

while �temperature $� �� �

� process one temperature �

if � nice�day�temperature��

num�nice�days � num�nice�days � �	

else

num�bad�days � num�bad�days � �	

� accumulate total of temperatures �

total � total � temperature	

�ifdef DEBUG

printf��debug� �d temps read� total � �d�n��

num�nice�days � num�bad�days� total�	

�endif

� read next temperature �

scanf���d�� �temperature�	

�

print�results�num�nice�days� num�bad�days� total�	

�

���� INTERACTING WITH THE OPERATING SYSTEM ���

� Function to test for a nice day given the temperature �

int nice�day�int temp�

�

if� COLD�DAY�temp�� return FALSE	

if� HOT�DAY�temp�� return FALSE	

return TRUE	

�

� Function to print results given number of nice and bad days �

� and total of temperatures �

int print�results� int nice�days� int bad�days� int total�

�

float average�temp	

printf��There were �d nice days and �d bad days�n��

nice�days� bad�days�	

if � ANY�DAYS�nice�days�bad�days�� �

average�temp � �float� total
 �float� �nice�days � bad�days�	

printf��The average temperature for �d days was �f�n��

nice�days � bad�days� average�temp�	

�

�

Figure
���� Using Directives in niceday�c

entered by pressing CTRL and pressing A while keeping CTRL pressed� Control characters are
displayed on screen or paper by a caret followed by a letter� For example� control�A is written as
�A� The Control character entered on a keyboard to indicate an end of �le is �D on most Unix
machines and �Z on DOS machines� A keyboard �le
stream� with an end of �le keystroke is
shown in Figure
���� Here� three lines of input are represented� followed by the end of �le marker
as if the user had typed�

	

�	

�

�D

How does scanf�� inform the calling function that an end of �le has been reached� It does
so by returning a special value to indicate an end of �le� The function scanf�� is just like any

��� CHAPTER �� DESIGNING PROGRAMS TOP DOWN

nnnnnn nn� � � � � EOF

Figure
���� End of File Marker

other function in C� it has arguments passed to it and it returns a value� So far� we have simply
ignored whatever value has returned� Normally� when scanf�� reads data� it returns a value to
indicate the number of data items read successfully� We can save this value returned by scanf��

and examine whether all data items have been read� For example� consider�

flag � scanf���d�� �n�	

flag � scanf���d �f �d�� �n� �y� �id�	

Assuming that both the above statements read data items successfully� then the �rst scanf�� will
return � since it reads one decimal integer� and the second will return
 since it reads three data
items� two int�s and a float� We have not used this value so far� but we can use it to check if a
correct number of items are read�

When scanf�� detects the special end of �le marker� it returns a value of either 	 or ��

depending on implementation�� The actual value returned is de�ned as a macro called EOF in the
�le stdio�h�

We can now write a loop that terminates when the end of standard input �le is reached�

�include stdio�h�

���

flag � scanf��	

while �flag $� EOF� �

���

flag � scanf��	

�

The value returned by scanf�� is saved in the variable flag� The loop repeats until flag receives
the value EOF� The above code is portable to any implementation since the correct value of EOF is
de�ned in stdio�h in every implementation� We can now write a program that uses end of �le to
terminate reading of data�

Task

BIG� Find the largest absolute value in a sequence of integers typed in by the user� An end of �le
keystroke terminates the input�

���� INTERACTING WITH THE OPERATING SYSTEM ��

The algorithm maintains the current largest absolute value� Each time a new number is read�
the absolute value of the item read is compared with the largest value� and if necessary the largest
value is updated� The algorithm uses a loop that is terminated when an end of �le keystroke is
typed� Here is the algorithm�

initialize largest to �

read first integer� n

while there is still data

compare absolute value of n and largest� update largest

read next integer

print largest

We will need a function absolute�� which takes an integer argument n� and returns its absolute
integer value� Notice we initialize our largest absolute value to 	� since that is the smallest absolute
value we can ever encounter� The entire program is shown in Figure
��
 and a sample session is�

���Largest Absolute Integer���

Type integers� EOF to quit� %Z for DOS� %D for Unix

��

�

��

��

�D

Largest absolute value � ��

In our program� main�� �rst prompts the user to type integers� and it also tells the user how
to terminate the input� It is best to assume that the user does not know how to press a keystroke
for EOF
however� in the future we will omit this reminder and assume the user knows the correct
EOF character�� The prompt is written by�

printf��Type integers� EOF to quit� �

�%Z for DOS� %D for Unix�n��	

Observe that the argument of printf�� consists of two adjoining strings of characters� each
in double quotes� When the compiler encounters two adjoining strings� it replaces them by a
concatenated string� i�e� it joins them together into a single string�

�Type integers� EOF to quit� %Z for DOS� %D for Unix�n�

When a string gets too large� it is best to split it into two adjoining strings� since strings cannot
be broken across lines�

��� CHAPTER �� DESIGNING PROGRAMS TOP DOWN

� File� maxabs�c

Programmer� Programmer Name

Date� Current Date

This program reads in a sequence of integers until an end of file�

Among the numbers read� the program determines the largest absolute value�

�

�include stdio�h�

int absolute�int n�	

main��

� int largest � ��

n� flag	

printf�����Largest Absolute Integer����n�n��	

printf��Type integers� EOF to quit� ��	

�%Z for DOS� %D for Unix�n��	

flag � scanf���d�� �n�	

while �flag $� EOF� �

if �absolute�n� � largest�

largest � absolute�n�	

flag � scanf���d�� �n�	

�

printf��Largest absolute value � �d�n�� largest�	

�

� Function returns the absolute value of n �

int absolute�int n�

�

if �n ��

return �n	

else

return n	

�

Figure
��
� Code for maxabs�c

���� INTERACTING WITH THE OPERATING SYSTEM ���

After the prompt� main�� reads the �rst integer� The while loop tests for the end of the
input and compares the value of largest and the absolute value of the last number read� n� If
necessary largest is updated� a new number is read� and so forth� The loop is terminated when
an end of �le character
�D or �Z� is encountered by the function scanf�� and it returns a value
EOF� Remember� only the value of flag� NOT that of n� gets the value� EOF� The value of n will
remain unchanged from its previous value when scanf�� encounters end of �le� Finally� the largest
absolute value is printed out�

We have seen that scanf�� returns a value of items read or EOF� It also performs the task
of reading one or more items� converting them to internal form� and storing them at speci�ed
addresses� This additional task does not directly contribute to the returned value and is called a
side e�ect� Functions may be used solely for their side e�ects� solely for their returned values�
or for both side e�ects and returned values� For example� we use printf�� for its side e�ect and
ignore its value� We also frequently ignore the value of scanf��� In this section� we have used
scanf�� for both its side e�ect as well as its return value�

����� Standard Files and Redirection

As we stated� normally the standard input and standard output �les are de�ned by default to be
the keyboard and the screen� This may not always be convenient� For example� in our nice day
program� we might want to gather statistics for an entire year of temperature data� or an entire
decade� While we may have all this data readily available in a �le� to use our program we would
have to type it all in at the keyboard again
and what happens if we make a mistake and have to
start all over�� Operating systems such as Unix and MS�DOS allow a user to redirect the standard
input and output �les to �les other than the keyboard and screen�

If our program in �le� niceday�c were compiled using the command�

cc �o niceday niceday�c

producing the executable �le niceday� we can execute the program with input data from a �le
called temperatures by typing the following command to the shell�

niceday temperatures

The symbol � in the command redirects the standard input to come from the �le temperatures
instead of the keyboard�

Similarly� we can redirect the standard input to our payroll program� pay�� from a �le con�
taining monthly data for many employees�

pay� pay�data�march

��� CHAPTER �� DESIGNING PROGRAMS TOP DOWN

However� in this case� unless we can read very fast� most of the output generated by the program
will scroll past the screen before we can read it� In addition� we might want to save the results of
our program execution in a �le to send to a printer for a hard copy� A similar redirection of the
standard output to a �le can be done with the symbol � as follows�

pay� pay�data�march � pay�results�march

One problem remains with this technique� all output generated by the program from printf��

statements will be redirected to the �le� including the prompts we put in the program� In this
case� the prompts are not necessary since the data is coming from a �le� not from the user at the
keyboard� For programs who�s input and output are meant to be redirected from�to �les� it is
best to remove the printf�� statements which produce prompts� We might even consider using
conditional compilation to include or exclude the prompts� but remember� the program must be
recompiled to change from one which prompts to one which does not� and vice versa�

��� Debugging Guidelines

As programs become large� �nding bugs and debugging become a time consuming job� Debugging
is an art that can be learned and developed� However� it requires plenty of experience in writing
and debugging programs� The structured� top down approach to writing programs discussed in
this chapter is one valuable tool for producing quality� working programs� However� there is no
substitute for extensive programming experience and the best way to gain programming experience
is to write� test� and debug programs� write� test� and debug programs�write� test� and
debug programs� etc� etc�

Certain debugging guidelines are presented here to make the learning process easier�

�� The �rst step cannot be emphasized enough� Spend plenty of time in preparing the algorithm�
A logically clear algorithm is much easier to debug than an ad hoc algorithm with many
�xes for previously found bugs� Trial and error programming may never be bug free�

�� Use top down development for your algorithms� and use modular programming for your
implementation� Top down development makes logic transparent at each stage and hides
unnecessary details by relegating them to later stages� Modular programming localizes errors
in small functions� which can be easily debugged�

� Document your program using comments as you write it� It is a poor habit to delay docu�
menting a program until it is done� Frequently� the very process of documenting a program
makes the logic clearer and may well eliminate sources of errors�

�� Trace your program �ow manually� This means� examine what happens to values of key
variables at key points in the program� Use judicious starting values for these variables�
Particularly� check values of variables at critical points� such as loop beginnings and ends�
function calls� and other key points in the program�

���� COMMON ERRORS ���

�� If your compiler comes with a symbolic debugger� learn to use it� The time spent to learn
the use of a debugger makes debugging of most programs an easier task�

�� Otherwise� use trace statements in your program� That is� use statements to print out values
of key variables at key positions in the program to help pin�point the program segment where
the bug may be located� The program segment containing a bug can be narrowed until the
exact one or two lines of code are pin�pointed� It is then easier to spot the error and correct
it� Trace statements are also called debug statements�

�� Pin�point the functions which generate errors� Rewrite the functions if they are overly
complex or long� Many times� it is easier to rewrite a function than to rectify poor logic�

�� In program development� initially we need debug statements� Later� once a program is
debugged� the debug statements must be removed� C provides conditional compilation which
was discussed above� One use of conditional compilation is to conditionally compile debug
statements� Initially the program� including debug statements� is compiled� Later� when the
program has been debugged� it can be compiled without compiling the debug statements�
Debug statements need not be removed from the code�

��� Common Errors

This section contains a list of common errors made by programmers � things to watch out for in
your programming�

�� The wrong value is tested for EOF instead of the returned value of scanf���

flag � scanf���d�� �n�	

while �n $� EOF�
� should be� while �flag $� EOF� �

���

The value read is stored at the address given by �n� i�e� it is stored in n� The statement
scanf���d�� �n� evaluates to a returned value which is either the number of data items
read or EOF� In the above case� if an integer data item is read� the value returned will be ��
If no data item is read� scanf�� returns EOF� The value returned by scanf�� is stored in
the variable flag� NOT in n� Test flag for EOF� NOT n�

�� An attempt is made by a called function to access a variable de�ned in the calling function�

�include stdio�h�

�define TRUE �

main��

� int x� square�int x�	

x �
	

square�x�	
� x cannot be unchanged by square�� �

��� CHAPTER �� DESIGNING PROGRAMS TOP DOWN

printf��x � �d�n�� x�	
� prints� x �
 �

�

int square�int x�
� x is a new object� with initial value �

� passed by an argument in the function call �

�

x � x � x	
� new x is changed �

return TRUE	
� a value is returned as the value of square�� �

�

The variable x in main�� is a di�erent object from x in square��� The value of the local
cell� x� is changed in square��� but that does not a�ect the cell x in main��� The cell� x� in
main�� will still have the value
 after the function call to square��� If main�� needs the
squared value of x� then square�� should return the squared value of x� NOT TRUE� This
returned value should be saved in a local variable in main��� For example� if the return

statement in square�� is�

return x	

then the returned value can be saved in main���

x � square�x�	

� A function is not declared with a prototype statement� Without a prototype� the compiler
will not be able to check for consistency in usage of the function� When a function is declared�
the compiler checks for a correct number of arguments in function calls and checks for correct
types�

�� A default declaration of a function assumes an integer type function value� If the actual
de�nition of that function returns a non�integer type� then the compiler will consider it an
attempt to redeclare a function� The compiler will �ag it as an error�

�� An erroneous keystroke is entered when an end of �le is to be entered� For example� an
attempt is made to enter 	 or �� for an end of �le� These values are not the end of �le
keystrokes� they represent the possible values returned by scanf�� when an end of �le
keystroke
�D or �Z� is encountered�

��	 Summary

This chapter has presented a key concept in the design of good programs� namely� top down design�
Beginning with the algorithm� complex programming tasks are divided into logical subtasks which
themselves may be further divided� This structured design is a form of information hiding �
hiding the details of an operation in its abstraction� We have described how these logical subtasks
may be implemented using functions in C� A function is a block of code� which when given some
information� performs some operations on the data and returns a value� To invoke
call� a function�
use a statement with the form�

���� SUMMARY ���

�function name�
 ��argument����argument�� � � �� �

where each argument may be an arbitrary expression� A function is de�ned by specifying a
function header and a function body� A function header takes the form�

�function name�
 ��parameter����parameter�� � � �� �

and a function body is simply a block containing local variable declarations followed by executable
statements to perform the task of the function�

We saw that the �parameter��s in the function header are really just special forms of variable
declarations� containing a type speci�er and an identi�er� They declare additional local variables
within the function which are initialized to the values passed as arguments in the call� We also
saw how declaration statements can initialize variables when a block is entered�

�type speci�er��var name� ���init expr�� �� �var name� ���init expr��� � � ��

Remember� all local variables local to a function may be accessed ONLY within the body of the
function� not by functions calling this function and not by functions called by this function�

The value returned by a function is speci�ed in a return statement of the form�

return �expression��

If the last statement of the function is reached without executing a return statement� the function
returns with an unknown return value�

Next we discussed another form of information hiding using compiler directives processed by
the C preprocessor� These included macros� with and without arguments� including header �les�
and conditional compilation�

�de�ne �symbol name� �substitution string�

�include ��lename�
�include ��lename�

�ifdef �identi�er�

and other variations of the �if directive��

Finally� we described the relationship between I�O in C and �les� including end of �le and
redirection of standard input and output �les�

�
	 CHAPTER �� DESIGNING PROGRAMS TOP DOWN

��
 Exercises

�� What will the following code do�

�define SQ�x� x � x	

printf���d�n�� SQ�
��	

�� What will the following code do�

�define SQ�x� x � x	

printf���d�n�� SQ���
��	

� What will be the output of the following code�

�define DEBUG �

�define TWICEZ z � z

main��

� int z � �	

�ifdef DEBUG

printf���d�n�� TWICEZ � ��	

�endif

�

�� Check the following program for errors� if any� and use a manual trace to verify the program
averages two numbers�

�include stdio�h�

main��

� float x� y� average	

printf��Type two numbers� ��	

scanf���f �f�� �x� �y�	

calc�avg�x� y�	

printf��Average of �f and �f is �f�n�� x� y� average�	

�

calc�avg�float a� float b�

�

return a � b
 �	

�

�� Check the following program for errors� if any� and manually trace its execution�

��	� EXERCISES �
�

main��

� float x� y� average	

printf��Type numbers�n��	

scanf���f�� �x�	

while �x $� EOF� �

printf��Number read � �f�n�� x�	

scanf���f�� �x�	

�

�

�
� CHAPTER �� DESIGNING PROGRAMS TOP DOWN

��� Problems

�� Write a function float speed mph�float distance� float time�	 where distance trav�
eled is speci�ed in feet and time interval is in seconds� The function should return the speed
in miles per hour� A mile is ���	 feet� Show a manual trace�

�� Write a program that prints out an integer and its square for all integers in the range from
� through ��� Use a function to calculate the square of an integer� Show a manual trace�

� Write a program to sum all input numbers until end of �le� The program should keep a count
of the numbers entered and compute an average of the input numbers� Show a manual trace
for the �rst three numbers�

�� Write a function float max�float n�� float n��	 that returns the greater of n� and n��
Write a function float min�float n�� float n��	 that returns the lesser of n� and n��
Write a program that reads in numbers and uses the above functions to �nd the maximum
and the minimum of all the numbers� The end of input occurs when zero is typed� Zero is
a valid number for determining the maximum and the minimum� Use debug statements to
ensure that the maximum and the minimum are updated correctly�

�� Write a program that generates a table of equivalent Celsius
C� and Fahrenheit
F� tem�
peratures from 	 to ��� degrees F� The table entries should be at �ve degree
F� intervals�
Use a function to convert degrees F to C� The conversion between the two is given by�

C � �F �
�� � ���
 "��

�� Write a program that uses a function to determine if a given year is a leap year� A year is
a leap year if it is divisible by �		� or if it is divisible by � and it is not divisible by �		�

�� Write a function float sum rec n�int n�	 which returns the sum of the reciprocals of
integers from � through n� Write a program that reads positive integers until end of �le� For
each positive integer� x� read� it prints sum rec n�x�� Reciprocals must be float values�
Use a cast operator to convert an integer to float before the reciprocal is calculated�

�� Modify the pay calculation program of Figure
�� so that a function print data�� prints
out the input data as well as the pay� The function print data�� should return the number
of items it writes to the output�

�� Assume that C does not provide a multiply operator� Write a function� int multiply�int

n�� int n��	 that multiplies two integers n� and n�� and returns their product� Write a
driver to test the function�

�	� Write a function� int factors�int n�� where n is a positive integer� The function prints
the smallest integer factors of n� excluding � and itself� For example� if n is ��	� then
factors�n� will print �� �� ��
� �� The function returns TRUE if n has no factors and
FALSE otherwise�

��� Write a program that reads a positive integer and tests if it is a prime number by using
factors�� from Problem �	

��
� PROBLEMS �

��� Write a function int gcd�int n� int m�	 that returns the greatest common divisor
GCD�
of non�negative integers n and m� A GCD may be obtained as follows� if m is zero� then GCD
is n� otherwise� replace current n by the current m and replace current m by �n � m�� Repeat
until m becomes zero and GCD is found�

�
� Assume that C does not have a divide operator� Write a function int divide�� with two
integer arguments that returns an integer quotient when the �rst argument is divided by the
second argument�

��� Assume that C does not have a modulus operator� Write a function modulus�� with two
integer arguments that returns the remainder when the �rst argument is divided by the
second�

��� Write a program that prints the accumulated value of an initial investment invested at a
speci�ed annual interest and compounded annually for a speci�ed number of years� Annual
compounding means that the entire annual interest is added at the end of a year to the
invested amount� The new accumulated amount then earns interest� and so forth� If the
accumulated amount at the start of a year is acc amount� then at the end of one year the
accumulated amount is�

acc�amount � acc�amount � acc�amount � annual�interest

Use a function that returns the accumulated value given the amount� interest� and years�
The prototype is�

float calc�acc�amt�float acc�amount� float annual�interest� int years�	

��� Modify the function in Problem �� so that the interest may be compounded annually�
monthly� or daily� Assume
�� days in the year� Hint� Use an argument to specify annual�
monthly� or daily compounding of interest� If interest is not to be compounded annually�
the annual interest must be converted to monthly
i�e�� interest � ��� or daily interest
i�e��
interest �
���� The interest must then be compounded each year� each month� or each day
as the case may be�

��� Write a function that calculates the factorial of an integer n� Use a driver to test the
function for values of n from � to �� Factorial of a positive integer� n� is given by the product
of positive integers from � through n� Use a variable that stores the value of the cumulative
product� The cumulative product is multiplied by a new value of an integer each time a loop
is executed�

cum�prod � cum�prod � i	

The initial value of the cumulative product should be � so the �rst multiple accumulates
correctly�

��� Write a function� float pos power�float base� int exponent�	 which returns the value
of base raised to a positive exponent� For example� if base is ��	 and exponent is
� the
function should return ��	� If the exponent is negative� the function should return 	�

�
� CHAPTER �� DESIGNING PROGRAMS TOP DOWN

��� Write a function� neg power��� which returns base raised to a negative exponent�

�	� Modify the functions in Problems �� and �� to write a function float power�float base�

int exponent�	 which returns an exponent power of base� where exponent may be positive
or negative� If the exponent is zero� it should return ��

��� Write a function int weight�int n�	 where n is a positive integer� The function returns
the weight of the most signi�cant digit� i�e�� the highest power of ten which does not exceed
n� For example� if n is �
��� weight�n� returns �			� Assume n is less than �				�

��� Write a function� int sig dig value�int n�	 that returns the integer value of the most sig�
ni�cant digit of a positive integer n less than �				� For example� if n is �
��� sig dig value�n�

returns integer ��

�
� Write a function� int suppress msd�int n�	 that returns an integer value of a positive in�
teger after the most signi�cant digit is removed� For example� if n is �
��� suppress msd�n�

returns
���

��� Use Problems �� and �
 to write a function� print dig int�int n�	 that prints successive
integer values of digits of a positive integer n� Each digit value is printed on a separate line�
For example� if n is �
��� print dig int�n� prints � on one line�
 on the next� � on the
next� and � on the last line�

��� Write a function print dig float�float x�	 that writes the value of each digit of a �oating
point number x� For example� if x is �
�����
�� then print dig float�x� will print integer
values of digits ��
� �� �� �� ��
� and � in succession�

��� Write a macro to evaluate the sum of the squares of two parameters� Make sure the macro
can be called with any argument expressions� Write a program that reads two values and
uses the above macro to print the sum of the squares�

Chapter �

Processing Character Data

So far we have considered only numeric processing� i�e� processing of numeric data represented
as integer and �oating point types� Humans also use computers to manipulate data that is not
numeric such as the symbols used to represent alphabetic letters� digits� punctuation marks� etc�
These symbols have a standard meaning to us� and we use them to represent �English� text� In
the computer� the symbols used to store and process text are called characters and C provides
a data type� char� for these objects� In addition� communication between humans and computers
is in the form of character symbols� i�e� all data typed at a keyboard and written on a screen
is a sequence of character symbols� The functions scanf�� and printf�� perform the tasks of
converting between the internal form that the machine understands and the external form that
humans understand�

In this chapter� we will discuss character processing showing how characters are represented in
computers and the operations provided to manipulate character data� We will develop programs
to process text to change it from lower case to upper case� separate text into individual words�
count words and lines in text� and so forth� In the process� we will present several new control
constructs of the C language� describe user interfaces in programs� and discuss input�output of
character data�

��� A New Data Type� char

The complete set of characters that can be recognized by the computer is called the character
set of the machine� As with numbers� the representation in the computer of each character in the
set is done by assigning a unique bit pattern to each character� The typical character set consists
of the following types of characters	

Alphabetic lower case� �a������ �z�

Alphabetic upper case� �A������ �Z�

Digit symbols � �������� �	�

Punctuation � ���� ���� �
�� etc�

��

�
 CHAPTER �� PROCESSING CHARACTER DATA

Character Meaning

��a� alert �bell�

��b� backspace

��f� form feed

��n� newline

��r� carriage return

��t� horizontal tab

��v� vertical tab

���� backslash

���� single quote

���� double quote

��
� question mark

Table ��
	 Escape Sequences

Space � � �

Special symbols � ���� ���� ���� etc�

Control Characters � newline� tab� bell or beep� etc�

For example� a digit symbol is character type data� so when we type ��� at the keyboard� we
are typing a sequence of character symbols	 ���� followed by ���� followed by ���� The function
scanf�� takes this sequence and converts it to the internal form of the equivalent number� ����
Similarly� all writing on the screen is a sequence of characters so printf�� takes the internal form
of the number and converts it to a sequence of characters which are written onto the screen�

In C programs� variables may be declared to hold a single character data item by using the
keyword char as the type speci�er in the declaration statment	

char ch

A character constant is written surrounded by single quotation marks� e�g� �a�� �A�� ���� ����
etc� Only printable character constants can be written in single quotes� not control characters� so
writing of non�printable control character constants requires special handling� In C� the backslash
character� n� is used as an escape character which signi�es something special or di�erent from the
ordinary and is followed by one character to indicate the particular control character� We have
already seen one such control sequence in our printf�� statments� the newline character� �nn��
Other frequently used control character constants written with an escape sequence� include �nt�
for tab� �na� for bell� etc� Table ��
 shows the escape sequences used in C� The newline� tab� and
space characters are called white space characters� for obvious reasons�

Let us consider a simple task of reading characters typed at the keyboard and writing them
to the screen� The task is to copy �or echo� the characters from the input to the output� We will
continue this task until there is no more input� i�e� until the end of the input �le�

���� A NEW DATA TYPE� CHAR
��

�� File� copy��c

Programmer�

Date�

This program reads a stream of characters� one character at

a time� and echoes each to the output until EOF�

��

�include �stdio�h�

main��

� char ch
 �� declaration for a character object ch ��

int flag
 �� flag stores the number of items read by scanf�� ��

printf�����Copy Program����n�n��

printf��Type text� terminate with EOF�n��

flag � scanf���c�� �ch�
 �� read the first char ��

while �flag �� EOF� � �� repeat while not EOF ��

printf���c�� ch�
 �� print the last char read ��

flag � scanf���c�� �ch�
 �� read the next char� update flag ��

� �� flag is EOF� ch may be unchanged ��

�

Figure ��
	 Code for copy��c

TASK

COPY�	 Write out each character as it is read until the end of input �le�

The algorithm can be stated simply as	

read the first character

while there are more characters to read

write or print the previously read character

read the next character

The code for this program is shown in Figure ��
�

The keyword char declares a variable� ch� of character data type� We also declare an integer
variable� flag� to save the value returned by scanf��� Recall� the value returned is either the
number of items read by scanf�� or the value EOF de�ned in stdio�h� �We do not need to know
the actual value of EOF to use it��

After the title is printed� a character is read by the statement	

�� CHAPTER �� PROCESSING CHARACTER DATA

flag � scanf���c�� �ch�

The conversion speci�cation for character type data is �c� so this scanf�� reads a single character
from the input� If it is not an end of �le keystroke� the character read is stored into ch� and the
value returned by scanf���
� is saved in flag� As long as the value of flag is not EOF� the loop
is entered� The loop body �rst prints the value of ch� i�e� the last character read� and then� the
assignment statement reads a new character and updates flag� The loop terminates when flag is
EOF� i�e� when an end of �le keystroke is detected� Remember� scanf�� does not store the value�
EOF into the object� ch� DO NOT TEST THE VALUE OF ch FOR EOF� TEST flag� A sample
session is shown below	

���Copy Program���

Type text� terminate with EOF

Now is the time for all good men
Now is the time for all good men

To come to the aid of their country�

To come to the aid of their country�

�D

The sample session shows that as entire lines of characters are entered� they are printed� Each
character typed is not immediately printed� since no input is received by the program until a
newline character is typed by the user� i�e� the same bu�ering we saw for numeric data entry�
When a newline is typed� the entire sequence of characters� including the newline� is placed in
the keyboard bu�er and scanf�� then reads input from the bu�er� one character at a time� up
to and including the newline� In our loop� each character read is then printed� When the bu�er
is exhausted� the next line is placed in the bu�er and read� and so on� So� scanf�� is behaving
just as it did for numeric data� each call reads one data item� in this case a character ��c�� One
notable di�erence between reading numeric data and character data is that when scanf�� reads
a character� leading white space characters are read� one character at a time� not skipped over as
it is when reading numeric data�

����� The ASCII Character Set

Character data is represented in a computer by using standardized numeric codes which have
been developed� The most widely accepted code is called the American Standard Code for

Information Interchange �ASCII�� The ASCII code associates an integer value for each symbol
in the character set� such as letters� digits� punctuation marks� special characters� and control
characters� Some implementations use other codes for representing characters� but we will use
ASCII since it is the most widely used� The ASCII characters and their decimal code values are
shown in Table ���� Of course� the internal machine representation of characters is in equivalent
binary form�

���� A NEW DATA TYPE� CHAR
��

ASCII Character ASCII Character ASCII Character

value value value

��� �� ��� � � ! V

��" �A ��� � � # W

��� �B ��$ % � X

��� �C ��! � � 	 Y

��� �D ��# � �	� Z

��$ �E �� � �	" &

��! �F ��	 " �	� �

��# �G �$� � �	� '

�� �H �$" � �	� �

��	 �I �$� � �	$ (

�"� �J �$� $ �	!)

�"" �K �$� ! �	# a

�"� �L �$$ # �	 b

�"� �M �$! �		 c

�"� �N �$# 	 "�� d

�"$ �O "$ � "�" e

�"! �P �$	
 "�� f

�"# �Q �!� � "�� g

�" �R �!" � "�� h

�"	 �S �!� � "�$ i

��� �T �!�
 "�! j

��" �U �!� � "�# k

��� �V �!$ A "� l

��� �W �!! B "�	 m

��� �X �!# C ""� n

��$ �Y �! D """ o

��! �Z �!	 E ""� p

��# �& �#� F ""� q

�� �� �#" G ""� r

��	 �' �#� H ""$ s

��� �� �#� I ""! t

��" �% �#� J ""# u

��� &space' �#$ K "" v

��� � �#! L ""	 w

��� � �## M "�� x

��$ � �# N "�" y

��! � �#	 O "�� z

��# � � � P "�� �

�� � � " Q "�� *

��	 � � � R "�$ �

��� � � � S "�! +

��" � � � T "�# DEL

��� � � $ U

Table ���	 ASCII Table

�� CHAPTER �� PROCESSING CHARACTER DATA

The ASCII table has
�� characters� with values from � through
��� Thus� � bits are su�cient
to represent a character in ASCII� however� most computers typically reserve
 byte� �� bits�� for
an ASCII character� One byte allows a numeric range from � through ��� which leaves room for
growth in the size of the character set� or for a sign bit� Consequently� a character data type may
optionally represent signed values� however� for now� we will assume that character data types are
unsigned� i�e� positive integer values� in the range ��
���

Looking at the table� note that the decimal values � through �
� and
��� represent non�
printable control characters� All other characters can be printed by the computer� i�e� displayed
on the screen or printed on printers� and are called printable characters� All printable characters
and many control characters can be input to the computer by typing the corresponding keys on
the keyboard� The character column shows the key�s� that must be pressed� Only a single key
is pressed for a printable character� however� control characters need either special keys on the
keyboard or require the CTRL key pressed together with another key� In the table� a control key
is shown by the symbol �� Thus� �A is control�A� i�e� the CTRL key kept pressed while pressing
the key� A�

Notice that the character �A� has the code value of
�� �B� has the value

� and so on� The
important feature is the fact that the ASCII values of letters �A� through �Z� are in a contiguous
increasing numeric sequence� The values of the lower case letters �a� through �z� are also in a
contiguous increasing sequence starting at the code value ��� Similarly� the digit symbol characters
��� through �	� are also in an increasing contiguous sequence starting at the code value ��� As
we shall see� this feature of the ASCII code is quite useful�

It must be emphasized that a digit symbol is a character type� Digit characters have code
values that di�er from their numeric equivalents	 the code value of ��� is ��� that of �"� is
��� that of ��� is ��� and so forth� The table shows that the character with code value � is a
control character� ��� called the NULL character� Do NOT confuse it with the digit symbol
���� Remember� a digit character and the equivalent number have di�erent representations�

Besides using single quotes� it is also possible to write character constants in terms of their
ASCII values in a C program� using either their octal or their hexadecimal ASCII values� In writing
character constants� the octal or hexadecimal value follows the escape character� n� as shown in
Table ���� At most three octal digits or at most two hexadecimal digits are needed� Note� after the
escape backslash� a leading zero should not be included in writing octal or hexadecimal numbers�
The last example in Table ���� �n��� is called the NULL character� whose ASCII value is zero�
Once again� this is NOT the same character as the printable digit character� ���� whose ASCII
value is ���

����� Operations on Characters

As we just saw� in C� characters have numeric values and� therefore� may be used in numeric
expressions� It is the ASCII code value of a character that is used in these expressions� For
example �referring to Table ����� the value of �a� is ��� and that of �A� is
�� So� the expression
�a� % �A� is evaluated as ���
�� which is ��� As we shall see� this ability to do arithmetic with

���� A NEW DATA TYPE� CHAR
�

Character Constants Meaning

����#�� ���#�� ��#� character whose value is octal #

��"�"� character whose octal value is "�"� or

whose decimal value is !$� i�e� �A�

��xB� character with hex� value B� i�e�

with decimal value ""�

���� character whose value is zero

it is called the NULL character

Table ���	 Escape sequences with Octal � Hexadecimal values

character data simpli�es character processing� When a character variable or constant appears in
an expression� it is replaced by its ASCII value of type integer� When a character cell is assigned
an integer value� the value is interpreted to be an ASCII value� In other words� a character and
its ASCII value are used interchangeably as required by the context� While a cast operator can
be used� we do not need it to go from character type to integer type� and vice versa� Here are
some expressions using character variables and constants�

ch � 	#
 �� ch �%%% ASCII value 	#� i�e�� �a� ��

ch � ��"�"�
 �� ch �%%% �a�
 octal "�" is decimal 	# ��

ch � ��x!"�
 �� ch �%%% �a�
 hexadecimal !" is decimal 	# ��

ch � �a�
 �� ch �%%% �a� ��

ch � ch % �a� � �A�
 �� ch �%%% �A� ��

ch � �d�

ch � ch % �a� � �A�
 �� ch �%%% �D� ��

ch � ch % �A� � �a�
 �� ch �%%% �d� ��

The �rst group of four statements merely assigns lower case �a� to ch in four di�erent ways	
the �rst assigns a decimal ASCII value� the second assigns a character in octal form� the third
assigns a character in hexadecimal form� the fourth assigns a character in a printable symbolic
form� All of these statements have exactly the same e�ect�

The next statement� after the �rst group� assigns the value of an expression to ch� The right
hand side of the assignment is	

ch % �a� � �A�

�� CHAPTER �� PROCESSING CHARACTER DATA

Since the value of ch is �a� from the previous four statements� the above expression evaluates to
the value of �a� % �a� � �A�� i�e� the value of �A�� In other words� the right hand side expression
converts lower case �a� to its upper case version� �A�� which is then assigned to ch� Since the
values of lower case letters are contiguous and increasing �as are those of upper case letters� �a�
is less than �b�� �b� less than �c�� and so forth� Also� the o�set value of each letter from the base
of the alphabet is the same for lower case letters as it is for upper case letters� For example� �d�
% �a� is the same as �D� % �A�� So� if ch is any lower case letter� then the expression

ch % �a� � �A�

results in the upper case version of ch� This is because the value of ch % �a� is the o�set of ch
from the lower case base �a�� adding that value to the upper case base �A� results in the upper
case version of ch� So for example� if ch is �f� then the value of the above expression is �F��
Similarly� if ch is an upper case letter� then the expression

ch % �A� � �a�

results in the lower case version of ch which may then be assigned to a variable�

Using this fact� the last group of three statements in the above set of statements �rst assigns a
lower case letter �d� to ch� Then the lower case value of ch is converted to its upper case version�
and then back to lower case�

As we mentioned� all lower case and upper case letters have contiguous and increasing values�
The same is true for digit characters� Such a contiguous ordering makes it easy to test if a given
character� ch� is a lower case letter� an upper case letter� or a digit� For example� any lower case
letter has a value that is greater than or equal that of �a� AND less than or equal to that of �z��
From this� we can write a C expression that is True if and only if ch is a lower case letter	

�ch �� �a� �� ch �� �z��

Here is a code fragment that checks whether a character is a lower case letter� an upper case
letter� a digit� etc�

if �ch �� �a� �� ch �� �z��

printf���c is a lower case letter�n�� ch�

else if �ch �� �A� �� ch �� �Z��

printf���c is an upper case letter�n�� ch�

else if �ch �� ��� �� ch �� �	��

printf���c is a digit symbol�n�� ch�

else

printf���c is neither a letter nor a digit�n��

���� A NEW DATA TYPE� CHAR
��

Observe the multiway decision and branch	 if ��� else if ��� else if ��� else� Only
one of the branches is executed� The �rst if expression checks if the value of ch is between the
values of �a� and �z�� a lower case letter� Only if ch is not a lower case letter� does control proceed
to the �rst else if part� which tests if ch is an upper case letter� Only if ch is not an upper case
letter� does control proceed to the next else if part� which tests if ch is a digit� Finally� if ch is
not a digit� the last else part is executed� Depending on the value of ch� only one of the paths is
executed with its corresponding printf�� statement�

Let us see how the expression

�ch �� �a� �� ch �� �z��

is evaluated� First� the comparison ch �� �a� is performed� then� ch �� �z� is evaluated�
�nally� the results of the two sub�expressions are logically combined by the AND operator� Eval�
uation takes place in this order because the precedence of the binary relational operators ����
��� ��� etc�� is higher than that of the binary logical operators ���� jj�� We could have used
parentheses for clarity� but the precedence rules ensure the expression is evaluated as desired�

One very common error is to write the above expression analogous to mathematical expressions	

��a� �� ch �� �z��

This would not be found to be an error by the compiler� but the e�ect will not be as expected�
In the above expression� since the precedence of the operators is the same� they will be evaluated
from left to right according to their associativity� The result of �a� �� ch will be either True or
False� i�e�
 or �� which will then be compared with �z�� The result will be True since
 or � is
always less than �z� �ASCII value
���� So the value of the above expression will always be True
regardless of the value of ch � not what we would expect�

Let�s write a program using all this information� Our next task is to read characters until
end of �le and to print each one with its ASCII value and what we will call the attributes of the
character� The attributes are a character�s category� such as a lower case or an upper case letter�
a digit� a punctuation� a control character� or a special symbol�

Task

ATTR	 For each character input� print out its category and ASCII value in decimal� octal� and
hexadecimal forms�

The algorithm requires a multiway decision for each character read� A character can only be
in one category� so each character read will lead to the execution of one of the paths in a multiway
decision� Here is the algorithm�

read the first character

�� CHAPTER �� PROCESSING CHARACTER DATA

repeat as long as end of file is not reached

if the character is a lower case letter

print the various character representations� and

print that it is a lower case letter

else if it is an upper case letter

print the various character representations� and

print that it is an upper case letter

else if it is a digit

print the various character representations� and

print that it is a digit

etc��

read the next character

Notice we have abstracted the printing of the various representations of the character �as a char�
acter and its ASCII value in decimal� octal and hex� into a single step in the algorithm	 print

the various character representations� and we perform the same step in every branch of
the algorithm� This is a classic situation calling for the use of a function	 abstract the details
of an operation and use that abstraction in multiple places� The code implementing the above
algorithm is shown in Figure ���� We have declared a function print reps�� which is passed a
single character argument and expect it to print the various representations of the character� We
have used the function in the driver without knowing how print reps�� will perform its task�

We must now write the function print reps��� The character�s value is its ASCII value�
When the character value is printed as a character with conversion speci�cation �c� the symbol
is printed� when printed as a decimal integer with conversion speci�cation �d� the ASCII value
is printed in decimal form� Conversion speci�cation �o prints an integer value in octal form� and
�x prints an integer value in hexadecimal form� We simply need a printf�� call with these four
conversion speci�ers to print the character four times� The code for print reps�� is shown in
Figure ���� The function simply prints its parameter as a character� a decimal integer� an octal
integer� and a hexadecimal integer�

Sample Session	

���Character Attributes���

Type text� terminate with EOF

Aloha	 �A

A� ASCII value decimal !$� octal "�"� hexadecimal �"� an upper case letter

l� ASCII value decimal "� � octal "$�� hexadecimal !c� a lower case letter

o� ASCII value decimal """� octal "$#� hexadecimal !f� a lower case letter

h� ASCII value decimal "��� octal "$�� hexadecimal ! � a lower case letter

a� ASCII value decimal 	#� octal "�"� hexadecimal !"� a lower case letter

�� ASCII value decimal ��� octal $�� hexadecimal �c� a punctuation symbol

�A� ASCII value decimal "� octal "� hexadecimal "� a control character

�� ASCII value decimal ��� octal �"� hexadecimal �"� a punctuation symbol

���� A NEW DATA TYPE� CHAR
��

�� File� attr�c

This program reads characters until end of file� It prints the

attributes of each character including the ASCII value�

��

�include �stdio�h�

int print(reps� char ch �

main��

� char ch

int flag

printf�����Character Attributes����n�n��

printf��Type text� terminate with EOF �n��

flag � scanf���c�� �ch�
 �� read the first char ��

while �flag �� EOF� �

if �ch �� �a� �� ch �� �z�� � �� lower case letter
 ��

print(reps�ch�

printf��lower case letter�n��

�

else if �ch �� �A� �� ch �� �Z�� � �� upper case letter
 ��

print(reps�ch�

printf��an upper case letter�n��

�

else if �ch �� ��� �� ch �� �	�� � �� digit character
 ��

print(reps�ch�

printf��a digit symbol�n��

�

else if �ch �� ��� ** ch �� ��� ** ch �� �
� ** ch �� ��� **

ch �� �
� ** ch �� ���� � �� punctuation
 ��

print(reps�ch�

printf��a punctuation symbol�n��

�

else if �ch �� � �� � �� space
 ��

print(reps�ch�

printf��a space character�n��

�

else if �ch � �� ** ch �� "�#� � �� control character
 ��

print(reps�ch�

printf��a control character�n��

�

else � �� must be a special symbol ��

print(reps�ch�

printf��a special symbol�n��

�

flag � scanf���c�� �ch�
 �� read the next char ��

� �� end of while loop ��

� �� end of program ��

Figure ���	 Code for ASCII Attributes

�
 CHAPTER �� PROCESSING CHARACTER DATA

�� File� attr�c %%% continued

��

int print(reps� char ch�

�

printf���c� ASCII value decimal �d� octal �o� hexadecimal �x� ��

ch�ch�ch�ch�

�

Figure ���	 Printing character representations

� ASCII value decimal "�� octal "�� hexadecimal a� a control character

�D

The last line printed refers to the newline character� Remember� every character including the
newline is placed in the keyboard bu�er for reading and� while scanf�� skips over leading white
space when reading a numeric data item� it does not do so when reading a character�

Can we improve this program� The driver �main��� shows all the details of character testing�
beyond the logic of what is being performed here� so it may not be very readable� Perhaps we
should de�ne a set of macros to hide the details of the character testing expressions� For example�
we might write a macro	

�define IS(LOWER�ch� ��ch� �� �a� �� �ch� �� �z��

Then the �rst if test in main�� would be coded as	

if � IS(LOWER�ch� � �

���

which directly expresses the logic of the program� The remaining expressions can be recoded using
macros similarly and this is left as an exercise at the end of the chapter�

One other thought may occur to us to further improve the program� Can we make the function
print reps�� a little more abstract and have it print the various representations as well as the
category� To do this we would have to give additional information to our new function� which
we will call print category��� We need to tell print category�� the character to print as well
as its category� To pass the category� we assign a unique code to each category and pass the
appropriate code value to print category��� To avoid using �magic numbers� we de�ne the
following macros	

�define LOWER �

�define UPPER "

���� A NEW DATA TYPE� CHAR
��

�define DIGIT �

�define PUNCT �

�define SPACE �

�define CONTROL $

�define SPECIAL !

Placing these de�nes �together with the comparison macros� in a header �le� category�h� we can
now recode the program as shown in Figure ���� The code for print category�� is also shown�
Looking at this code� it may seem ine�cient in that we are testing the category twice� once in
main�� using the character� and again in print category�� using the encoded parameter� Later
in this chapter we will see another way to code the test in print category��which is more e�cient
and even more readable� The contents of the header �le� category�h is left as an exercise� The
program shown in Figure ��� will behave exactly the same as as the code in Figure ��� producing
the same sample session shown earlier�

����� Character I�O Using getchar�� and putchar��

We have already seen how to read and print characters using our usual I�O built in functions�
scanf�� and printf��� i�e� the �c conversion speci�er� We have also included the header �le
stdio�h in all our programs� because it contains the de�nition for EOF� and declares prototypes for
these formatted I�O routines� In addition� stdio�h contains two other useful routines� getchar��
and putchar��� which are simpler to use than the formatted routines for character I�O� We use the
term routine for getchar�� and putchar�� because they are actually macros de�ned in stdio�h

which use more general functions available in the standard library� �Often routines that are macros
are loosely referred to as functions since their use in a program can appear like a function call� so
we will usually refer to getchar�� and putchar�� as functions��

The function getchar�� reads a single character from the standard input and returns the
character value as the value of the function� but to accommodate a possible negative value for
EOF� the type of the value returned is int� �Recall� EOF may be either � or �
 depending on
implementation�� So we could use getchar�� to read a character and assign the returned value
to an integer variable	

int c

c � getchar��

If� after executing this statement� c equals EOF� we have reached the end of the input �le� otherwise�
c is the ASCII value of the next character in the input stream�

While int type can be used to store the ASCII value of a character� programs can become
confusing to read � we expect that the int data type is used for numeric integer data and
that char data type is used for character data� The problem is that char type� depending on
implementation� may or may not allow negative values� To resolve this� C allows us to explicitly

�� CHAPTER �� PROCESSING CHARACTER DATA

�� File� attr��c

This program reads characters until end of file� It prints the

attributes of each character including the ASCII value�

��

�include �stdio�h�

�include �category�h�

main��

� char ch

int flag

printf�����Character Attributes����n�n��

printf��Type text� terminate with EOF �n��

flag � scanf���c�� �ch�
 �� read the first char ��

while �flag �� EOF� �

if� IS(LOWER�ch� � print(category�LOWER� ch�

else if� IS(UPPER�ch� � print(category�UPPER� ch�

else if� IS(DIGIT�ch� � print(category�DIGIT� ch�

else if� IS(PUNCT�ch� � print(category�PUNCT� ch�

else if� IS(SPACE�ch� � print(category�SPACE� ch�

else if� IS(CONTROL�ch� � print(category�CONTROL� ch�

else print(category�SPECIAL� ch�

flag � scanf���c�� �ch�
 �� read the next char ��

� �� end of while loop ��

� �� end of program ��

int print(category� int cat� char ch�

�

printf���c� ASCII value decimal �d� octal �o� hexadecimal �x� ��

ch�ch�ch�ch�

if� cat �� LOWER � printf��lower case letter�n��

else if� cat �� UPPER � printf��an upper case letter�n��

else if� cat �� DIGIT � printf��a digit symbol�n��

else if� cat �� PUNCT � printf��a punctuation symbol�n��

else if� cat �� SPACE � printf��a space character�n��

else if� cat �� CONTROL � printf��a control character�n��

else printf��a special symbol�n��

�

Figure ���	 Alternate code for attributes program

���� A NEW DATA TYPE� CHAR
��

declare a signed char data type for a variable� which can store negative values as well as positive
ASCII values	

signed char c

c � getchar��

An explicit signed char variable ensures that a character is stored in a character type object
while allowing a possible negative value for EOF� The keyword signed is called a type quali�er�

A similar routine for character output is putchar��� which outputs its argument as a character
to the standard output� Thus�

putchar�c�

outputs the ASCII character whose value is in c to the standard output� The argument of
putchar�� is expected to be an integer� however� the variable c may be either char type or
int type �ASCII value� since the value of a char type is really an integer ASCII value�

Since both getchar�� and putchar�� are macros de�ned in stdio�h� any program that uses
these functions must include the stdio�h header �le in the program� Let us rewrite our copy
program using these new character I�O routines instead of using scanf�� and printf��� The
new code is shown in Figure ���� Characters are read until getchar�� returns EOF� Each character
read is printed using putchar��� Sample output is shown below�

���File Copy Program���

Type text� EOF to quit

This is a test�
This is a test�

Now is the time for all good men

Now is the time for all good men

to come to the aid of their country�

to come to the aid of their country�

�D

The sample output shown here is for keyboard input so the e�ects of bu�ering the input is
clearly seen	 a line must be typed and entered before the characters become available in the input
bu�er for access by the program and then echoed to the screen�

Using getchar�� and putchar�� are simpler for character I�O because they do not require a
format string as do scanf�� and printf��� Also� scanf�� stores a data item in an object whose
address is given by its argument� whereas getchar�� returns the value of the character read as
its value� Both scanf�� and getchar�� return EOF as their value when they read an end of �le
marker in an input �le�

�� CHAPTER �� PROCESSING CHARACTER DATA

�� File� copychr�c

Program copies standard input to standard output�

��

�include �stdio�h�

main��

� signed char c

printf�����File Copy Program����n�n��

printf��Type text� EOF to quit�n��

c � getchar��

while �c �� EOF� �

putchar�c�

c � getchar��

�

�

Figure ���	 Using getchar�� and putchar��

����� Strings vs Characters

Frequently� we have needed to write constants that are not single characters but are sequences of
characters� A sequence of zero or more characters is called a string of characters or simply a
string� We have already used strings as arguments in function calls to printf�� and scanf���
In C� there is no primitive data type for strings� however� as a convenience� string constants �also
called string literals� may be written directly into a program using double quotes� The double
quotes are not part of a string constant� they are merely used to delimit �de�ne the limits�� of the
string constant� �To include a double quote as part of a string� escape the double quote with the
n character��

�This is a string constant��

�This string constant includes newline character��n�

�This string constant includes �� double quotes��

Escape sequences may of course be included in string constants� A string constant may even
contain zero characters� i�e� an empty string	

��

Such a string is also called a null string�

Two adjacent strings are concatenated at compile time� Thus�

���� SAMPLE CHARACTER PROCESSING FUNCTIONS
�

�string�

�c�

�c�

�s� �t� �r� �i� �n� �g�

�c�

�c�

�n��

�n��

Figure ��
	 Strings

�John � �Doe�

are equivalent to	

�John Doe�

Whenever a string constant appears in a source program� the compiler stores the sequence of
characters in contiguous memory locations and appends a NULL character to indicate the end
of the string �see Figure ��
�� The compiler then replaces the string constant by the address
where the characters are stored� Observe that a string of a single character is di�erent from a
character constant� Thus� �c� is a character constant� but� �c� is a string constant consisting of
one character and the NULL character� as seen in the �gure�

As we have said� a character constant takes on its ASCII value� The value of a string constant
is the address where the string is stored� How this value can be used will be discussed in Chapter

� For now� think of a string constant as a convenient representation� the exact nature of which
will become clear later�

��� Sample Character Processing Functions

So far we have merely read and printed characters and determined their attributes� Character
processing requires manipulation of input characters in meaningful ways� For example� we may
wish to convert all lower case letters to upper case� all upper case letters to lower case� digit
characters to their numeric equivalents� extract words� extract integers� and so forth� In this
section we develop several programs which manipulate characters� beginning with simple example
functions and continuing with programs for more complex text processing�

�� CHAPTER �� PROCESSING CHARACTER DATA

����� Converting Letter Characters

Our next task is to copy input characters to output as before except that all lower case letters are
converted to upper case�

Task

COPY
	 Copy input characters to output after converting lower case letters to upper case�

The algorithm is similar to COPY�� except that� before printing� each character it is converted
to upper case� if necessary�

read the first character

repeat as long as NOT end of file

convert character to upper case

print the converted character

read the next character

We will write a function� uppercase��� to convert a character� The function is given a character
and if its argument is a lower case letter� uppercase��will return its upper case version� otherwise�
it returns the argument character unchanged� The algorithm is	

if lower case convert to upper case�

otherwise� leave it unchanged

The prototype for the function is	

char uppercase�char ch�

The code for the driver and the function is shown in Figure ���� The driver is straight forward�
each character read is printed in its uppercase version� The while expression is	

��ch � getchar��� �� EOF�

Here we have combined the operations of reading a character and testing for EOF into one ex�
pression� The innermost parentheses are evaluated �rst	 getchar�� reads a character and assigns
the returned value to ch� The value of that expression� namely the value assigned to ch� is then
compared with EOF� If it is not EOF� the loop executes� otherwise the loop terminates� The inner
parentheses are essential� Without them� the expression is	

�ch � getchar�� �� EOF�

���� SAMPLE CHARACTER PROCESSING FUNCTIONS
��

�� File� copy"�c

Programmer�

Date�

This program reads a stream of characters until end of file� Each

character read is converted to its upper case version and printed

out�

��

�include �stdio�h�

�define IS(LOWER�c� ��c� �� �a� �� �c� �� �z��

�define TO(UPPER�c� ��c� % �a� � �A��

char uppercase�char ch�

main��

� signed char ch

printf�����Copy Program % Upper Case����n�n��

printf��Type text� terminate with EOF�n��

while ��ch � getchar��� �� EOF�

putchar �uppercase�ch��
 �� print value of uppercase�ch� ��

�

�� Function returns a lower case letter to an upper case� It returns

all other characters unchanged�

��

char uppercase�char c�

�

if � IS(LOWER�c� � �� if c is a lower case letter ��

return TO(UPPER�c�
 �� convert to upper case and return ��

�� otherwise� ��

return c
 �� return c unchanged ��

�

Figure ���	 Code for upper case

�� CHAPTER �� PROCESSING CHARACTER DATA

Since the precedence of an assignment operator is the lowest� getchar�� reads a character and
the returned value is �rst compared to EOF	

getchar�� �� EOF

The value of this comparison expression� � or
� is then assigned to ch	 the wrong result is in
ch� Of course� it is always best to use parentheses whenever there is the slightest doubt� Note�
we have used the call to the function� uppercase��� as the argument for the routine� putchar���
The value returned from uppercase�� is a character� which is then passed to putchar���

The function� uppercase��� checks if c is a lower case letter �using the macro IS LOWER����
in which case it returns the upper case version of c� We have used the macro TO UPPER�� for
the expression to convert to upper case� making our program more readable� When the return

statement is executed� control returns immediately to the calling function� thus� the code after the
return statement is not executed� Therefore� in this case we do not need the else part of the if
statement� In uppercase��� control progresses beyond the if statement only if c is not a lower
case letter� where uppercase�� returns c unchanged� A sample session is shown below	

���Copy Program % Upper Case���

Now is the time for all good men

NOW IS THE TIME FOR ALL GOOD MEN

To come to the aid of their country�

TO COME TO THE AID OF THEIR COUNTRY�

�D

����� Converting Digit Characters to Numbers

Next we discuss how digit symbols can be converted to their numeric equivalents and vice versa�
As we have stated� the character ��� is not the integer� �� �"� is not
� etc� So it becomes necessary
to convert digit characters to their numeric equivalent values� and vice versa� As we have seen�
the digit values are contiguous and increasing� the value of ��� is ��� �"� is ��� and so forth� If we
subtract the base value of ���� i�e� ��� from the digit character� we can convert the digit character
to its numeric equivalent� e�g� ��� % ��� is �� �"� % ��� is
� and so forth� Thus� if ch is a digit
character� then its numeric equivalent is ch % ���� Conversely� suppose n is a positive integer less
than
�� ���
� �� ���� ��� Then the corresponding digit character is n � ����

Using the sketch of an algorithm just described� we can write two functions that convert a
digit character to its integer value� and an integer less than
� to its character representation�
These sound like operations that could be useful in a variety of programs� so we will put the
functions in a �le called charutil�c� These functions are the beginning of a library of character
utility functions we will build� The code is shown in Figure ���� �We can also place the code for
uppercase�� from the previous example in this �le as part ot the library�� We have included the

���� SAMPLE CHARACTER PROCESSING FUNCTIONS
��

�� File� chrutil�c ��

�� This file contains various utility functions for processing characters ��

�include �stdio�h�

�include �chrutil�h�

�� Function converts ch to an integer if it is a digit� Otherwise� it

prints an error message�

��

int dig(to(int�char ch�

�

if �IS(DIGIT�ch��

return ch % ���

printf��ERROR�dig(to(int� �c is not a digit�n�� ch�

return ERROR

�

�� Function converts a positive integer less than "� to a corresponding

digit character�

��

char int(to(dig�int n�

�

if �n �� � �� n � "��

return n � ���

printf��ERROR�int(to(dig� �d is not in the range � to 	�n�� n�

return NULL

�

Figure ���	 Code for Character Utilities

�
 CHAPTER �� PROCESSING CHARACTER DATA

�� File� charutil�h ��

�� This file contains macros and prototypes for character utilities ��

�define ERROR %"

�define IS(DIGIT�c� ��c� �� ��� �� �c� �� �	��

�define IS(LOWER�c� ��c� �� �a� �� �c� �� �z��

int dig(to(int�char ch�

char int(to(dig�int n�

char uppercase�char ch�

Figure ���	 Header �le for Character Utilities

�le charutil�h where the necessary macros and prototypes are located� This header �le is shown
in Figure ����

The function dig to int�� is given a character and returns an integer� namely the value of
ch % ��� if ch is a digit character� Otherwise� it prints an error message and returns the value
ERROR� Since valid integer values of digits are from � to �� a value of �
 is not normally expected
as a return value so we can use it to signify an error� �Note� we use a macro� in charutil�h� to
de�ne this �magic number��� In int to dig��� given an integer� n� the returned value is a digit
character� n � ���� if n is between � and �� otherwise� a message is printed and the NULL �ASCII
value �� character is returned to indicate an error� We do not use ERROR in this case because
int to dig�� returns a char type value� which may not allow negative values� As was the case
for the function uppercase�� above� in these two functions� we have not used an else part� If the
condition is satis�ed� a return statement is executed� The control proceeds beyond the if part
only if the condition is false� Returning some error value is a good practice when writing utility
functions as it makes the functions more general and robust� i�e� able to handle valid and invalid
data�

Let us consider the task of reading and converting a sequence of digit characters to an equivalent
integer� We might add such an operation to our library of character utilities and call it getint��
�analogous to getchar���� We will assume that the input will be a sequence of digit characters�
possibly preceded by white space� but not by a plus or minus sign� Further� we will assume that
the conversion process will stop when a character other than a digit is read� Usually� the delimiter
will be white space� but any non�digit character will also be assumed to delimit the integer being
read�

The function� getint��� needs no arguments and returns an integer� It will read one character
at a time and accumulate the value of the integer� Let us see how a correct integer is accumulated
in a variable� n� Suppose the digits entered are ��� followed by ���� When we read the �rst digit�
���� and convert it to its integer value� we �nd that n is the number� �� But we do not yet know
if our integer is �� or thirty something� or three hundred something� etc� So we read the next

���� SAMPLE CHARACTER PROCESSING FUNCTIONS
��

character� and see that it is a digit character so we know our number is at least thirty something�
The second digit is ��� which is converted to its integer value� �� We cannot just add � to the
previous value of n ���� Instead� we must add � to the previous value of � multiplied by
� �the
base � we are reading a decimal number�� The new value of n is n � "� � �� or ��� Again� we
do not know if the number being read is �� or three hundred forty something� etc� If there were
another digit entered� say �$�� the new value of n is obtained by adding its contribution to the
previous value of n times
�� i�e�

n � "� � dig(to(int��$��

which is ���� Thus� if the character read�ch� is a digit character� then dig to int�ch� is added
to the previously accumulated value of n multiplied by
�� The multiplication by
� is required
because the new digit read is the current rightmost digit with positional weight of
� so the
weight of all previous digits must be multiplied by the base�
�� For each new character� the new
accumulated value is obtained by	

n � n � "� � dig(to(int�ch�

We can write this as an algorithm as follows	

initialize n to zero

read the first character

repeat while the character read is a digit

accumulate the new value of n by adding

n � "� � the integer value of the digit character

read the next character

return the result

The code for getint�� is shown in Figure ��
�� We have used conditional compilation to test
our implementation by including debug statements to print the value of each digit� ch and the
accumulated value of n at each step� The loop is executed as long as the character read is a
digit� The macro� IS DIGIT��� expands to an expression which evaluates to True if and only if its
argument is a digit� Could we have combined the reading of the character and testing into one
expression for the while�

while� IS(DIGIT�ch � getchar����

The answer is NO� Recall� IS DIGIT�� is a macro de�ned as	

�define IS(DIGIT�c� ��c� �� ��� �� �c� �� �	��

so IS DIGIT�ch � getchar��� would expand to	

�� CHAPTER �� PROCESSING CHARACTER DATA

�� File� charutil�c % continued ��

�� Function reads and converts a sequence of digit characters to an integer� ��

�define DEBUG

int getint��

� int n

signed char ch

ch � getchar��
 �� read next char ��

while �IS(DIGIT�ch�� � �� repeat as long as ch is a digit ��

n � n � "� � dig(to(int�ch�
 �� accumulate value in n ��

�ifdef DEBUG

printf��debug�getint� ch � �c�n�� ch�
 �� debug statement ��

printf��debug�getint� n � �d�n�� n�
 �� debug statement ��

�endif

ch � getchar��
 �� read next char ��

�

return n
 �� return the result ��

�

Figure ��
�	 Code for getint��

���� SAMPLE CHARACTER PROCESSING FUNCTIONS
��

��ch � getchar��� �� ��� �� �ch � getchar��� �� �	��

While this is legal syntax �no compiler error would be generated�� the function getchar�� would
be called twice when this expression is evaluated� The �rst character read will be compared with
��� and the second character read will be compared with �	� and be stored in the variable ch�
The lesson here is be careful how you use macros�

Notice we have used the function� dig to int�� in the loop� This is an example of our modular
approach � we have already written a function to do the conversion� so we can just use it here�
trusting that it works correctly� What if dig to int ever returns the ERROR condition� In this
case� we know that that can never happen because if we are in the body of the loop� we know
that ch is a digit character from the loop condition� We are simply not making use of the full
generality of dig to in��t�

If� after adding the prototype for getint�� to charutil�h	

int getint��

we compile the �le charutil�c� we would get a load time error because there is no function main��

in the �le� Remember� every C program must have a main��� To test our program� we can write
a short driver program which simply calls getint�� and prints the result	

main��

�

printf�����Test Digit Sequence to Integer����n�n��

printf��Type a sequence of digits�n��

printf��Integer � �d�n�� getint���
 �� print value ��

�

A sample session is shown below	

���Test Digit Sequence to Integer���

Type a sequence of digits

��

debug�getint� ch � �

debug�getint� n � "!�	�

debug�getint� ch � �

debug�getint� n � "!�	��

Integer � "!�	��

It is clear that something is wrong with the accumulated value of n� The �rst character ��� is read
correctly� but the value of n is

���� The only possibility is that n does not have a correct initial
value� we have forgotten to initialize n to zero� A simple �x is to change the declaration of n in
getint�� to	

� CHAPTER �� PROCESSING CHARACTER DATA

int n � �

A revised sample session is shown below�

���Test Digit Sequence to Integer���

Type a sequence of digits

����
debug�getint� ch � �

debug�getint� n � �

debug�getint� ch � �

debug�getint� n � ��

debug�getint� ch � $

debug�getint� n � ��$

debug�getint� ch � !

debug�getint� n � ��$!

Integer � ��$!

The trace shows that the program works correctly� The value of n is accumulating correctly� It is
� after the �rst character� �� after the next� ���� after the next� and ���
 after the last character�
At this point� we should test the program with other inputs until we are satis�ed with the test
results for all the diverse inputs� If during our testing we enter the input	

���Test Digit Sequence to Integer���

Type a sequence of digits

���
Integer � �

we get the wrong result and no debug output� Notice� we have added some white space at the
beginning of the line� In this case� the �rst character read is white space� not a digit� So the loop
is never entered� no debug statements are executed� and the initial value of n� �� is returned� We
have forgotten to handle the case where the integer is preceded by white space� Returning to our
algorithm� we must skip over white space characters after the �rst character is read	

initialize n to zero

read the first character

skip leading white space

repeat while the character read is a digit

accumulate the new value of n by adding

n � "� � the integer value of the digit character

read the next character

return the result

���� SAMPLE CHARACTER PROCESSING FUNCTIONS

This added step can be implemented with a simple while loop	

while �IS(WHITE(SPACE�ch�� ch � getchar��

For readability� we have used a macro� IS WHITE SPACE��� to test ch� We can de�ne the macro in
charutil�h as follows	

�define IS(WHITE(SPACE�c� ��c� �� � � ** �c� �� ��t� ** �c� �� ��n��

Compiling and testing the program again yields the correct result�

The program may now be considered debugged� it meets the speci�cation given in the task� so
we can eliminate the de�nition for DEBUG and recompile the program� However� at this point
we might also consider the utility and generality of our getint�� function� What happens if the
user does not enter digit characters� What happens at end of the �le� Only after the program is
tested for the �normal� case� should we consider these �abnormal� cases� The �rst step is to see
what the function� as it is currently written� does when it encounters unexpected input�

Let�s look at EOF �rst� If the user types end of �le� getchar�� will return EOF� which is not
white space and is not a digit� So neither loop will be executed and getint�� will return the
initialized value of n� namely �� This may seem reasonable� however� a program using this function
cannot tell the di�erence between the user typing zero and typing end of �le� Perhaps we would
like getint�� to indicate end of �le by returning EOF as getchar�� does� This is easy to add to
our program� before returning n we add a statement	

if�ch �� EOF� return EOF

Of course� if the implementation de�nes EOF as zero� nothing has changed in the behavior of the
function� On the other hand� if the implementation de�nes EOF as �
� we can legally enter � as
input to the program� however� should not expect �
 as a legal value� �In our implementation we
have not allowed any negative number� so EOF is a good choice for a return value at end of �le��

Next� let us consider what happens if the user types a non�digit character� If the illegal
character occurs after some digits have been processed� e�g�	

��r

a manual trace reveals that the function will convert the number� ��� and return� If getint�� is
called again� the character� �r� will have been read from the bu�er so the next integer typed by
the user will be read and converted� �Note� this is di�erent than what scanf�� would do under
these circumstances�� This is reasonable behavior for getint��� so we need make no changes to
our code�

If no digits have been typed before an illegal character� e�g�	

� CHAPTER �� PROCESSING CHARACTER DATA

r ��

again� the character� �r� is not white space and not a digit� so getint�� will return �� As before�
a program calling getint�� cannot tell if the user entered zero or an error� It would be better if
we return an error condition in this case� but if we return ERROR� de�ned in charutil�h� we may
not be able to tell the di�erence between this error and EOF� The best solution to this problem is
to change the de�nition of ERROR to be �� instead of �
� This does not a�ect any other functions
that have used ERROR �such as dig to int��� since they only need a unique value to return as
an error condition� We can simply change the �define in charutil�h and recompile �see Figure
��

�� Finally� we must determine how to detect this error in getint��� As described above� we
must know whether or not we have begun converting an integer when the error occurred� We
can do this with a variable� called a �ag� which stores the state of the program� We have called
this �ag got digit �see Figure ��
��� and declare and initialize it to FALSE in getint��� If we
ever execute the digit loop body� we can set got digit to TRUE� Before returning� if got digit is
FALSE we should return ERROR� otherwise we return n�

All of these changes are shown in Figures ��

 and ��
�� Notice we have included the header
�le� tfdef�h from before in the �le charutil�c to include the de�nitions of TRUE and FALSE�
We have also modi�ed the test driver to read integers from the input until end of �le� �Only the
modi�ed versions of getint�� and the test driver�main�� are shown in Figure ��
�� The functions
dig to int�� and int to dig�� remain unchanged in the �le��

Our getint�� function is now more general and robust �i�e� can handle errors�� Of particular
note here is the method we used in developing this function� We started by writing the algorithm
and code to handle the normal case for input� We then considered what would happen in the
abnormal case� and made adjustments to the code to handle them only when necessary� This
approach to program development is good for utilities and complex programs	 get the normal
and easy cases working �rst� then modify the algorithm and code for unusual and complex cases�
Sometimes this approach requires us to rewrite entire functions to handle unusual cases� but often
little or no extra code is needed for these cases�

����� Counting Words

The next task we will consider is counting words in an input text �le �a �le of characters�� A word
is a sequence of characters separated by delimiters� namely� white space or punctuation� The �rst
word may or may not be preceded by a delimiter and we will assume the last word is terminated
by a delimiter�

Task

CNT	 Count the number of characters� words� and lines in the input stream until end of �le�

Counting characters and lines is simple	 a counter� chrs� can be incremented every time a
character is read� and a counter� lns� can be incremented every time a newline character is read�

���� SAMPLE CHARACTER PROCESSING FUNCTIONS

�

�� File� chrutil�h ��

�� This file contains various macros and prototypes for character processing ��

�define ERROR %�

�define IS(DIGIT�c� ��c� �� ��� �� �c� �� �	��

�define IS(LOWER�c� ��c� �� �a� �� �c� �� �z��

�define IS(WHITE(SPACE�c� ��c� �� � � ** �c� �� ��t� ** �c� �� ��n��

int dig(to(int�char ch�

char int(to(dig�int n�

char uppercase�char ch�

int getint��

Figure ��

	 Revised Character Utility Header File

Counting words requires us to know when a word starts and when it ends as we read the sequence
of characters� For example� consider the sequence	

Lucky luck

� � � �

We have shown the start and the end of a word by the symbol � There are several cases to
consider	

� As long as no word has started yet AND the next character read is a delimiter� no new word
has started�

� If no word has started AND the next character read is NOT a delimiter� then a new word
has just started�

� If a word has started AND the next character is NOT a delimiter� then the word is continuing�

� If a word has started AND the character read is a delimiter� then a word has ended�

We can talk about the state of our text changing from �a word has not started� to �a word has
started� and vice versa� We can use a variable� inword� as a �ag to keep track of whether a word
has started or not� It will be set to True if a word has started� otherwise� it will be set to False� If
inword is False AND the character read is NOT a delimiter� then a word has started� and inword

becomes True� If inword is True AND the new character read is a delimiter� then the word has
ended and inword becomes False� With this information about the state� we can count a word
either when it starts or when it ends� We choose the former� so each time the �ag changes from
False to True� we will increment the counter� wds� The algorithm is	

� CHAPTER �� PROCESSING CHARACTER DATA

�� File� chrutil�c ��

�� This file contains various utility functions for processing characters ��

�include �stdio�h�

�include �tfdef�h�

�include �chrutil�h�

�� Function reads the next integer from the input ��

int getint��

� int n � �

int got(dig � FALSE

signed char ch

ch � getchar��
 �� read next char ��

while �IS(WHITE(SPACE�ch�� �� skip white space ��

ch � getchar��

while �IS(DIGIT�ch�� � �� repeat as long as ch is a digit ��

n � n � "� � dig(to(int�ch�
 �� accumulate value in n ��

got(dig � TRUE

�ifdef DEBUG

printf��debug�getint� ch � �c�n�� ch�
 �� debug statement ��

printf��debug�getint� n � �d�n�� n�
 �� debug statement ��

�endif

ch � getchar��
 �� read next char ��

�

if�ch �� EOF� return EOF
 �� test for end of file ��

if��got(dig� return ERROR
 �� test for no digits read ��

return n
 �� otherwise return the result ��

�

�� Dummy test driver for character utilities ��

�� This driver will be removed after testing is complete ��

main��

� int x

printf�����Test Digit Sequence to Integer����n�n��

printf��Type a sequence of digits�n��

while��x � getint��� �� EOF�

printf��Integer � �d�n�� x�
 �� print value ��

�

Figure ��
�	 Revised Character Utility Code

���� SAMPLE CHARACTER PROCESSING FUNCTIONS

�

initialize all counters to zero� set inword to False

while the character read� ch� is not EOF

increment character count chrs

if ch is a newline

increment line count lns

if NOT inword AND ch is NOT delimiter

increment word count wds

set inword to True

else if inword and ch is delimiter

set inword to False

print results

We �rst count characters and newlines� After that� only changes in the state� inword� need to
be considered� otherwise we ignore the character and read in the next one� Each time the �ag
changes from False to True� we count a word� We will use a function delimitp�� that checks if a
character is a delimiter� i�e� if it is a white space or a punctuation� �The name delimitp stands
for �delimit predicate� because it tests is its argument is a delimiter and returns True or False��
White space and punctuation� in turn� will be tested by other functions� The code for the driver
is shown in Figure ��
��

After printing the program title� the counts are initialized	

lns � wds � chrs � �

Assignment operators associate from right to left so the rightmost operator is evaluated �rst� chrs
is assigned �� and the value of the assignment operation is �� This value� �� is then assigned to
wds� and the value of that operation is �� Finally� that value is assigned to lns� and the value of
the whole expression is �� Thus� the statement initializes all three variables to � as a concise way
of writing three separate assignment statements�

The program driver follows the algorithm very closely� The function delimitp�� is used to
test if a character is a delimiter and is yet to be written� Otherwise� the program is identical to
the algorithm� It counts every character� every newline� and every word each time the �ag inword

changes from False to True�

Source File Organization

We can add the source code for delimitp�� to the source �le charutil�c we have been building
with character utility functions� In the last section we wrote a dummy driver in that �le to test
our utilities� Since we would like to use these utilities in many di�erent programs� we should not
have to keep copying a driver into this �le� We will soon see how the code in charutil�c will be
made a part of the above program without combining the two �les into one �and without using the
�include directive to include a code �le�� In our program �le� cnt�c� we also include two header
�les besides stdio�h� These are	 tfdef�h which de�nes symbolic constants TRUE and FALSE� and

 CHAPTER �� PROCESSING CHARACTER DATA

�� Program File� cnt�c

Other Source Files� charutil�c

Header Files� tfdef�h� charutil�h

This program reads standard input characters and counts the number

of lines� words� and characters� All characters are counted including

the newline and other control characters� if any�

��

�include �stdio�h�

�include �tfdef�h�

�include �charutil�h�

main��

� signed char ch

int inword� �� flag for in a word ��

lns� wds� chrs
 �� Counters for lines� words� chars� ��

printf�����Line� Word� Character Count Program����n�n��

printf��Type characters� EOF to quit�n��

lns � wds � chrs � �
 �� initialize counters to � ��

inword � FALSE
 �� set inword flag to False ��

while ��ch � getchar��� �� EOF� � �� repeat while not EOF ��

chrs � chrs � "
 �� increment chrs ��

if �ch �� ��n�� �� if newline char ��

lns � lns � "
 �� increment lns ��

�� if not inword and not a delimiter ��

if ��inword �� �delimitp�ch�� � �� if not in word and not delim�� ��

inword � TRUE
 �� set inword to True ��

wds � wds � "
 �� increment wds ��

�

else if �inword �� delimitp�ch�� �� if in word and a delimiter��

inword � FALSE
 �� set inword to False ��

� �� end of while loop ��

printf��Lines � �d� Words � �d� Characters � �d�n��

lns� wds� chrs�

� �� end of program ��

Figure ��
�	 Code for Count Words Driver

���� SAMPLE CHARACTER PROCESSING FUNCTIONS

�

�� File� tfdef�h ��

�define TRUE "

�define FALSE �

�� File� charutil�h % continued

This file contains the prototype declarations for functions defined in

charutil�c�

��

int delimitp�char c�
 �� Tests if c is a delimiter �white space� punct� ��

int whitep�char c�
 �� Tests if c is a white space ��

int punctp�char c�
 �� Tests if c is a punctuation ��

Figure ��
�	 Header Files for Word Count

charutil�h which declares prototypes for the functions de�ned in charutil�c and any related
macros� Since we use these constants and functions in main��� we should include the header �les
at the head of our source �le� Figure ��
� shows the �le tfdef�h and the additions to charutil�h�

The function delimitp�� tests if a character is white space or punctuation� It uses two
functions for its tests	 whitep�� which tests if a character is white space� and punctp�� which
tests if a character is punctuation� �We could have also implemented these as macros� but chose
functions in this case�� All these functions are added to the source �le� charutil�c and are shown
in Figure ��
� This source �le also includes tfdef�h� and charutil�h because the functions in
the �le use the symbolic constants TRUE and FALSE de�ned in tfdef�h and the prototypes for
functions whitep�� and punctp�� declared in charutil�h are also needed in this �le�

The source code for the functions is simple enough� delimitp�� returns TRUE if the its param�
eter� c� is either white space or punctuation� whitep�� returns TRUE if c is either a space� newline�
or tab� and punctp�� returns TRUE if c is one of the punctuation marks shown� All functions
return FALSE if the primary test is not satis�ed�

Our entire program is now contained in the two source �les cnt�c and charutil�cwhich must
be compiled separately and linked together to create an executable code �le� Commands to do so
are implementation dependent� but on Unix systems� the shell command line is	

cc %o cnt cnt�c charutil�c

The command will compile cnt�c to the object �le� cnt�o� then compile charutil�c to the object
�le� charutil�o� and �nally link the two object �les as well as any standard library functions into
an executable �le� cnt as directed by the %o cnt option� �If �o option is omitted� the executable
�le will be called a�out�� For other systems� the commands are generally similar� for example�
compilers for many personal computers also provide an integrated environment which allows one
to edit� compile� and run programs� In such an environment� the programmer may be asked
to prepare a project �le listing all source �les� Once a project �le is prepared and the project

� CHAPTER �� PROCESSING CHARACTER DATA

�� File� charutil�c % continued ��

�include �tfdef�h�

�include �charutil�h�

�� Function returns TRUE if c is a delimiter� i�e�� it is a white space

or a punctuation� Otherwise� it returns FALSE�

��

int delimitp�char c�

�

if �whitep�c� ** punctp�c��

return TRUE

return FALSE

�

�� Function returns TRUE if c is white space
 returns FALSE otherwise� ��

int whitep�char c�

�

if �c �� ��n� ** c �� ��t� ** c �� � ��

return TRUE

return FALSE

�

�� Function returns TRUE if c is a punctuation
 returns FALSE otherwise� ��

int punctp�char c�

�

if �c �� ��� ** c �� ��� ** c �� �
� ** c �� ���

** c �� �
� ** c �� ����

return TRUE

return FALSE

�

Figure ��
�	 Code for Word Count Utility Functions

���� SAMPLE CHARACTER PROCESSING FUNCTIONS

�

option activated� a simple command compiles the source �les� links them into an executable �le�
and executes the program� Consult your implementation manuals for details� This technique of
splitting the source code for an entire program into multiple �les is called serarate compilation

and is a good practice as programs grow larger�

Once the above two �les� cnt�c and charutil�c are compiled and linked� the resulting program
may then be executed producing a sample session as shown below	

���Line� Word� Character Count Program���

Type characters� EOF to quit

Now is the time for all good men

To come to the aid of their country�
�D

Lines � �� Words � "!� Characters � #�

Henceforth� we will assume separate compilation of source code whenever it is spread over more
then one �le� Since main�� is the program driver� we will refer to the source �le that contains
main�� as the program �le� Other source �les needed for a complete program will be listed in
the comment at the head of the program �le� In the comment� we will also list header �les needed
for the program� Refer to cnt�c in Figure ��
� for an example of a listing which enumerates all
the �les needed to build or create an executable program� �The �le stdio�h is not listed since it
is assumed to be present in all source �les��

Header �les typically include groups of related symbolic constant de�nitions and�or prototype
declarations� Source �les typically contain de�nitions of functions used by one or more program
�les� We will organize our code so that a source �le contains the code for a related set of func�
tions� and a header �le with the same name contains prototype declarations for these functions�
e�g� charutil�c and charutil�h� As we add source code for new functions to the source �les�
corresponding prototypes will be assumed to be added in the corresponding header �les�

Separate compilation has several advantages� Program development can take place in separate
modules� and each module can be separately compiled� tested� and debugged� Once debugged�
a compiled module need not be recompiled but merely linked with other separately compiled
modules� If changes are made in one of the source modules� only that source module needs
recompiling and linking with other already compiled modules� Furthermore� compiled modules of
useful functions can be used and reused as building blocks to create new and diverse programs�
In summary� separate compilation saves compilation time during program development� allows
development of compiled modules of useful functions that may be used in many diverse programs�
and makes debugging easier by allowing incremental program development�

����� Extracting Words

The �nal task in this section extends the word count program to print each word in the input
stream of characters�

�� CHAPTER �� PROCESSING CHARACTER DATA

Task

WDS	 Read characters until end of �le and keep a count of characters� lines� and words� Also�
print each word in the input on a separate line�

The logic is very similar to that of the previous program� except that a character is printed
if it is in a word� i�e� if inword is True� We will decide whether to print a character only after
a possible state change of inword has taken place� That way when inword changes from False
to True �the �rst character of a word has been found� the character is printed� When inword

changes from from True to False �a delimiter has been found ending the word� it is not printed�
instead we print a newline because each word is to be printed on a new line� So our algorithm is	

initialize counts to zero� set inword to False

while the character read� ch� is not EOF

increment character count� chrs

if ch is a newline

increment line count� lns

if NOT inword AND ch is NOT delimiter

increment word count� wds

set inword to True

else if inword and ch is delimiter

set inword to False

print a newline

if inword

print ch

print results

and the code is shown in Figure ��

� This code was generated by simply copying the �le cnt�c

and making the necessary changes as indicated in the algorithm� The program �le is compiled
and linked with charutil�c� and the following sample session is produced�

Sample Session	

���Word Program���

Type characters� EOF to quit

Now is the time for all good men

Now

is

the

time

for

all

good

men

���� SAMPLE CHARACTER PROCESSING FUNCTIONS
�

�� Program File� wds�c

Other Source Files� charutil�c

Header Files� tfdef�h� charutil�h

This program reads standard input characters and prints each word on a

separate line� It also counts the number of lines� words� and characters�

All characters are counted including the newline and other control

characters� if any�

��

�include �stdio�h�

�include �tfdef�h�

�include �charutil�h�

main��

� signed char ch

int inword� �� flag for in a word ��

lns� wds� chrs
 �� Counters for lines� words� chars� ��

printf�����Line� Word� Character Count Program����n�n��

printf��Type characters� EOF to quit�n��

lns � wds � chrs � �
 �� initialize counters to � ��

inword � FALSE
 �� set inword flag to False ��

while ��ch � getchar��� �� EOF� � �� repeat while not EOF ��

chrs � chrs � "
 �� increment chrs ��

if �ch �� ��n�� �� if newline char ��

lns � lns � "
 �� increment lns ��

�� if not inword and not a delimiter ��

if ��inword �� �delimitp�ch�� � �� if not in word and not delim� ��

inword � TRUE
 �� set inword to True ��

wds � wds � "
 �� increment wds ��

�

else if �inword �� delimitp�ch�� � �� if in word and a delimiter��

inword � FALSE
 �� set inword to False ��

putchar���n��
 �� end word with a newline ��

�

if �inword� �� if in a word ��

putchar�ch�
 �� print the character ��

� �� end of while loop ��

printf��Lines � �d� Words � �d� Characters � �d�n��

lns� wds� chrs�

� �� end of program ��

Figure ��

	 Code fore extracting words

�� CHAPTER �� PROCESSING CHARACTER DATA

�D

Lines � "� Words � � Characters � ��

In this section we have seen several sample programs for processing characters as well as some
new programming techniques� in particular� splitting the source code for a program into �les of
related functions with separate compilation of each source code �le� The executable program is
then generated by linking the necessary object �les� In the next section� we turn our attention to
several new control constructs useful in character processing as well as in numeric programs�

��� New Control Constructs

Earlier in this chapter� we saw the use of a chain of if���else if constructs for a multiway deci�
sion� This is a common operation in programs so the C language provides an alternate multiway
decision capability	 the switch statement� In addition� two other control constructs are discussed
in this section	 the break and continue statements�

����� The switch Statement

In a switch statement� the value of an integer valued expression determines an alternate path to
be executed� The syntax of the switch statement is	

switch � �expression�� �statement�

Typically� the �statement� is a compound statement with case labels�

switch ��expression�� f
case �e� �� �stmt� �
case �e� �� �stmt� �
���
case �en�� �� �stmtn�� �
default� �stmtn �

g

Each statement� except the last� starts with a case label which consists of the keyword case

followed by a constant expression� followed by a colon� The constant expression� �whose value
must be known at compile time� is called a case expression� An optional default label is also
allowed after all the case labels� Executable statements appear after the labels as shown�

The semantics of the switch statement is as follows	 The expression� �expression� is evaluated
to an integer value� and control then passes to the �rst case label whose case expression value

���� NEW CONTROL CONSTRUCTS
��

matches the value of the switch expression� If no case expression value matches� control passes to
the statement with the default label� if present� This control �ow is shown in Figure ��
�� Labels
play no role other than to serve as markers for transferring control to the appropriate statements�
Once control passes to a labeled statement� the execution proceeds from that point and continues
to process each of the subsequent statements until the end of the switch statement�

As an example� we use the switch statement to write a function that tests if a character is a
vowel �the vowels are �a�� �e�� �i�� �o�� and �u� in upper or lower case�� If a character passed to this
function� which we will call vowelp�� �for vowel predicate�� is one of the above vowels� the function
returns True� otherwise� it returns False� We add the function to our �le charutil�c� and the code
is shown in Figure ��
�� If c matches any of the cases� control passes to the appropriate case label�
For many of these cases� the �stmt� is empty� and the �rst non�empty statement is the return

TRUE statement� which� when executed� immediately returns control to the calling function� If c is
not a vowel� control passes to the default label� where the return FALSE statement is executed�
While there is no particular advantage in doing so� the above function could be written with a
return statement at every case label to return TRUE� The function vowelp�� is much clearer and
cleaner using the switch statement than it would have been using nested if statements or an if

statement with a large� complex condition expression�

An Example� Encrypting Text

Remember� in a switch statement� control �ow passes to the statement associated with the match�
ing case label� and continues from there to all subsequent statements in the compound statement�
Sometimes this is not the desired behavior� Consider the task of encrypting text in a very simple
way� such as	

� Leave all characters except the letters unchanged�

� Encode each letter to be the next letter in a circular alphabet� i�e� �a� follows �z� and �A�

follows �Z��

We will use a function to print the next letter� The encrypt algorithm is simple enough	

read characters until end of file

if a char is a letter

print the next letter in the circular alphabet

else

print the character

Implementation is straight forward as shown in Figure ��
�� The program reads characters until
end of �le� Each character is tested to see if it is a letter using a function� letterp��� If it
is a letter� print next�� is called to print the next character in the alphabet� otherwise� the
character is printed as is� The function letterp�� checks if a character passed as an argument is
an alphabetic letter and returns True or False� The function is shown below and is added to our
utility �le� charutil�c �and its prototype is assumed to be added to the �le charutil�h��

�� CHAPTER �� PROCESSING CHARACTER DATA

���
��aaaaa��

��
�a
a

a
aa

��
���aa
aaa��

��
�a
aa

aa

��
���aa
aaa�

��
��
a
aa

aa

�

�

�

�

�

�

�

�

�

�

�

�

�

�

expression

e�

e�

en��

stmt�

stmt�

stmtn��

stmtn

� � �

match

no match

match

match

no match

no match

Figure ��
�	 Control Flow for switch statement

���� NEW CONTROL CONSTRUCTS
��

�� File� charutil�c % continued ��

�� File tfdef�h� which defines TRUE and FALSE� has already been

included in this file� ��

�� Function checks if c is a vowel� ��

int vowelp�char c�

�

switch�c� �

case �a��

case �A��

case �e��

case �E��

case �i��

case �I��

case �o��

case �O��

case �u��

case �U�� return TRUE

default� return FALSE

�

�

Figure ��
�	 Code for vowelp�� Using a switch Statement

�
 CHAPTER �� PROCESSING CHARACTER DATA

�� File� encrypt�c

Other Source Files� charutil�c

Header Files� charutil�h

This program encrypts text by converting each letter to the next letter

in the alphabet� The last letter of the alphabet is changed to the first

letter�

��

�include �stdio�h�

�include �charutil�h�

void print(next�char c�

main��

� signed char c

printf�����Text Encryption����n�n��

printf��Type text� EOF to quit�n��

while ��c � getchar��� �� EOF� �

if �letterp�c��

print(next�c�

else

putchar�c�

�

�

Figure ��
�	 Code for encrypt�c

���� NEW CONTROL CONSTRUCTS
��

�� File� charutil�c % continued ��

�� Function tests if c is an alphabetic letter� ��

int letterp�char c�

�

if �IS(LOWER�c� ** IS(UPPER�c��

return TRUE

return FALSE

�

It uses the macros IS LOWER�� and IS UPPER��� We have already de�ne IS LOWER�� in charutil�h�
IS UPPER�� is similar	

�define IS(UPPER�c� ��c� �� �A� �� �c� �� �Z��

and is added to charutil�h�

Let us consider the function� print next��� which is passed a single alphabetic letter as an
argument� It should print an altered letter� that is the next letter in a circular alphabet� The
altered letter is the next letter in the alphabet� unless the argument is the last letter in the
alphabet� If the argument is �z� or �Z�� then the altered letter is the �rst letter of the alphabet�
�a� or �A� respectively� There are two possible instances of the character c for which we must
take special action� viz� when c is �z� or c is �Z�� The default case is any other letter� when the
function should print c � "� which is the ASCII value of the next letter�

We need a three way decision based on the value of a character c	 is c the character �z�� or
�Z�� or some other character� If it is �z� print �a�� else if it is �Z� print �A�� otherwise� print c
� "� We can easily implement this multiway decision using an if ��� else ��� construct�

if �c �� �z��

printf���c�� �a��

else if �c �� �Z��

printf���c�� �A��

else

printf���c�� c � "�

Such multiway branches can also be implemented using the switch construct� Suppose we wrote	

switch�c� �

case �z�� printf���c�� �a��

case �Z�� printf���c�� �A��

default� printf���c�� c � "�

Will this do what we want� If c has the value �z�� the above switch statement would match
the �rst case label and print �a�� However� by the semantics of switch� it would then print �A�
followed by �f� �the character after �z� in the ASCII table� � not what we want� Can we salvage
this approach to multiway branching�

�� CHAPTER �� PROCESSING CHARACTER DATA

�� File� encrypt�c % continued ��

�� Prints the next higher letter to c� Alphabet is assumed circular� ��

void print(next�char c�

�

switch�c� �

case �z�� printf���c�� �a��

break

case �Z�� printf���c�� �A��

break

default� printf���c�� c � "�

�

�

Figure ����	 Implementing print next�� Using a switch Statement

����� The break Statement

C provides a statement for circumstances like this� the break statement� A break can only be
used within a switch statement or any looping statement �so far we have only seen while�� Its
syntax is very simple	

break�

The semantics of break are to immediately terminate the closest enclosing compound statement�
either the switch or the loop�

To �x our problem above� Figure ���� shows an implementation of print next�� using a
switch statement� Once control passes to a label� the control continues down the line of statements
until the break statement is encountered� In the above case� if c is �Z�� then an �A� is printed
and the switch statement is terminated� Similarly� if c is �z�� then �a� is printed and the control
passes to the next statement after the switch� If there is no match� then the control passes to the
default label� and a character with value c � " is printed� The switch statement ends at this
point anyway� so no break is required�

Here is a sample session with the program after encrypt�c and charutil�c are compiled and
linked�

���Text Encryption���

Type text� EOF to quit

this is a test

uijt jt b uftu

�D

���� NEW CONTROL CONSTRUCTS
��

�� Function prints a character� its decimal� octal� and hex value

and its category� using a switch statement

��

int print(category� int cat� char ch�

�

printf���c� ASCII value decimal �d� octal �o� hexadecimal �x� ��

ch�ch�ch�ch�

switch�cat� �

case LOWER� printf��lower case letter�n��

break

case UPPER� printf��an upper case letter�n��

break

case DIGIT� printf��a digit symbol�n��

break

case PUNCT� printf��a punctuation symbol�n��

break

case SPACE� printf��a space character�n��

break

case CONTROL� printf��a control character�n��

break

default� printf��a special symbol�n��

�

�

Figure ���
	 New Implementation of print category using switch

This use of the switch statement with break statements in the various cases is a common and
e�cient way to implement a multiway branch in C� For example� we can now reimplement our
print category�� function from Figure ��� as shown in Figure ���
�

As mentioned above� the break statement can also be used to terminate a loop� Let us
consider our previous word extraction task	 reading text input and printing each word in the text
�see Figure ��

�� However� now we will consider non�printable characters other than white space
and the end of �le marker as invalid� They will represent an error in the input and we will use a
break statement to abort the program�

For this task� we will no longer count characters� words� and lines� simply extract words and
print them� one per line� In our previous algorithm� each iteration of the loop processed one
character and we used a �ag variable� inword to carry information from one iteration to the next�
For this program we will modify our algorithm so that each iteration of the loop will process
one word� Each word is found by �rst skipping over leading delimiters� then� as long as we read
printable� non�delimiter characters� we can print the word� The character terminating the word
must be a delimiter unless it is a non�printable character or we have reached the end of �le� In
either of those cases� we abort the program� printing a message if a non�printable character was
encountered� Otherwise� we print the newline terminating the word and process the next word�

�� CHAPTER �� PROCESSING CHARACTER DATA

Here is the revised algorithm with the code shown in Figure �����

while there are more characters to read

skip over leading delimiters �white space�

while character is legal for a word

print character

read next character

if EOF� terminate the program

if character is non%printable�

print a message and abort the program

print a newline ending the word

The program uses two functions	 delimitp�� tests if the argument is a delimiter� and illegal��
tests if the argument is not a legal character �printable or a delimiter�� They are in the source
�le charutil�c� their prototypes are in charutil�h� We have already de�ned delimitp�� �see
Figure ��
��� We will soon write illegal���

In the main loop� we skip over leading delimiters with a while loop� and then� as long legal
�word� characters are read we print and read characters� If either of these loops terminates with
EOF� the loop is terminated by a break statement and the program ends� �Note� if EOF is detected
while skipping delimiters� the word processing loop will be executed zero times�� If a non�printable�
non�delimiter character is found� the program is aborted after a message is printed to that e�ect�
Otherwise� the word is ended with a newline and the loop repeats�

Function illegal�� is easy to write	 legal characters are printable �in the ASCII range ��
through
�
� or white space� Here is the function and its prototype�

�� File� charutil�c % continued

Header Files� tfdef�h� charutil�h

��

�� Function tests if c is printable� ��

int illegal�char c�

�

if �IS(PRINT�c� ** IS(WHITE(SPACE�c��

return FALSE

return TRUE

�

�� File� charutil�h % continued ��

�define IS(PRINT�c� ��c� �� �� �� �c� � "�#�

int illegal�char c�
 �� Tests if c is legal� ��

We have also added the macro IS PRINT to the header �le� The program �le words�c and the
source �le charutil�c can now be compiled and linked� A sample session when the program is

���� NEW CONTROL CONSTRUCTS
�

�� File� words�c

Other Source Files� charutil�c

Header Files� tfdef�h� charutil�h

This program reads text and extracts words until end of file� Only

printable characters are allowed in a word� Upon encountering a control

character� a message is printed and the program is aborted�

��

�include �stdio�h�

�include �tfdef�h�

�include �charutil�h� �� includes prototypes for delimitp��� printp�� ��

main��

� signed char ch

printf�����Words� Non%Printable Character Aborts����n�n��

printf��Type text� EOF to quit�n��

while ��ch � getchar��� �� EOF� � �� while characters remain to be read ��

while �delimitp�ch�� �� skip over leading delimiters ��

ch � getchar��

while ��delimitp�ch� �� printp�ch�� � �� process a word ��

putchar�ch�
 �� print ch ��

ch � getchar��
 �� read the next char ��

�

if �ch �� EOF� �� if end of file� terminate ��

break

if �illegal�ch�� ��� if a control char� print msg and abort ��

printf���nAborting % Control character present� ASCII �d�n��ch�

break

�

printf���n��
 �� terminate word with newline ��

�

�

Figure ����	 Extracting Words Using break

�� CHAPTER �� PROCESSING CHARACTER DATA

executed is shown below�

���Words� Non%Printable Character Aborts���

Type text� EOF to quit

Lucky you live H�Awaii�A

Lucky

you

live

H

Aborting % Control character present� ASCII "

The message shows that the program is abnormally terminated due to the presence of a control
character�

It is also possible� though not advisable� to use a break statement to terminate an otherwise
in�nite loop� Consider the program fragment	

n � �

while �"� �

n � n � "

if �n � �� break

printf��Hello� hello� hello�n��

�

printf��Print statement after the loop�n��

The loop condition is the constant
� which is always True so the loop body will be repeatedly
executed� n will be incremented� and the message printed� until n reaches �� The condition �n �

�� will now be True� and the break statement will be executed� This will terminate the while

loop� and control passes to the print statement after the loop� If the if statement containing the
break statement were not present� the loop would execute inde�nitely�

While it is possible to use a break statement to terminate an in�nite loop� it is not a good
practice because use of in�nite loops makes program logic hard to understand� In a well structured
program� all code should be written so that program logic is clear at each stage of the program� For
example� a loop should be written so that the normal loop terminating condition is immediately
clear� Otherwise� program reading requires wading through the detailed code to see how and when
the loop is terminated� A break statement should be used to terminate a loop only in cases of
special or unexpected events�

����� The continue Statement

A continue statement also changes the normal �ow of control in a loop� When a continue

statement is executed in a loop� the current iteration of the loop body is aborted� however� control

���� NEW CONTROL CONSTRUCTS
��

transfers to the loop condition test and normal loop processing continues� namely either a new
iteration or a termination of the loop occurs based on the loop condition� As might be expected�
the syntax of the continue statement is�

continue�

and the semantics are that statements in the loop body following the execution of the continue

statement are not executed� Instead� control immediately transfers to the testing of the loop
condition�

As an example� suppose we wish to write a loop to print out integers from � to �� except for
�� We could use the continue statement as follows	

n � �

while �n � "�� �

if �n �� $� �

n � n � "

continue

�

printf��Next allowed number is �d�n�� n�

n � n � "

�

The loop executes normally except when n is �� In that case� the if condition is True� n is
incremented� and the continue statement is executed where control passes to the testing of the
loop condition� �n � "��� Loop execution continues normally from this point� Except for �� all
values from � through � will be printed�

We can modify our previous text encryption algorithm �Figure ��
�� to ignore illegal characters
in its input� Recall� in that task we processed characters one at a time� encrypting letters and
passing all other characters as read� In this case we might consider non�printable characters other
than white space to be typing errors which should be ignored and omitted from the output�

The code for the revised program is shown in Figure ����� We have used the function�
illegal��� from the previous program �it is in charutil�c� to detect illegal characters� When
found� the continue statement will terminate the loop iteration� but continue processing the
remaining characters in the input until EOF�

Sample Session	

���Text Encryption Ignoring Illegal Characters���

Type text� EOF to quit

Luck you live H�Awaii

Mvdl zpv mjjwf Ixbjj

�� CHAPTER �� PROCESSING CHARACTER DATA

�� File� encrypt��c

Other Source Files� charutil�c

Header Files� charutil�h

This program encrypts text by converting each letter to the next letter

in the alphabet� Illegal characters are ignored�

��

�include �stdio�h�

�include �charutil�h�

void print(next�char c�

main��

� signed char c

printf�����Text Encryption Ignoring Illegal Characters����n�n��

printf��Type text� EOF to quit�n��

while ��c � getchar��� �� EOF� � �� while there are chars to process ��

if �illegal�c�� continue
 �� ignore illegal characters ��

if �letterp�c�� �� encrypt letters ��

print(next�c�

else

putchar�c�
 �� print all others as is ��

�

�

Figure ����	 Code for Revised encrypt�c

���� MIXING CHARACTER AND NUMERIC INPUT
��

�� File� scan��c

This program shows problems with scanf�� when wrong data is entered�

��

�include �stdio�h�

main��

� int cnt� n

printf�����Numeric and Character Data����n�n��

printf��Type integers� EOF to quit� ��

cnt � �

while ��scanf���d�� �n� �� EOF� �� �cnt � ��� �

printf��n � �d�n�� n�

cnt � cnt � "

printf��Type an integer� EOF to quit� ��

�

�

Figure ����	 Code for Testing scanf��

�D

It should be noted that the use of break and continue statements is not strictly necessary�
Proper structuring of the program� using appropriate loop and if���else constructs� can produce
the same e�ect� The break and continue statements are best used for �unusual� conditions that
would make program logic clearer�

��� Mixing Character and Numeric Input

We have seen how numeric data can be read with scanf�� and character data with either scanf��
or getchar��� Some di�culties can arise� however� when both numeric and character input is done
within the same program� Several common errors in reading data can be corrected easily if the
programmer understands exactly how data is read� In this section� we discuss problems in reading
data and how they can be resolved�

The �rst problem occurs when scanf�� attempts to read numeric data but the user enters the
data incorrectly� �While the discussion applies to reading any numeric data� we will use integer
data for our examples�� Consider an example of a simple program that reads and prints integers as
shown in Figure ����� In this program� scanf�� reads an integer into the variable n �if possible�
and returns a value which is compared with EOF� If scanf�� has successfully read an integer�

�
 CHAPTER �� PROCESSING CHARACTER DATA

the value returned is the number of conversions performed� namely
� and the loop is executed�
Otherwise� the value returned is expected to be EOF and the loop is terminated� The the �rst part
of the while condition is	

�scanf���d�� �n� �� EOF�

This expression both reads an item and compares the returned value with EOF� eliminating separate
statements for initialization and update� The second part of the while condition ensures that the
loop is executed at most � times� �The reason for this will become clear soon�� The loop body
prints the value read and keeps a count of the number of times the loop is executed� The program
works �ne as long as the user enters integers correctly� Here is a sample session that shows the
problem when the user makes a typing error	

���Mistyped Numeric Data���

Type integers� EOF to quit� ��r
n � ��

Type an integer� EOF to quit� n � ��

Type an integer� EOF to quit� n � ��

Type an integer� EOF to quit� n � ��

The user typed ��r� These characters and the terminating newline go into the keyboard bu�er�
scanf�� skips over any leading white space and reads characters that form an integer and converts
them to the internal form for an integer� It stops reading when the �rst non�digit is encountered�
in this case� the �r�� It stores the integer value� ��� in n and returns the number of items read�
i�e�
� The �rst integer� ��� is read correctly and printed � followed by a prompt to type in the
next integer�

At this point� the program does not wait for the user to enter data� instead the loop repeatedly
prints �� and the prompt but does not read anything� The reason is that the next character in
the keyboard bu�er is still �r�� This is not a digit character so it does not belong in an integer�
therefore� scanf�� is unable to read an integer� Instead� scanf�� simply returns the number of
items read as � each time� Since scanf�� is trying to read an integer� it can not read and discard
the �r�� No more reading of integers is possible as long as �r� is the next character in the bu�er�
If the value of the constant EOF is �
 �not ��� an in�nite loop results� �That is why we have included
the test of cnt to terminate the loop after � iterations��

Let us see how we can make the program more tolerant of errors� One solution to this problem
is to check the value returned by scanf�� and make sure it is the expected value� i�e�
 in our
case� If it is not� break out of the loop� The while loop can be written as	

while ��flag � scanf���d�� �n�� �� EOF� �

if �flag �� "� break

printf��n � �d�n�� n�

���� MIXING CHARACTER AND NUMERIC INPUT
��

printf��Type an integer� EOF to quit�n��

�

In the while expression� the inner parentheses are evaluated �rst� The value returned by scanf��

is assigned to flag which is the value that is then compared to EOF� If the value of the expression
is not EOF� the loop is executed� otherwise� the loop is terminated� In the loop� we check if a data
item was read correctly� i�e� if flag is
� If not� we break out of the loop� The inner parentheses
in the while expression are important� the while expression without them would be	

�flag � scanf���d�� �n� �� EOF�

Precedence of assignment operator is lower than that of the relational operator� � �� so� the
scanf�� value is �rst compared with EOF and the result is True or False� i�e�
 or �� This value is
then assigned to flag� NOT the value returned by scanf���

The trouble with the above solution is that the program is aborted for a simple typing error�
The next solution is to �ush the bu�er of all characters up to and including the �rst newline� A
simple loop will take care of this	

while ��flag � scanf���d�� �n�� �� EOF� �

if �flag �� "�

while �getchar�� �� ��n��

else �

printf��n � �d�n�� n�

printf��Type an integer� EOF to quit�n��

�

�

If the value returned by scanf�� when reading an integer is not
� then the inner while loop is
executed where� as long as a newline is not read� the condition is True and the body is executed�
In this case� the loop body is an empty statement� so the condition will be tested again thus
reading the next character� The loop continues until a newline is read� This is called �ushing

the bu�er�

The trouble with this approach is that the user may have typed other useful data on the same
line which will be �ushed� The best solution is to �ush only one character and try again� If
unsuccessful� repeat the process until an item is read successfully� Figure ���� shows the revised
program that will discard only those characters that do not belong in a numeric data item�

Sample Session	

���Mistyped Numeric Data� Flush characters���

Type integers� EOF to quit

�� CHAPTER �� PROCESSING CHARACTER DATA

�� File� scan"�c

This program shows how to handle mistyped numeric data by flushing

erroneous characters�

��

�include �stdio�h�

�define DEBUG

main��

� char ch

int flag� n

printf�����Mistyped Numeric Data� Flush characters����n�n��

printf��Type integers� EOF to quit�n��

while ��flag � scanf���d�� �n�� �� EOF� �

if �flag �� "� �

ch � getchar��
 �� flush one character ��

�ifdef DEBUG

printf��debug��c in input stream� discarding�n�� ch�

�endif

�

else printf��n � �d�n�� n�

printf��Type an integer� EOF to quit�n��

�

�

Figure ����	 Revised Code for Reading Integers

���� MIXING CHARACTER AND NUMERIC INPUT
��

��rt ��

n � ��

Type an integer� EOF to quit

debug�r in input stream� discarding

Type an integer� EOF to quit

debug�t in input stream� discarding

Type an integer� EOF to quit

n � ��

Type an integer� EOF to quit

�D

The input contains several characters that do not belong in numeric data� Each of these is
discarded in turn and another attempt is made to read an integer� If unable to read an integer�
another character is discarded� This continues until it is possible to read an integer or the end of
�le is reached�

Even if the user types data as requested� other problems can occur with scanf��� The second
problem occurs when an attempt is made to read a character after reading a numeric data item�
Figure ���
 shows an example which reads an integer and then asks the user if he�she wishes to
continue� If the user types �y�� the next integer is read� otherwise� the loop is terminated� This
program produces the following sample session	

���Numeric and Character Data���

Type an integer

��nn
n � ��

Do you wish to continue
 �Y�N�� debug�

in input stream

The sample session shows that an integer input is read correctly and printed� the prompt to the
user is then printed� but the program does not wait for the user to type the response� A newline
is printed as the next character read� and the program terminates� The reason is that when the
user types the integer followed by a RETURN� the digit characters followed by the terminating
newline are placed in the keyboard bu�er �we have shown the nn explicitly�� The function scanf��

reads the integer until it reaches the newline character� but leaves the newline in the bu�er� This
newline character is then read as the next input character into c� Its value is printed and the loop
is terminated since the character read is not �y��

A simple solution is to discard a single delimiting white space character after the numeric data
is read� C provides a suppression conversion speci�er that will read a data item of any type and
discard it� Here are some examples	

scanf����c��
 �� read and discard a character ��

�� CHAPTER �� PROCESSING CHARACTER DATA

�� File� mix��c

This program shows problems reading character data when it follows

numeric data�

��

�include �stdio�h�

�define DEBUG

main��

� char ch

int flag� n

printf�����Numeric and Character Data����n�n��

printf��Type an integer�n��

while ��flag � scanf���d�� �n�� �� EOF� � �� continue until EOF ��

printf��n � �d�n�� n�
 �� print n ��

printf��Do you wish to continue
 �Y�N�� ��
 �� prompt ��

scanf���c�� �ch�
 �� read a character� ��

�ifdef DEBUG

printf��debug��c in input stream�n�� ch�
 �� type its value ��

�endif

if �ch �� �y�� �� if char is �y� ��

printf��Type an integer�n��
 �� prompt ��

else �� otherwise� ��

break
 �� terminate loop ��

�

�

Figure ���
	 Mixing Numeric and Character Data

���� MIXING CHARACTER AND NUMERIC INPUT
�

scanf����d��
 �� read and discard an integer ��

scanf���d��c�� �n�
 �� read an integer and store it in n� ��

�� then read and discard a character ��

scanf����c�c�� �ch�
 �� read and discard a character� ��

�� and read another� store it in ch� ��

Figure ���� shows the revised program that discards one character after it reads an integer�

This program produces the following sample session	

���Numeric and Character Data���

Type an integer

��nn
n � ��

Do you wish to continue
 �Y�N�� ynn
debug�y in input stream

Type an integer

�� nn
n � ��

Do you wish to continue
 �Y�N�� debug� in input stream

We have shown the terminating newline explicitly in the sample session input� The �rst integer
is read and printed� one character is discarded and the next one read correctly as �y� and the
loop repeats� The next integer is typed followed by some white space and then a newline� The
character after the integer is a space which is discarded and the following character is read� The
new character read is another space� and the program is terminated because it is not a �y��

The solution is to �ush the entire line of white space until a newline is reached� Then the next
character should be the correct response� The revised program is shown in Figure ���� and the
sample session is below	

���Numeric and Character Data���

Type an integer

�� nn
n � ��

Do you wish to continue
 �Y�N�� y nn
debug�y in input stream

Type an integer

�� nn
n � ��

Do you wish to continue
 �Y�N�� n nn
debug�n in input stream

�� CHAPTER �� PROCESSING CHARACTER DATA

�� File� mix"�c

This program shows how character data might be read correctly when it

follows numeric data� It assumes only one white space character

terminates numeric data� This character is suppressed�

��

�include �stdio�h�

�define DEBUG

main��

� char ch

int flag� n

printf�����Numeric and Character Data����n�n��

printf��Type an integer�n��

while ��flag � scanf���d�� �n�� �� EOF� �

printf��n � �d�n�� n�

printf��Do you wish to continue
 �Y�N�� ��

scanf����c�c�� �ch�
 �� suppress a character� read another ��

�ifdef DEBUG

printf��debug��c in input stream�n�� ch�

�endif

if �ch �� �y��

printf��Type an integer�n��

else

break

�

�

Figure ����	 Revised Code for Mixing Data

���� MIXING CHARACTER AND NUMERIC INPUT
��

�� File� mix��c

This program shows how character data can be read correctly when it

follows numeric data even if several white space characters follow

numeric data�

��

�include �stdio�h�

�define DEBUG

main��

� char ch

int flag� n

printf�����Numeric and Character Data����n�n��

printf��Type an integer�n��

while ��flag � scanf���d�� �n�� �� EOF� �

printf��n � �d�n�� n�

�� flush white space characters in a line
 stop when newline read ��

while �getchar�� �� ��n��

printf��Do you wish to continue
 �Y�N�� ��

scanf���c�� �ch�

�ifdef DEBUG

printf��debug��c in input stream�n�� ch�

�endif

if �ch �� �y��

printf��Type an integer�n��

else

break

�

�

Figure ����	 A Better Revision for Mixing Data

�� CHAPTER �� PROCESSING CHARACTER DATA

The �rst integer is read and printed� the keyboard bu�er is �ushed of all white space until the
newline is read� and the next character is read to decide whether to continue or terminate the
loop� The next character input is also terminated with white space� however� the next item to be
read is a number and all leading white space will be skipped�

A �nal alternative might be to terminate the program only when the user types an �n��
accepting any other character as a �y�� This would be a little more forgiving of user errors in
responding to the program� One should also be prepared for mistyping of numeric data as discussed
above� A programmer should anticipate as many problems as possible� and should assume that a
user may not be knowledgeable about things such as EOF keystrokes� will be apt to make mistakes�
and will be easily frustrated with rigid programs�

��� Menu Driven Programs

Finally� we end this chapter by using what we have learned to improve the user interface to
programs	 we consider the case of a program driven by a menu� In a menu driven program� the
user is given a set of choices of things to do �the menu� and then is asked to select a menu item�
The driver then calls an appropriate function to perform the task selected by the menu item� A
switch statement seems a natural one for handling the selection from the menu�

We will modify the simple version of our payroll program to make it menu driven� While a
menu is not needed in this case� we use it to illustrate the concept� The menu items are	 get data�
display data� modify data� calculate pay� print pay� help� and quit the program� The user selects a
menu item to execute a particular path� for example� new data is read only when the user selects
the menu item� get data� On demand� the current data can be displayed so the user may make
any desired changes� Pay is calculated only when the user is satis�ed with the data�

Figure ���� shows the driver for this program� �The driver of any menu driven program will
look similar to this�� The program prints the menu and then reads a selection character� A
switch is used to select the path desired by the user� The user may type a lower or an upper
case letter� both cases are included by the case labels� Usually� the driver hides the details of
processing individual selections� so we have implemented most selections as function calls� The
only exception here is when the selection is get data where the actual statements to read the
necessary data are included in the driver itself because to use a function� it would have to read
several items and somehow return them� So far we only know how to write functions that return
a single value� We will address this matter in Chapter
�

Notice what happens if the user elects to quit the program	 a standard library function� exit���
is called� This function is like a return statement� except that it terminates the entire program
rather than return from a function� It may be passed a value which is returned to the environment

in which the program runs� A value of � usually implies normal termination of a program� any
other value implies abnormal termination�

After the appropriate function is called� we terminate the selected case with a break statement
to end the switch statement � The control then passes to the statement after the switch state�

���� MENU DRIVEN PROGRAMS
��

�� File� menu�c

An example of a menu driven program� The main�� driver prints the menu�

reads the selected item� and performs an appropriate task� ��

�include �stdio�h�

�include �payroll�h�

main��

� signed char c

int id

float hours(worked� rate(of(pay� pay

printf�����Pay Calculation� Menu Driven����n�n��
 �� print title ��

print(menu��
 �� Display the menu to the user ��

while ��c � getchar��� �� EOF� � �� get user selection ��

switch�c� � �� select an appropriate path ��

case �g�� �� should be a function get(data�� ��

case �G�� printf��Id number� ��

scanf���d�� �id�

printf��Type Hours worked and rate of pay�n��

scanf���f �f�� �hours(worked� �rate(of(pay�

break

case �d��

case �D�� display(data�id� hours(worked� rate(of(pay�

break

case �m��

case �M�� modify(data��

break

case �c��

case �C�� pay � calc(pay�hours(worked� rate(of(pay�

break

case �p��

case �P�� display(data�id� hours(worked� rate(of(pay�

print(pay�pay�

break

case �h��

case �H�� print(menu��

break

case �q��

case �Q�� exit���

default� printf��Invalid selection�n��

print(menu��

� �� end of switch ��

while ��c � getchar��� �� ��n��
 �� flush the buffer ��

� �� end of while loop ��

� �� end of program ��

Figure ����	 Code for menu driven program

�
 CHAPTER �� PROCESSING CHARACTER DATA

ment� namely �ushing the bu�er� Let us see what would happen if this �ush were not present�
The user selects an item by typing a character and must terminate the input with a newline� The
keyboard bu�er will retain all characters typed by the user� including the newline� So if the user
types	

dnn

�showing the newline explicitly�� the program would read the character� �d�� select the appropriate
case in the switch statement and execute the path which displays data� When the break ends
the switch� control returns to the while expression which reads the next character in the bu�er	
the newline� Since newline is not one of the listed cases� the switch will choose the default case
and print an error message to the user� Thus� �ushing the keyboard bu�er always obtains a new
selection� In fact� even if the user typed more than a single character to select a menu item �such
as an entire word�� the bu�er will be �ushed of all remaining characters after the �rst�

As we have mentioned before� a large program should be developed incrementally� i�e� in small
steps� The overall program logic consisting of major sub�tasks is designed �rst without the need
to know the details of how these sub�tasks will be performed� Menu driven programs are partic�
ularly well suited for incremental development� Once the driver is written� �dummy� functions
�sometimes called stubs� can be written for each task which may do nothing but print a debug
message to the screen� Then each sub�task is implemented and tested one at a time� Only after
some of the basic sub�tasks are implemented and tested� should others be implemented� At any
given time during program development� many sub�task functions may not yet be implemented�
For example� we may �rst implement only get data� print data� and help �help is easy to implement�
it just prints the menu�� Other sub�tasks may be delayed for later implementation� Figure ����
shows example implementations of the functions used in the above driver� These are in skeleton
form and can be modi�ed as needed without changing the program driver� It should be noted
that the linker will require that all functions used in the driver be de�ned� The stubs satisfy the
linker without having to write the complete function until later�

The use of a menu in this example is not very practical� It is merely for illustration of the
technique� The menu is normally printed only once� so if the user forgets the menu items� he�she
may ask for help� in which case the menu is printed again� Also� if the user types any erroneous
character� the default case prints an appropriate message and prints the menu�

��� Common Errors

� Errors in program logic	 The program does not produce the expected results during testing�
Use conditional compilation to introduce debug statements�

�� The value of getchar�� is assigned to a char type� It should be assigned to a signed char

type if it is to be checked for a possibly negative value of EOF�

�� The keyboard bu�er is not �ushed of erroneous or unnecessary characters as explained in
Section ����

���� COMMON ERRORS
��

�� File� payroll�c ��

�� Prints the menu� ��

void print(menu�void�

� �� print the menu ��

printf��Select��n��

printf���tG�et Data�n��

printf���tD�isplay Data�n��

printf���tM�odify Data�n��

printf���tC�alculate Pay�n��

printf���tP�rint Pay�n��

printf���tH�elp�n��

printf���tQ�uit�n��

�

�� Displays input data� Id number� hours worked� and rate of pay� ��

void display(data�int id� float hrs� float rate�

�

printf��Id Number �d�n�� id�

printf��Hours worked �f�n�� hrs�

printf��Rate of pay �f�n�� rate�

�

�� Calculates pay as hrs � rate ��

�� a very simple version of calc(pay� Out previous implementation

could be used here instead�

��

float calc(pay�float hrs� float rate�

�

return hrs � rate

�

�� Modifies input data� ��

void modify(data�void�

�

printf��Modify Data not implemented yet�n��

�

�� Prints pay ��

void print(pay�float pay�

�

printf��Total pay � �f�n�� pay�

�

Figure ����	 Menu Driven Functions

�� CHAPTER �� PROCESSING CHARACTER DATA

�� Improper use of relational operators	

if ��a� �� ch �� �z�� �� should be ��a� �� ch �� ch �� �z�� ��

���

The operators are evaluated left to right	 �a� �� ch is either True or False� i�e�
 or ��
This value is compared with �z� and the result is always True�

�� An attempt is made to read past the end of the input �le� If the standard input is the
keyboard� it may or may not be possible to read input once the end of �le keystroke is
pressed� If the standard input is redirected� it is NOT possible to read beyond the end of
�le�

� A break statement is not used in a switch statement� When a case expression matches the
switch expression� control passes to that case label and control �ow continues until the end
of the switch statement� The only way to terminate the �ow is with a break statement�
Here is an example	

char find(next�char c�

� char next

switch�c� �

case �z�� next � �a�

default� next � c � "

�

return next

�

Suppose c is �z�� The variable next is assigned an �a� and control passes to the next
statement which assigns c � " to next� In fact� the function always returns c � " no
matter what c is�

�� Errors in de�ning macros� De�ne macros carefully with parentheses around macro formal
parameters� If the actual argument in a macro call is an expression� it will be expanded
correctly only if the macro is de�ned with parentheses around formal parameters�

�� A header �le is not included in each of the source �les that use the prototypes and�or macros
de�ned in it�

�� Repeated inclusion of a header �le in a source �le� If the header �le contains de�nes� there
is no harm done� BUT� if the header �le contains function prototypes� repeated inclusion is
an attempt to redeclare functions� a compiler error�

�� Failure to set environment parameters� such as the standard include �le directory� standard
library directory� and so forth� Most systems may already have the environment properly set�
but that may not be true in personal computers� If necessary� make sure the environment is
set correctly� Also� make sure that the compile and link commands correctly specify all the
source �les�

��
� SUMMARY
��

��	 Summary

In this chapter we have introduced a new data type� char� used to represent textual data in the
computer� Characters are represented using a standard encoding� or assignment of a bit pattern to
each character in the set� This encoding is called ASCII and includes representations of several
classes of characters such as alphabetic characters �letters� both upper and lower case�� digit
characters� punctuation� space� other special symbols� and control characters� We have seen how
character variables can be declared using the char keyword as the type speci�er in a declaration
statement� and how character constants are expressed in the program� namely by enclosing them
in single quotes� e�g� �a�� The ASCII value of a character can be treated as an integer value�
so we can do arithmetic operations using character variables and constants� For example� we
have discussed how characters can be tested using relational operators to determine their class�
how characters can be converted� for example from upper to lower case� or from a digit to its
corresponding integer value�

We have also discussed character Input�Output using scanf�� and printf�� with the �c

conversion speci�er� or the getchar�� and putchar�� routines de�ned in stdio�h� We have used
these routines and operations to write several example programs for processing characters and
discussed the organization of program code into separate source �les� This later technique allows
us to develop our own libraries of utility functions which can be linked to various programs� further
supporting our modular programming style�

In this chapter we have also introduced several new control constructs available in the C
language� These include the switch statement	

switch � �expression�� �statement�

where the �statement� is usually a compound statement with case labels�

switch ��expression�� f
case �e� �� �stmt� �
case �e� �� �stmt� �
���
case �en�� �� �stmtn�� �
default� �stmtn �

g

The semantics of this statement are that the �expression� is evaluated to an integer type value and
the case labels are searched for the �rst label that matches this value� If no match is found� the
optional default label is considered to match any value� Control �ow transfers to the statement
associated with this label and proceeds to successive statements in the switch body� We can
control which statements are executed further by using return or break statements with the
switch body�

��� CHAPTER �� PROCESSING CHARACTER DATA

The syntax of the break statement is simply	

break�

and it may be used only within switch or loop bodies with the semantics of immediately termi�
nating the execution of the body� In loops� the break statement is best used to terminate a loop
under unusual or error conditions� A similar control construct available for loops is the continue
statement	

continue�

which immediately terminates the current iteration of the loop but returns to the loop condition
test to determine if the loop body is to be executed again�

We have also discussed some of the di�culties that can be encountered when mixing numeric
and character data on input� These di�culties are due to the fact that numeric conversion speci�ers
��d or �f� are �tolerant� of white space� i�e� will skip leading white space in the input bu�er to
�nd numeric characters to be read and converted� while character input �using �c or getchar���
is not� For character input� the next character� whatever it is� is read� In addition� numeric
conversions will stop at the �rst non�numeric character detected in the input� leaving it in the
bu�er� We have shown several ways of handling this behavior to make the input tolerant of user
errors in Section ����

Finally� we used the features of the language discussed in this chapter to implement a common
style of user interface	 menu driven programs� Such a style of program also facilitates good top
down� modular design in the coding and testing of our programs�

���� EXERCISES ��

��
 Exercises

� What is the value of each of the following expressions	

ch � �d�

�a� ��ch �� �a�� �� �ch �� �z���

�b� ��ch � �A�� �� �ch � �Z���

�c� ��ch �� �A�� �� �ch �� �Z���

�d� ch � ch %�a� � �A�

�e� ch � ch % �A� � �a�

�� What will be the output of the following	

char ch

int d

ch � �d�

d � !$

printf��ch � �c� value � �d�n�� ch� ch�

printf��d � �d� d � �c�n�� d� d�

�� Write the header �le category�h discussed in section ��
��� Write the macros IS UPPER���
IS DIGIT��� IS PUNCT��� IS SPACE��� IS CONTROL���

�� Write a code fragment to test	

� if a character is printable but not alphabetic

� if a character is alphabetic but not above �M� or �m�

� if a character is printable but not a digit

�� Write separate loops to print out the ASCII characters and their values in the ranges	

�a� to �z��

�A� to �Z��

��� to �	��

� Are these the same	 �a� and �a�� What is the di�erence between them�

�� What will be the output of the source code	

�define SQ�x� ��x� � �x��

�define CUBE�x� ��x� � �x� � �x��

�define DIGITP�c� ��c� �� ��� �� �c� �� �	��

char c � ���

��� CHAPTER �� PROCESSING CHARACTER DATA

if �DIGITP�c��

printf���d�n�� CUBE�c % �����

else

printf���d�n�� SQ�c % �����

�� Find the errors in the following code that was written to read characters until end of �le�

char c

while �c � getchar���

putchar�c�

�� What will be the output of the following program�

�include �stdio�h�

main��

� int n� sum

char ch

ch � �Y�

sum � �

scanf���d�� �n�

while �ch �� �N�� �

sum � sum � n

printf��More numbers
 �Y�N� ��

scanf���c�� �ch�

scanf���d�� �n�

�

�

�� What happens if scanf�� is in a loop to read integers and a letter is typed�

� What happens if scanf�� reads an integer and then attempts to read a character�

�� Use a switch statement to test if a digit symbol is an even digit symbol�

�� Write a single loop that reads and prints all integers as long as they are between
 and
��
with the following restrictions	 If an input integer is divisible by � terminate the loop with
a break statement� if an input integer is divisible by
� do not print it but continue the loop
with a continue statement�

���� PROBLEMS ���

��� Problems

� First use graph paper to plan out and then write a program that prints the following message
centered within a box whose borders are made up of the character !�

Happy New Year

�� Write a program to print a character corresponding to an ASCII value or vice versa� as
speci�ed by the user� until the user quits� If the character is not printable� print a message�

�� Write a function that takes one character argument and returns the following	 if the argument
is a letter� it returns the position of the letter in the alphabet� otherwise� it returns FAIL�
whose value is �
� For example� if the argument is �A�� it returns �� if the argument is �d��
it returns �� and so forth� De�ne and use macros to test if a character is a lower case letter
or an upper case letter�

�� Use a switch statement to write a function that returns TRUE if a character is a consonant
and returns FALSE otherwise�

�� Use a switch statement to write a function that returns TRUE if a digit character represents
an odd digit value� If the character is not an odd digit� the function returns FALSE�

� Write a program to count the occurrence of a speci�ed character in the input stream�

�� Write a program that reads in characters until end of �le� The program should count and
print the number of characters� printable characters� vowels� digits� and consonants in the
input� Use functions to check whether a character is a vowel� a consonant� or a printable
character� De�ne and use macros to test if a character is a digit or a letter�

�� Modify the program in Chapter � to �nd prime numbers so that the inner loop is terminated
by a break statement when a number is found not to be prime�

�� Write a function that takes two arguments� replicate�int n� char c�
� and prints the
character� c� a number� n� times�

�� Use replicate�� to write a function� drawrect��� that draws a rectangle of length� g� and
width� w� The dimensions are in terms of character spaces� The rectangle top left corner is
at top� t� and left� l� The arguments� g� w� t� and l are integers� where t and l determine
the top left corner of the rectangle� and the length of the rectangle should be along the
horizontal� Use ��� to draw your lines� Write a program that repeatedly draws rectangles
until length and width speci�ed by the user are both zero�

� Repeat
�� but modify drawrect�� to fillrect�� that draws a rectangle �lled in with a
speci�ed �ll character�

�� Write a function that draws a horizontal line proportional to a speci�ed integer between the
values of � and ��� Use the function in a program to draw a bar chart� where the bars are
horizontal and in proportion to a sequence of numbers read�

��� CHAPTER �� PROCESSING CHARACTER DATA

�� Write a function to encode text as follows	

a� If the �rst character of a line is an upper case letter� then encode the �rst character to
one that is
 position higher in a circular alphabet� Move the rest of the characters in
the line up by
 position in a circular printable part of the ASCII character set�

b� If the �rst character of a line is a lower case letter� then move the �rst character down
by � positions in a circular alphabet� Move the rest of the characters in the line down
by � positions in a circular printable part of the ASCII character set�

c� If the �rst character of a line is white space� then terminate the input�

d� Otherwise� if the �rst character of a line is not a letter� then move all characters in the
line down by
 position in a circular printable part of the ASCII character set�

�� Write a function to decode text that was encoded as per Problem
��

�� Write a menu�driven program that combines Problems
� and
� to encode or decode text
as required by the user� The input for encoding or decoding is terminated when the �rst
character of a line is a space� The commands are	 encode� decode� help� and quit�

� Write a function that takes three arguments� two �oat numbers and one arithmetic operator
character� It returns the result of applying the operator to the two numbers� Using the
function� write a program that repeatedly reads a �oat number� followed by an arithmetic
operator� followed by a �oat number� each time it prints out the result of applying the
operator to the numbers�

�� Modify the program in Problem

 to allow further inputs of a sequence of an operator
followed by a number� Each new operator is to be applied to the result from the previous
operation and the new number entered� The input is terminated by a newline� Print only
the �nal result�

�� Read and convert a sequence of digits to its equivalent integer� Any leading white space
should be skipped� The conversion should include digit characters until a non�digit character
is encountered� Modify the program so it can read and convert a sequence of digit characters
preceded by a sign� � or %�

�� Write a program that converts the input sequence of digit characters� possibly followed by a
decimal point� followed by a sequence of digits� to a �oat number� The leading white space
is skipped and the input is terminated when a character not admissible in a �oat number is
encountered�

��� Modify the above program to include a possible leading sign character�

�
� Write a function that takes a possibly signed integer as an argument� and converts it to a
sequence of characters�

��� Write a program that takes a possibly signed �oating point number and converts it to a
sequence of characters with � digits after the decimal point�

���� PROBLEMS ���

��� Modify the word extraction program� wds�c� in Figure ��

� It should count words with
exactly four characters and words with �ve characters� Assume the input consists of only
valid characters and white space�

��� Write a program that reads in characters until end of �le� The program should identify each
token� i�e� a word after skipping white space� The only valid token types are	 integer and
invalid� White space delimits words but is otherwise ignored� An integer token is a word
that starts with a digit and is followed by digits and terminates when a non�digit character
is encountered� An invalid token is made up of any other single character that does not
belong to an integer� Print each token as it is encountered as well as its type� Here is a
sample session	

Type text� EOF to quit� ���� a��b
��$! integer

a invalid

�� integer

b invalid

Type text� EOF to quit� �D

��� Modify the program in Problem �� so it also allows an identi�er as a valid token� An
identi�er starts with a letter and may be followed by a sequence of letters and�or digits�

�
� Modify the program in Problem �� so that tokens representing �oat numbers are also allowed�
A �oat token must start with a digit� may be followed by a sequence of digits� followed by
a decimal point� followed by zero or more digits� Here is a sample session	

Type text� EOF to quit� The ID Number is ���	 not ����

The Identifier

ID Identifier

Number Identifier

is Identifier

"�� Integer

� Invalid

not Identifier

"��� Float

Type text� EOF to quit� pay � ��� � hours � rate�

pay Identifier

� Invalid

"�$ Float

� Invalid

hours Identifier

� Invalid

rate Identifier

 Invalid

Type text� EOF to quit� �D

��
 CHAPTER �� PROCESSING CHARACTER DATA

Hint	 Skip leading delimiters� test the �rst non�delimiter� and build a word of the appropriate
type� An integer and a �oat are distinguished by the presence of a decimal point�

Chapter �

Numeric Data Types and Expression

Evaluation

In the preceding chapters we have introduced all the basic tools needed to write programs in C�
the control constructs and operators of the language� as well as the basic data types for integer�
�oating point� and character data� Using these basic tools� we have been able to write programs
for both numeric processing and non�numeric� character� processing�

In this chapter we will introduce several useful features of C that allow greater �exibility in
program writing and allow a greater range of values and precision� We will �rst take a closer look
at integer and �oating point data types� their size� and limitations� and will introduce sub�types
of integers� and double precision �oating point numbers� We will formalize the order of evaluation
of operators in expressions as well as the type of the expression value when several data types are
are present as operands� We will also introduce several C statements that are possible alternatives
for statements already discussed and describe some new operators�

��� Representing Numbers

As we saw in Chapter 	� the range of possible values of objects depends on the sizes used to
represent them� The �nite size of an object puts a limit on the range of values that can be stored
in it� Integer objects have a limit on the range of positive and negative integers� Floating point
numbers have limits on the number of signi�cant digits
known as the precision� as well as on
the range of the exponents
limiting the range of numbers�� We will illustrate the reasons for these
limits by analogy with decimal representation�

Let us represent integers using a �nite number of decimal digits� say only �ve digits are allowed�
We can use these digits to represent unsigned positive integers in the range � to

� If we wish
to represent both positive and negative numbers� we need one digit to encode the sign� � or �� and
can then use only the remaining four digits to represent the absolute value of an integer� So� with
�ve digits� we can represent positive and negative integers in the range �

 to �

� If we had

���

��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

more digits to represent integers� the range of values will be appropriately greater�

Now let us use the same �ve digits to represent �oating point numbers in scienti�c notation�
i�e� a fractional part multiplied by a power of ten� For our discussion� we will assume that the
fractional part is less than 	 and that the exponent of ten can be positive or negative� For example�

����E�

���	E��

����
E�

The numbers are shown as a fraction times some power of ten where the exponent is shown after
the E� The �rst number is ������ the second is ���
��� the third is ������

When we represent numbers using this system� we do not need to store the decimal point
it
is always in the same place� or the base
it is always E� standing for 	��� So� of our � digits� let
us say that we use three digits for the fractional part and two digits for the exponent� One digit
of the fractional part and one digit of the exponent is reserved for the sign� This leaves only two
digits for the absolute value of the fractional part� and it leaves one digit for the absolute value of
the exponent� Thus� the range of values for the fractional part is ��

 to ��

 and the range for
exponents is �
 to �
�

Even though the range of actual values is quite large
we can represent numbers from almost
negative one billion to positive one billion�� there are only two signi�cant digits of precision� all
other digits will be zeros contributed by the power of ten� So� the range of numbers is from
�

�� ���� ��� to �

�� ���� ���
����E�� to ����E���� With this scheme� it would be impossible
to represent a number such as 	������� exactly� The best we can do is represent it as ����E���
which is the number 	�� � not nearly as accurate as 	�������� We have a loss of precision
or
accuracy� because of the limited number of digits we have for representing �oating point numbers�
There is a slight distinction between precisions and accuracy� In the above representation scheme�
we can always say there are � digits of precision� however� the accuracy depends on the value of
the exponent� The smallest number we can represent is ����������

����E���� which is pretty
darn accurate� However� if the exponent is �
� our accuracy is only � � million� If more digits are
used to represent �oating point numbers� the precision and the range can be greater� For example�
if � digits were allowed� with four digits for a signed fractional part� we could represent 	�������
as �����E�� which is 	����� If � digits were allowed� with � digits for a signed fractional part� we
could represent the same number as ������E�� which is 	����� and so forth�

Conceptually� binary representation of numbers is no di�erent from decimal representation�
The �nite size imposes a limit on the range of integers and on the precision and range of �oating
point numbers� Binary representation is also tailored to facilitate the basic operations in hardware�
such as addition and subtraction� For example� as we saw in Chapter 	� integers are typically
represented in what is called the two�s complement number system� However� one does not need
to know the number system to realize that the limits on the range of values will be similar in
nature and will depend on the sizes used to represent the numbers�

Recall that� in a computer� memory is organized as a sequence of bytes� each byte with an
address� and storage is allocated in units of bytes� For example� if 	 byte is used for signed integers�

���� REPRESENTING NUMBERS ��

the range of values
in decimal� is �	�� to 	��� and unsigned integers have the range � to ���� If
� bytes are used to represent signed integers� the range is ������ to ������� and � to ����� for
unsigned integers� If � bytes are used to represent integers� the range will be appropriately greater�
Similarly for �oating point numbers� with � bytes to represent �oating point numbers� the precision
is equivalent to about � signi�cant decimal digits and a magnitude between approximately 	�E��
and 	�E���� If more bytes are used for �oating point numbers� the precision and the range are
both appropriately greater�

So far we have used char� int� and float data types in our programs� Character data type is
usually encoded as an ASCII integer value
signed or unsigned� in one byte of memory� Integers
are at least two bytes in size� and �oating point numbers are at least four bytes in size� C provides
additional integer sizes and �oating point data types that provide greater range and�or precision�

����� Signed and Unsigned Integer Types

For integer data types� there are three sizes� int� and two additional sizes called long and short�
which are declared as long int and short int� The keywords long and short are called sub�

type quali�ers� The long is intended to provide a larger size of integer� and short is intended
to provide a smaller size of integer� However� not all implementations provide distinct sizes for
them� The requirement is that short and int must be at least 	� bits� long must be at least ��
bits� and that short is no longer than int� which is no longer than long� Typically� short is 	�
bits� long is �� bits� and int is either 	� or �� bits�

Unless otherwise speci�ed� all integer data types are signed data types� i�e� they have values
which can be positive or negative� Recall� char types� without quali�ers� may be signed or unsigned
depending on the implementation� However� all sizes of integers and char type may be explicitly
quali�ed as signed or unsigned�
Unsigned numbers are always non�negative numbers��

For integers� long� short� and unsignedmay be declared with the keyword int or without it�
In C� whenever a data type is left out in a declaration� int is assumed by default� Here are some
example declarations�

long int light�year

short int n

signed char ch

unsigned char letter

unsigned int age

long distance

short m� n

unsigned memory�address

unsigned long zip�code

The data type of a constant� written directly into a program� is ascertained from the way it is
written� Integer constants are written as a string of digits� optionally preceded by a unary positive

�	� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

or a negative operator� Commas are not allowed� Decimal integer constants should be written
without leading zeros� for example�

��

��	�

�

�

�
�

�	���

Alternate number systems may also be used to express integer constants in C programs� Octal
numbers are written with a leading zero� and hexadecimal numbers are written with a preceding
zero followed by the letter x or X�

Constants Octal�Hexadecimal Integers

���� octal number ���

���� octal number ���

�x�� hexadecimal number ��

�X�F hexadecimal number �F

A constant to be represented as a long int may be explicitly written using the su�x l or L� as
in�

���L

�
�	�l

Any integer constant that is too big to �t into the integer size is interpreted by the compiler as
long�

Unsigned integers can be of all sizes� int� long� and short� The range of unsigned integers
is � through �k��� where k is the number of bits� so for 	� bits the maximum unsigned integer is
������ Unsigned integer constants are written using the su�x� u or U�

�xFFFFU

���U

�			u

The two su�xes can be combined to write an unsigned long�

����
�	�UL

�X�FFF FFFFLU

���� REPRESENTING NUMBERS �		

����� Single and Double Precision Floating Point Numbers

Di�erent sizes of �oating point data can also be declared with the keywords float and double�
The type speci�er double is used to declare double precision �oating point numbers� The size of
float is typically �� bits� and that of double is �� bits� For greater precision� most scienti�c and
engineering computation should be performed using the double data type� Furthermore� extra
precision may be provided for �oating point numbers by declaring them long double�
This may
be the same as or more bits of precision as double� depending on implementation�� Here are
example declarations for �oating point numbers�

float x

double GPR

long double y

Decimal float constants in programs have an integer part and a fractional part with a decimal
point between them� They may also be written in scienti�c
or exponential� notation� i�e� a decimal
number multiplied by a power of ten to indicate the actual position of the decimal point� Positive
and negative numbers may be written with an explicit positive or negative unary operator�

����	��

��

��

����
�����

����������

���	�
E

���
��e��

��	����
e���

The last three numbers are written in exponential notation with the exponent of ten shown after
the letter e or E� The exponent may be a positive or a negative integer� For clarity� always write
float numbers with at least one digit before and one after the decimal point� for example� zero
is ��� in float representation�

Floating point constants are taken to be of double precision type by default� Single precision
�oating point constants may be speci�ed with a su�x f or F�

���
�	f

�����
��F

Extra precision for constants may be written with the su�x l or L�

���
�	����	����L

�	� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

��� New Control Constructs

So far� we have seen all of the basic control constructs of the C language for calling functions�
branching� and looping� In this section we introduce two new looping constructs that can be used
in place of while� namely for loops and do���while loops�

����� The for Statement

The logic of the loops we have constructed so far has included three components� some form of
initialization before the loop� a test for loop termination� and some form of data update within the
body of the loop� We implemented these loops using three separate statements in the program�
with a while statment forming the condition test and loop body� Another looping construct
combines all three components of a loop in a single statement� the for statement�

The syntax for the for statement is�

for ��expr��� �expr��� �expr��� �statement�

The keyword� for� and the parentheses are required as shown� Notice the three expressions are
separated by semi�colons

�� The semantics of the for statement is as follows� The expression�
�expr��� is evaluated once before the loop condition is tested for the �rst time��expr�� is the loop
condition which is evaluated prior to each execution of the loop body� and �expr�� is evaluated
at the end of the loop body� just prior to testing the condition� The process repeats until the loop
condition becomes False� The body of the loop is �statement�� which� as usual� may be any valid
type of C statement� empty� simple� or compound� As with the while loop� if the loop condition
evaluates to True� the loop body is executed� otherwise� if the loop condition evaluates to False�
the loop is terminated� and control passes to the next statement following the for statement� In
typical use� the expressions� �expr�� and �expr�� initialize and update a variable� respectively�
Figure ��	 shows the control �ow for a for statement�

A for statement includes all the necessary features of a loop� an initialization expression� a
loop condition� and an update expression� Thus� the following two forms of implementing a loop
are equivalent�

�expr���
while ��expr��� f

�statement�
�expr���

g

and for ��expr��� �expr��� �expr��� �statement�

The break and continue statements can also be used in the body of a for statement� just as
in a while statement� The use of a for statement or a while statement to implement a loop is a
matter of choice� based on the logic of the algorithm� One advantage might be that writing a for

statement reminds one that initialization and update expressions are usually necessary for a loop�

���� NEW CONTROL CONSTRUCTS �	�

statement

expr�

expr�

PPPPPP������PP
PP

PP�
��
���

expr�

�

�

�

�

�

�
False

True

Figure ��	� Control Flow of for Loop

An Example� Factorial

Let us consider an example task which may require a bigger range of integers than the one provided
by int on many machines� The task is to determine a cumulative product from 	 to a positive
integer� n� The product from 	 to n is called the factorial of n� written n�� The algorithm is very
simple� read an integer n� call a function fact�n� which returns the factorial of n� print the result�

The function fact�� merely needs to multiply a cumulative product variable� initialized to 	�
by all integers from 	 through n�

initialize product to �

repeat for values of i � �� �� ������ n

product � product � i

return product

The variable� product� must be initialized to 	 before the loop� otherwise the cumulative product
will be garbage� Each iteration brings us closer to the result� We will use a for statement to
implement the iterative algorithm for a factorial function as shown in Figure ���� The for loop
executes as follows� The �rst expression in parentheses is an initialization expression� i�e� i is
initialized to 	� The second expression is the loop condition� If the second expression� i �� n�
evaluates to True� then the loop body is executed� The third expression is the update expression�
it is evaluated after the loop body is executed� and control then passes to the loop condition� In
our example� the expression� i � i � �� is evaluated to update the variable� i� after the loop body

�	� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

�� File� fact�c

Program computes the factorial of integers using function

fact���

��

�include �stdio�h�

int fact�int n�

main��

� int n

printf�����Factorial Program����n��

printf��Type positive integers� EOF to terminate�n��

while �scanf���d�� �n� �� EOF�

if �n �� ��

printf���d typed� type a positive integer�n�� n�

else

printf��Factorial of �d is �d�n�� n� fact�n��

�� Function computes factorial of n using a for loop� ��

int fact�int n�

� int i� product

product � �

for �i � �
 i �� n
 i � i � ��

product � product � i

return product

Figure ���� Code for factorial

is executed� The loop condition is then tested� and the process repeats until the loop condition
becomes False� The above loop executes for i � �� �� �� ���� and n and the variable product
accumulates the factorial value of 	 � � � � � ��� � n�

The driver uses a while condition�

�scanf���d�� �n� �� EOF�

where scanf�� reads an integer item if possible and stores it in n� The value returned by scanf��

is then compared with EOF and if the value returned is NOT EOF� the loop executes� As soon as
scanf�� returns EOF� the loop is terminated� The while expression serves both to read an item
and to check if the returned value is EOF� The loop body tests the value of n� if it not a positive
integer� the user is asked to retype a positive number� otherwise� the value of fact�n� is printed�

Here is a sample session run on an IBM PC�

���� NEW CONTROL CONSTRUCTS �	�

���Factorial Program���

Type positive integers� EOF to terminate

�
Factorial of � is ��

�
Factorial of
 is ���

��
Negative number �� typed� type positive integers

	
Factorial of � is 	��

Factorial of 	 is
���

�
Factorial of � is ��
���

!Z

The cumulative product in the factorial function grows very fast with n� For moderately large
values of n� the cumulative product over�ows the int type object� the number is too large for the
size of the object� When this occurs� the results are meaningless� Usually� an over�ow is indicated
when a program� working correctly for smaller numbers� gives ridiculous results for larger numbers�
In the case of the factorial function� the �rst sign of trouble is a negative result for the factorial of
�� We know the result must be positive since we are multiplying only positive numbers� What has
happened is the result has over�owed into the sign bit resulting in a negative integer� If factorial
of larger numbers is desired� a long int variable should be used for the variable product as well
as for the function fact� Here is a revised version of the factorial function�

�� Function computes a long factorial of n using a for loop� ��

long longfact�int n�

� long int product

int i

product � �

for �i � �
 i �� n
 i � i � ��

product � product � i

return product

We must keep several things in mind when using the function� longfact��� in the driver program�
In the calling function� if the value returned by longfact�� is saved� it must be assigned to a long
integer� otherwise� a long result would be converted to int by dropping higher order bits and the
result would be meaningless� In addition� to print the long value of longfact��� the conversion
speci�er must be quali�ed by the pre�x l�

printf��Factorial of �d is �ld�n�� n� longfact�n��

�	� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

statement

�

�

�

PPPPPP������PP
PP

PP�
��
���

�

expression
True

False

Figure ���� Control Flow of do���while Loop

The conversion speci�er� �ld� prints a long decimal integer�

This example has shown a case where the size of the type int is smaller than the type long�
as it is in some implementations� The situation could be corrected by using a larger size data
type to accumulate the factorial� However� even this type has limitations� the factorial of 	� will
over�ow the size of a long integer� The only possibility provided for even larger numbers is to use
a �oating point representation� which has a larger range� at the expense of loss of precision�

����� The do���while Statement

In while statements and for statements� the condition is tested for each iteration before the loop
body is executed� Thus� it is possible that the loop may not be executed even once if the loop
condition evaluates to False the �rst time� The C language provides another looping construct
which guarantees that the body will be executed at least once� the do���while statement� The
loop condition is tested after the body is executed� and the loop continues or terminates depending
on the condition value� The syntax for the do���while statement is�

do
�statement�

while ��expression���

Figure ��� shows the control �ow for this construct� As with the other loop constructs� the
break and continue statements can also be used with the do���while statement� The choice of
a loop construct depends on the program logic� There are situations when one construct may be
preferable to another�

���� NEW CONTROL CONSTRUCTS �	�

An Example� Square Root

Programs are often written to �nd a solution
or solutions� to an algebraic equation� for example�

y� � x � �

Here� the solution for the variable� y� is the square root of x� In general� such solutions are real
numbers� and as we have seen� �oating point representations of real numbers use a �nite number
of bits� and are therefore limited in the precision of the result� Solutions to most numeric problems
can never be exact
all solutions are precise only up to a certain number of decimal digits� but
the result may be su�ciently close to the real solution to be acceptable�

One important numeric computation method to �nd solutions to equations involves successive
approximations� This method starts with a guess for the solution to the problem� and tests if
the guess satis�es the equation� If the guess is close enough for a solution� it is accepted and
computation terminates� otherwise� the guess is improved� i�e� brought closer to the solution and
the process is repeated� After each iteration� the guess is closer and closer to the solution� until it
is acceptably close enough�

One successive approximation algorithm we will use is Newton�s method to compute the square
root of a number� x� Newton�s method starts with an arbitrary guess� and if it is not good enough�
it is improved by averaging the guess with x�guess� The process continues until the guess is close
enough� Here is an example of the process for square root of
���

guess x�guess Average
	��
��
	�� �
�������
��� 	�� ���
��� ����� �����

����� � � �

In just three iterations� we have arrived close to the square root of
��
which is ����� We will say
a guess is close enough to the solution� if x and the square of guess di�er by a small value� say
����	� or less� The algorithm is simple�

begin with an initial guess

repeatedly do the following

improve the guess

while it is not close enough

We will start with an arbitrary guess� say 	��� for the square root of the number� x� In a loop�
each iteration improves the guess of the square root of x until the guess is close enough� In our
implementation� we assume two functions� one to test if a guess is close enough� and the second
to improve the guess� This algorithm works for any successive approximation method� the only
di�erence would be how to improve the guess� and how to check the guess for closeness to the
solution� Here is the code fragment for square root using a do���while statement�

�	� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

guess � ���

do

guess � improve�guess� x�

while ��close�guess� x��

The body of the loop follows the keyword do� The loop body is executed and then the while

expression is tested for True or False� If it is True� the loop is repeated� otherwise� the loop is
terminated� The above loop body calls on a function improve�� to improve the guess and the
condition is then tested to see if the improved guess is close enough by the function close���

As we said� the di�erence between do���while and the other loop constructs is that in this
case the loop is executed at least once� while loops and for loops may be executed zero times if
the loop condition is initially False� In the case of successive approximations� we always expect
the initial guess to need improvement� so� the loop must be executed at least once�

Figure ��� shows the implementation of the driver� The source �le includes a header �le
mathutil�h that declares the function prototypes for close��� improve��� and other functions
de�ned in a source �le� mathutil�c� shown in Figure ���� The two source �les sqroot�c and
mathutil�c must be compiled and linked to create an executable �le� Here is mathutil�h�

�� File� mathutil�h ��

�� File contains prototypes for functions defined in mathutil�c ��

double improve�double guess� double x�

int close�double guess� double x�

double absolute�double x�

Notice we have used the type� double for the parameters and return values of the functions because
precision is important in successive approximation algorithms� It is best to use double precision in
all such computations� We have also included the header �le� tfdef�h� which de�nes the symbolic
constants TRUE and FALSE�

The program driver uses a loop to read a positive� double precision number into x using the
conversion speci�cation �lf�
When a double precision number is printed� conversion speci�cation
is still �f since a printed double precision �oating point number looks the same as a single precision
number�� If the number read into x is negative or zero� a message is printed and the loop is repeated
until a positive number is read� We have used the do���while construct here� since we know that
the loop must be executed at least once to get the desired data�

Next� guess is initialized to 	�� and the loop body improves guess We have included a debug
statement to print the value of the improved guess during program testing� The loop repeats until
guess is close enough to be an acceptable solution�

We still need to write the functions improve�� and close��� The function close�� tests if the
absolute value of the di�erence between the square of guess and x is small enough� We will use a
function� absolute��� that returns the absolute value of its argument� Figure ��� shows close��
and absolute�� in the source �le� mathutil�c� Some of the functions de�ned in this source �le

���� NEW CONTROL CONSTRUCTS �	

�� File� sqroot�c

Other Files� mathutil�c

Header Files� tfdef�h� mathutil�h

Program computes and prints square roots of numbers� Uses Newton"s

method to compute square root of x� Start with any guess� Test if

it is acceptable� If not� improve guess by averaging it with x�guess�

��

�include �stdio�h�

�include �tfdef�h�

�include �mathutil�h�

�define DEBUG

main��

� int i

double x� guess

printf�����Square Root Program� Newton"s Method����n�n��

printf��Type a positive number� ��

do �

scanf���lf�� �x�

if �x �� ��

printf���f typed� type a positive number�n�� x�

 while �x �� ��

guess � ���

do �

guess � improve�guess� x�
 �� improve guess� ��

�ifdef DEBUG �� debug stmt ��

printf��guess � �f�n�� guess�
 �� Print guess� ��

�endif �� end of debug ��

 while ��close�guess� x��
 �� terminate if guess is close ��

�� exit loop if guess is close enough ��

printf��Sq�Rt� of �f is �f�n�� x� guess�
 �� Print sq� rt� ��

Figure ���� Code for Square Root

��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

�� File� mathutil�c ��

�include �stdio�h�

�include �tfdef�h�

�include �mathutil�h�

�� Tests if square of guess approximately equals x� ��

int close�double guess� double x�

�

if �absolute�guess � guess � x� � ������

return TRUE

else

return FALSE

�� Returns absolute value of x� ��

double absolute�double x�

�

if �x � ��

return �x

else

return x

�� Returns average of guess and x � guess� ��

double improve�double guess� double x�

�

return �guess � x � guess� � �

Figure ���� Code for Math Utilities

���� NEW CONTROL CONSTRUCTS ��	

are also called within it� e�g� absolute��� so we have included mathutil�h in this source �le� as
well as tfdef�h� which de�nes TRUE and FALSE� Finally� we write the function improve�� which
merely returns the average of guess and x � guess�

Sample Session�

���Square Root Program���

Type a number� �	
guess � ��
�����

guess �
�����	�

guess � �������

guess � ������
	

guess � ��������

Sq�Rt� of ��������� is ��������

The debug statement shows how guess is changed at each step� Once we are satis�ed with the
program� we can remove the de�nition of DEBUG�

Next� we modify our program to encapsulate it into a function� sqroot��� and to provide user
control over the precision desired for the solution instead of building it into the function� close���
The sqroot�� function requires two arguments� a number and an acceptable error in the solution�
We also require a new function close��� that checks if a given guess is close enough to a solution
with a speci�ed margin of error� With this modi�cation� it is not necessary to use double for
numbers in main��� Only the actual computations need to be double type for greater precision�
Figure ��� shows the revised driver in which float numbers are used in main�� and the function
sqroot�� is called to �nd the square root� Figure ��� shows the prototypes added to mathutil�h

and the new functions in mathutil�c� The driver simply repeats the following loop� read a
number� if the number is negative� continue the loop� otherwise� call sqroot�� to �nd the square
root of the number within speci�ed margin� print the value� The function sqroot��merely starts
with a guess and improves it in a loop until it is within an allowable margin of error� The �nal
acceptable guess is returned� The function close��� tests if a guess is close to the solution within
a speci�ed error�

In main��� numbers are read into float variables� so when arguments are passed to sqroot���
they are cast to double� Likewise� the returned double value is cast to float before assigning it
to the variable root� Here is the statement that uses cast operators to convert types�

root � �float� sqroot��double� x� ������

Recall that a �oating point constant is always assumed to be of type double� If function prototypes
are declared� we don�t have to convert the types explicitly by cast operators� the compiler will take
care of that for both the arguments and the returned value� However� the explicit cast operators
improve readability by showing that conversions are taking place�

Sample Session�

��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

�� File� sqrt��c

Other Files� mathutil�c

Header Files� tfdef�h� mathutil�h

Program computes and prints square roots of numbers until the end of

file� Uses Newton"s method to compute the square root of x to within a

specified error margin�

��

�include �stdio�h�

�include �tfdef�h�

�include �mathutil�h�

main��

� int i

float x� root

printf�����Square Root Program����n�n��

printf��Type positive numbers� EOF to quit� ��

while �scanf���f�� �x� �� EOF� �

if �x �� �� �

printf���f typed� type positive numbers �n��

continue

root � �float� sqroot��double� x� ������

printf��Sq�Rt� of �f is �f�n�� x� root�

Figure ���� Modi�ed Square Root Driver

���� NEW CONTROL CONSTRUCTS ���

�� File� mathutil�h � continued ��

double sqroot�double y� double error�

int close��double g� double y� double error�

�� File� mathutil�c � continued ��

�� Uses Newton"s method to compute square root within the margin

allowed by error�

��

double sqroot�double y� double error�

� double guess � ���

do

guess � improve�guess� y�
 �� improve guess� ��

while ��close��guess� y� error��
 �� while guess not close ��

return guess
 �� when close enough� return guess���

�� Tests if square of g equals y within the error limits specified� ��

int close��double g� double y� double error�

�

if �absolute�g � g � y� � error�

return TRUE

else

return FALSE

Figure ���� Modi�ed Square Root Utilities

��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

���Square Root Program���

Type positive numbers� EOF to quit� �	
Sq�Rt� of ��������� is ��������

��
Sq�Rt� of ��������� is ����

�

��
Sq�Rt� of ��������� is ���
����

��
Sq�Rt� of �
������� is
�������

D

The last example shows the square root of ���� to be slightly di�erent from the correct value of ����
but within our allowed error of ����	� It must be remembered that �oating point representation
cannot be exact due to the �nite number of bits used� Therefore� if the error speci�ed were very
small� it may not be possible to arrive at an answer with the desired accuracy� That is� the guess
may never converge to a value such that close��� returns True and the loop in sqroot�� would
never terminate� In successive approximations algorithms� one must guard against possible lack
of convergence such as by putting a limit on the number of loop iterations allowed�

In Chapter � we will see that standard library functions are available to compute the square
root and the absolute value of a number� Our emphasis here has been to illustrate program devel�
opment using just the basics of a programming language� viz� expressions including assignments�
branching� and looping�

��� Scalar Data Types

All of the data types we have seen so far� char� int� short long� float� and double are called
scalar
or base� data types because they hold a single data item�
Chapters � and 	� describe
compound data types provided in C�� There are two other scalar types in the language� enum and
void which are described in this section� We will refer to float and double types as �oating
point types and to all sizes of integers� char and enum types as integral types� In addition� we
describe how a user de�ned type may be declared�

����� Data Type void

The data type void actually refers to an object that does not have a value of any type� The most
common example of its use is when we de�ne a function that returns no value� For example� a
function may only print a message and no return value is needed� Such a function is used for
its side e�ect and not for its value� In the function declaration and de�nition� it is necessary to
indicate that the function does not return a value by using the data type void to indicate an
empty type� i�e� no value� Similarly� when a function has no formal parameters� the keyword void

���� SCALAR DATA TYPES ���

is used in the function prototype and header to signify that there is no information passed to the
function�

Here is a simple program using a message printing function which takes a void parameter and
returns type void�

�� File� msg�c

This program introduces data type void�

��

void printmsg�void�

main��

�

�� print a message ��

printmsg��

�� Function prints a message� ��

void printmsg�void�

�

printf������HOME IS WHERE THE HEART IS�����n��

No parameters are required for the function� printmsg��� and it returns no value� it merely prints
its message� In the function call in main��� parentheses must be used without any arguments�
Observe that no return statement is present in printmsg��� When a function is called� the body is
executed and� when the end of the body is reached� program control returns to the calling function�
Such a return from a called function without a return statement is often called returning by falling

o� the end� There are times when it is necessary to return from a void function before the end
of the body� In such case� a return statement� with an empty expression may be used to return
nothing�

void printmsg�void�

�

printf������HOME IS WHERE THE HEART IS�����n��

return

A return statement can also be used elsewhere in the body to return control immediately to
the calling function� Consider a function which prints the values of its arguments if they are all
positive� otherwise it does nothing�

void func�int x� in y�

��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

�

if �x �� � ## y �� ��

return

printf��x � �d� y � �d�n�� x� y�

If either of the arguments is not positive� the function returns to the calling function� If it does
not return� then it prints the values of the arguments�

The use of void for a function returning no value is not strictly necessary� We could declare
the function as being type int
or any other type� and simply not return any value and never use
the value of the function in an expression� However� the void declaration makes the nature of
the function explicit to someone reading the code and may allow the compiler to generate more
e�cient object code�

����� Enumeration

The data type� enum
for enumeration� also allows improvement in program clarity by specifying
a list of names� the enumeration constants� which are associated with constant integer values� It
is similar to using �define directives to de�ne constant integer values for a set of symbolic names�
however� with enum the compiler can generate the values for you� and may check for proper use of
enum type variables� A variable of enum type is declared as follows�

enum � FALSE� TRUE flag

The variable� flag� is de�ned here to be of a type which can take on the two enumerated constant
values� FALSE and TRUE� Normally� enumeration constants are identi�ers whose values start at zero
and increase in sequence� here� FALSE is �� and TRUE is 	� However� the enumeration can have
explicit constant values speci�ed in the enumeration�

enum � SUN � �� MON� TUE� WED� THU� FRI� SAT day

Here� SUN is associated with value 	� and the rest of the names have values in increasing sequence�
MON is �� TUE is �� and so on until SAT which is �� The variable� day can hold any of the enumerated
values�

An enumeration type can be given a tag� i�e a name which can be used later to declare variables
of that tagged enumeration type� For example� we can name an enumeration�

enum boolean � FALSE� TRUE

where the name boolean can then be used to declare variables of that enumeration type�

���� SCALAR DATA TYPES ���

enum boolean flag�� flag�

This declaration de�nes variables� flag� and flag�� which are of a type speci�ed by the boolean
enumeration� that is� flag� and flag� can have values FALSE or TRUE� It is also possible to specify
a tag and declare variables in the same declaration�

enum boolean �FALSE� TRUE done

enum boolean found

The �rst declaration speci�es a tag� boolean� for the enumeration as well as declaring a variable�
done of this type� The second declaration de�nes a variable� found� of the enumeration boolean

type� Here is a function� digitp��� that returns a boolean value to the calling function�
The
calling function must also declare the enumeration in order to use the returned value correctly��

enum boolean � FALSE� TRUE

enum boolean digitp�char c�

�

if �c �� "�" �� c �� "�"�

return TRUE

else

return FALSE

Remember� the value of an enum type variable is an integer� An enumerated data type is
primarily a convenience for writing the source code� information about the symbolic names are
not retained at run time� For example� if we were to execute a statement�

printf��digitp returns �d�n��digitp�"�"��

it would print

digitp returns �

NOT

digitp returns TRUE

However� some symbolic debuggers may use the enumerated names for displaying debugging in�
formation�

��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

����� De�ning User Types� typedef

The C language provides a facility for de�ning synonyms for data types to make programs more
readable� New data types that are equivalent to existing data types may be created using the
typedef declaration� The syntax is�

typedef �existing�type�speci	er� �new�type�speci	er��

The scope of a type de�nition is from the point of de�nition to the end of the source �le� Variables
can then be de�ned in terms of these new types� For example� variables used to represent values
of age of people or objects can be de�ned to be of a new type� age�

typedef int age

age yrs

The variable yrs can have age type values� In this case� the primary di�erence is that we can
have more meaningful names for data types than the generic name int�

A typedef de�nition is also commonly used to �hide the details� of more complicated decla�
rations�

typedef enum � FALSE� TRUE boolean

boolean flag

The type de�nition de�nes data type� boolean which is a synonym for an enumerated type con�
sisting of two constant values FALSE and TRUE� Variables of type boolean can now be de�ned� and
they can be assigned one of the enumerated values� In fact� the name� boolean� can be used like
any other data type� Functions can have boolean parameters and can return boolean values� For
example� we could write�

flag � TRUE

if �flag�

printf��Flag is true�n��

Let us consider the task of a simple calculator� It should read two numbers and then read an
operator that is to be applied to the operands� The operator should be applied to the operands
and the result printed�
When an operator appears after the operands� the expression is said to
be in post�x form�� The algorithm for a post�x calculator is�

repeat until end of file or error in reading numbers

read two numbers and an operator

apply operator to the numbers and get result

print result

���� OPERATORS AND EXPRESSION EVALUATION ��

The program must make sure that two valid numbers and an operator are read correctly� We
will ensure that two numbers are read correctly by examining the value returned by scanf��� The
bu�er will then be scanned and �ushed until a valid operator is found� The program is shown in
Figure ����

The while loop continues until scanf�� is unable to read two numbers� If scanf�� reads two
numbers� it returns a value of �� and the loop is executed� In the loop� we use get operator�� to
get a valid operator� The function� get operator�� will scan each new character in the keyboard
bu�er until an acceptable operator is found� Once an operator is read� an error �ag of type
boolean is initialized to FALSE�

A switch statement is used to determine the result of applying the operator to the operands�
The division operator can lead to trouble if oprnd� is zero� divide by zero is a fatal error and the
program would be aborted� We trap this error by testing for a zero value of oprnd�� in which case
we set error to TRUE� If there is no error� the result is printed � otherwise� an error message is
printed� The loop repeats until scanf�� does not read � floats
including detecting EOF��

The function get operator�� consists of a loop that continues to read a character until a valid
operator is read� skipping over any white space and any erroneous characters� It uses a boolean

type function� operatorp��� to test if an argument is an acceptable operator� Figure ��
 shows
the required functions�

Sample Session�

���Postfix Calculator���

Type two numbers� followed by an operator� �� �� �� or �

EOF to quit

�� ��
�

��������� � ��������� � ���������

�� �
�
Runtime error�
� � �

D

We have purposely used a lot of white space to show that the calculator functions correctly�

��� Operators and Expression Evaluation

Once we can declare data to be the type and size with the appropriate precision for our task� we
would like to perform operations with the data� We have already discussed some of the basic C
operators� and in this section we provide the complete precedence table for all C operators� We

��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

�� File� calc�c

This program is a postfix calculator� Two operands followed by an

operator must be entered� The program prints the result� The program

repeats until end of file�

��

�include �stdio�h�

typedef enum � FALSE� TRUE boolean

char get�operator�void�

boolean operatorp�char c�

main��

� float oprnd�� oprnd�� result

char c

boolean error

printf�����Postfix Calculator����n�n��

printf��Type two numbers� followed by an operator� �� �� �� or ��n��

printf��EOF to quit�n��

while �scanf���f �f�� �oprnd�� �oprnd�� �� �� �

c � get�operator��

error � FALSE

switch�c� �

case "�"� result � oprnd� � oprnd�
 break

case "�"� result � oprnd� � oprnd�
 break

case "�"� result � oprnd� � oprnd�
 break

case "�"� if �oprnd��

result � oprnd� � oprnd�

else

error � TRUE

break

if �error �� FALSE�

printf���f �c �f � �f�n�� oprnd�� c� oprnd�� result�

else

printf��Runtime error� �f �c �f�n�� oprnd�� c� oprnd��

 �� end of while loop ��

 �� end of program ��

Figure ���� Code for Simple Post�x Calculator

���� OPERATORS AND EXPRESSION EVALUATION ��	

�� File� calc�c � continued ��

�� Gets one of the allowed operator� �� � � �� �� ��

char get�operator�void�

� char c

while ��c � getchar��� �� operatorp�c� �� TRUE�

return c

�� Function tests if c is one of the operators �� �� �� �� ��

boolean operatorp�char c�

�

switch�c� �

case "�"�

case "�"�

case "�"�

case "�"� return TRUE

default� return FALSE

Figure ��
� Code for get operator��

��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

present a few new operators here� and others shown in the table will be discussed in detail in later
chapters�

����� Precedence and Associativity

The data type and the value of an expression depends on the data types of the operands and
the order of evaluation of operators which is determined by the precedence and associativity of
operators� Let us �rst consider the order of evaluation� When expressions contain more than one
operator� the order in which the operators are evaluated depends on their precedence levels� A
higher precedence operator is evaluated before a lower precedence operator� If the precedence levels
of operators are the same� then the order of evaluation depends on their associativity
or� grouping��
In Chapter � we brie�y discussed the precedence and associativity of arithmetic operators� Table
��	 shows the precedence levels and associativity of all C operators�

In the table� there are 	� precedence levels � through 	�� higher level implies higher precedence�
The precedence levels of operators are separated by solid lines with operators within solid lines
having the same precedence level� For example� binary arithmetic operators �� �� and � have the
same precedence level which is higher than binary �� and �� Observe that the precedence of
the assignment operator is lower than all but the �comma� operator
described below�� This is
in accordance with the rule that the expression on the right side of an assignment is evaluated
�rst� and then its value is assigned to the left hand side object� On the other hand� �function
call� has the highest precedence� since a function value is treated like a variable reference in an
expression� In any expression� parentheses may be used to over ride the precedence of the operators
� innermost parentheses are always evaluated �rst� The precedence of binary logical operators
is lower than that of binary relational operators� that of binary relational operators is lower than
that of binary arithmetic operators� and so forth� The unary NOT operator has a precedence
higher than that of all binary operators�

When operators of the same precedence level appear in an expression� the order of evaluation is
determined by the associativity� Except for the assignment operator� associativity of most binary
operators is left to right� associativity of the assignment operator and most unary operators is
right to left� Consider the following program fragment�

int x � ��� y � 	� z � ��

x � ��� � �� �

 By the precedence� the unary minus
�� is evalu�
ated �rst� followed by the multiplication
�� and
then the addition� So the expression is evaluated
as ����� � ��� �
� and �nally the result is as�
signed to x which now has the value ���

x � x � y � z
 Here the � and � have the same precedence� so by
associativity are evaluated left to right�
x�y� � z�
This is �������� or ����
integer division�� so ��
is assigned to x�

���� OPERATORS AND EXPRESSION EVALUATION ���

Operator Associativity Precedence
�� Function call Left�to�Right Highest 	�
$% Array subscript
� Dot
Member of structure�

� � Arrow
Member of structure�
� Logical NOT Right�to�Left 	�
& One�s�complement
� Unary minus
Negation�
�� Increment
�� Decrement
� Address�of
� Indirection

�type� Cast
sizeof Sizeof

� Multiplication Left�to�Right 	�
� Division
� Modulus
Remainder�
� Addition Left�to�Right 		
� Subtraction
�� Left�shift Left�to�Right 	�
�� Right�shift
� Less than Left�to�Right �
�� Less than or equal to
� Greater than
�� Greater than or equal to
�� Equal to Left�to�Right �
� � Not equal to
� Bitwise AND Left�to�Right �
! Bitwise XOR Left�to�Right �
Bitwise OR Left�to�Right �
�� Logical AND Left�to�Right �
Logical OR Left�to�Right �

' � Conditional Right�to�Left �
�� � � Assignment operators Right�to�Left 	
� �� etc�

� Comma Left�to�Right Lowest �

Table ��	� Precedence and Associativity Table

��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

x � y � z Again� associativity causes the operators to be
evaluated left to right�
��������� i�e� 		��� or
��
No assignment is made here��

x � y � z Evaluated as
��������� ���� or ��

x � y � ��
 The assignment operator associates right to left�
so y is assigned 	�� and then the result value� 	��
is assigned to x�

x � y �� � � z The highest precedence operator is �� so it is eval�
uated �rst� followed by �� and �nally the com�
parison operator� ��� The result� ��� is not less
than or equal to ��� so this expression evaluates
to False� namely ��

�x � y �� � � z� �� �x � y �� z� The parentheses force the logical operator �� to
be evaluated last� Its left operand is similar to
the last expression� only the result is now True�
or 	� The right operand evaluates the subtraction
followed by the comparison� not equal� Since �� is
not equal to ��� the result is True� and therefore�
the entire expression is True� or 	�

When a logical operator is used in an expression� the entire expression is not evaluated if the
result of the entire logical expression is clear� For example�

�x � �� �� �y � ��

�x � �� ## �y � ��

In the �rst expression� if x � � is False� there is no need to evaluate the second part of the logical
AND expression since the AND operation will be False� Similarly� in the second expression� the
logical OR expression is True if the �rst part� x � �� is True� there is no need to evaluate the
second part� C evaluates only those parts of a logical expression that are required in order to
arrive at the result of the expression�

When in doubt as to the order of evaluation within an expression� parentheses may be used to
ensure evaluation is performed as intended�

����� The Data Type of the Result

The data type of an expression value depends on the operators and the types of operands� If the
operands are all of the same type� the result is of that same type� When there are operands of
mixed type in an assignment expression� the right hand side is always converted to the data type
of the object on the left hand side� This follows common sense since the type of the object on the
left of an assignment is �xed and cannot be changed� When any other binary operator is applied

���� OPERATORS AND EXPRESSION EVALUATION ���

to operands of mixed type� the operand of a type with lower range is converted to the type of the
higher range operand before the operator is applied� and the result is of the higher range type� Of
course� values of characters in an expression are considered to be int type� Again� some examples
will illustrate�

int n � �� m � �

long large

float x � ���� y �
��

double z � ���

large � n
 The integer value of n is converted to long and
assigned to large�

large � n � m
 Since n and m are both type int� integer division is
performed
� � � which is 	�� and then converted
to long
	L� which is assigned to large�

large � n � x
 Since x is a float� the integer value of n is con�
verted to float and real division
��� �
��� is
performed yielding ����� This result is then con�
verted to a long integer
by truncating�� namely
�L� and assigned to large�

z � z � y
 Because z is type double� the value of y is con�
verted to double and the double precision result
of z � y is assigned to z�

n � x � z � y
 In the �rst division� n � x� since x is type float
the division will be done at float precision by
�rst converting the value of n� yielding a float re�
sult� The second division will be performed using
double precision because z is a double� by �rst
converting y to a double� The addition is now
of a float and a double� so the left operand is
�rst converted to double yielding a double result�
This is equivalent to�

�double� ��float� n � x� � z � �double� y

As with the precedence and associativity rules� when in doubt as to the type and�or preci�
sion of an expression evaluation� cast operators may be used to force conversions to the desired
type� Remember� only values of variables are converted for the purpose of computation� NOT the
variables themselves�

��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

����� Some New Operators

In Table ��	 there are several operators which we have not yet discussed� Some of these are
described below� the remainder will be delayed until later chapters when we discuss the appropriate
data types�

Increment and Decrements Operators

A common operation in many programs is to increase or decrease a variable value by one� for
example� this is how we keep a count of how many times a loop is executed� C provides a
�shorthand� way of performing this operation with special increment and decrement operators�
�� and �� respectively� These are unary operators requiring one operand and may be used either
as pre�x or post�x operators meaning they either precede or follow their operands� In post�x
form� x�� increases the value of x by one� and y�� decreases the value of y by one� Likewise� in
pre�x form� ��x increases the value of x by one� and ��y decreases the value of y by one� However�
there is a di�erence between the pre�x and post�x operators� In the case of pre�x operators� the
operation is performed �rst and then the expression evaluates to the new value of its operand� For
post�x operators� the expression �rst evaluates to the current value of the operand and then the
operators are applied� For example� if x is 	� the expression ��x �rst increments x to � and then
evaluates to the value �� On the other hand� again if x is 	� the expression x�� �rst evaluates to
the value of x� namely 	� and then increments x to �� Here is a code fragment showing the use of
the increment and decrement operators�

int x� y� z�� z�� z�

x � �

y � �

x��
 The value of x is incremented to �� The value of
this expression is �� but is discarded�

y��
 The value of y is decremented to �� The value of
this expression is also �� but is also discarded�

z� � x�� � y��
 The expression x�� evaluates to the current value
of x� �� and then x gets the value �� Likewise� y��
evaluates to � and then y is incremented to �� The
variable z� gets the value of
 � �� or ��

z� � ��x � ��y
 First� x is incremented to �� and ��x evaluates to
�� Likewise ��y increments to y to � and evaluates
to �� so z� gets the value of 	 �
 or ��

���� OPERATORS AND EXPRESSION EVALUATION ���

z� � x�� � ��y
 The expression� x��� evaluates to � and then in�
crements x to �� The expression� ��y� decrements
y to � and evaluates to �� So z� gets the value of
	 � �� or 		�

The value of

��x � x��

is implementation dependent� A compiler may either evaluate the �rst term �rst or the second
term �rst� It is therefore not possible to say what the expression will evaluate to� For example�
assume that x is initially 	� If the �rst expression is evaluated �rst� then the expression is�

� � �

i�e� �� and x is �� On the other hand� if the second term is evaluated �rst� then the expression is�

� � �

i�e� �� and x is ��

Increment and decrement operations can just as well be written as assignment expressions�

x � x � �

y � y � �

The use of increment and decrement operators does not accomplish anything that cannot be done
by appropriately placed assignments� These operators were designed to be used with machines
that have increment and decrement registers� in which case the compiler can take advantage of
these registers and improve the performance of the program� However� many machines today do
not have these registers� so most compilers translate expressions with increment and decrement
operators in exactly the same manner as they do assignment expressions� but these operators
remain as a �shorthand� syntax for compact programs�

The syntax of the increment and decrement operators is�

�� �Lvalue�
�� �Lvalue�
�Lvalue� ��

�Lvalue� ��

The operand must be and �Lvalue�� i�e� a location into which a value can be placed�
So far� we
have seen that only a variable name may be used as an �Lvalue�� We will see other possibilities

��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

Composite Equivalent

x ��

 x � x �

y �� ��
 y � y � ��

x �� �
 x � x � �

y ��

 y � y �

x �� 	
 x � x � 	

Table ���� Composite Assignment Operators and Their Equivalents

in Chapter ��� The precedence and associativity of increment and decrement operators is given in
Table ��	� Here are some examples of their use in program code�

for �i � �
 i � MAX
 i���

printf��This is a test�n��

The message� This is a test will be printed MAX

times�

n � �

while �n�� � ���

printf��Value of n is �d�n�� n�

The expression n�� evaluates to the value of n

before it is incremented� The loop will print the
values 	��� � � � �	� for n�

n � �

while ���n � ���

printf��value of n is �d�n�� n�

The expression ��n evaluates to the value of n

after it is incremented� The loop will print the
values 	��� � � � �
 for n�

Composite Assignment Statements

The above operators provide a �shorthand� way of increasing or decreasing a variable by one�
but sometimes we would like to increase or decrease
or multiply� divide or mod� by some other
value� C provides �short hand� operators for these as well� called the composite assignment

operators� These operators and their equivalent are shown in Table ����

The general syntax of a composite assignment operator is�

�Lvalue� �op�
 �expression�

where �op� may be one of the binary arithmetic operators� �� �� �� �� or �� The left operand of
these operators must be an �Lvalue�� but the right operand may be an arbitrary �expression��

Again� there is no particular advantage in using the composite assignment operators over the
simple assignment operator except that they produce a somewhat more compact program� The
precedence and grouping for composite assignment operators given in Table ��	 shows they are
the same as the assignment operator� Figure ��	� shows the factorial function
see Figure ����
using these new operators�

���� OPERATORS AND EXPRESSION EVALUATION ��

�� File� mathutil�c � continued ��

�� Function returns long factorial of n� ��

long factcomp�int n�

� int i

long prod

prod � �
 �� initialize ��

for �i � �
 i �� n
 i��� �� loop from � to n ��

prod �� i
 �� compute cumulative product ��

return prod
 �� return product ��

Figure ��	�� Factorial Function Using Composite Operators

Conditional Expression

Sometimes in a program we would like to determine the value of an expression based on some
condition� For example� if we had two variables� x and y� and we wanted to assign the larger value
to the variable� z� We could write and if statement to perform this task as follows�

if �x � y� z � y

else z � x

Another way of stating this in words is that z should be assigned the value of y if x � y or x�
otherwise� The
operator� symbols ' and � may be used to form such a conditional expression as
follows�

z � x � y ' y � x

The expression to the right of the assignment operator is evaluated �rst as follows� If x � y� the
expression evaluates to the value of the expression after '� i�e� y� Otherwise� it evaluates to the
value of the expression after �� i�e� x� In other words� the expression evaluates to the larger of x
and y which is then assigned to the variable� z�

As another example� we can write an expression that evaluates to the absolute value of x�

x � � ' �x � x

If x is negative� the expression evaluates to �x
a positive value�� otherwise to x�

The syntax for writing a conditional expression is�

�expr�� � �expr�� � �expr��

��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

�� File� mathutil�c � continued��

double maxdbl�double x� double y�

�

return �x � y ' x � y�

Figure ��		� Function maxdbl Using a Conditional Expression

The �rst operand� �expr��� is evaluated� if true� the result of the entire expression is the value of
� expr��� Otherwise� the result is the value of �expr��� The conditional operator is a ternary
operator since it requires three operands�

An if statement can always perform the task that a conditional expression does� Whether to
use one or the other is a matter of choice and convenience� Figure ��		 shows a function which
returns the value of the larger of two double arguments�

The Comma Operator

The comma operator� �� provides a way to combine several expressions into a single expression�
The syntax is�

�expression��
 �expression��

The semantics are that �expression�� is evaluated �rst� followed by �expression�� with the value
of the entire expression being that of �expression��� These expressions may be arbitrary expres�
sions� including another comma expression�

The comma expression is useful where the syntax of a statement requires a single expression�
but we have several expressions to be evaluated� such as a for statement where several variables
are used to control the loop� Here� the comma operator may be used to write multiple initialization
and update expressions� As an example� we will use comma operators to write a function that
computes and prints Fibonacci numbers� Fibonacci numbers are natural numbers in the sequence�

�� �� �� ��
� �� ��� ���

Each number of the sequence is computed by adding the previous two numbers of the sequence�
Thus� we must start with the �rst two numbers� which are both 	� then the next number is
	 � 	 � �� the next one is 	 � � � �� the next one is � � � � �� and so on�

We will write a driver� main��� which calls a function� fib��� to print the Fibonacci numbers�
The function starts with two variables� which are initialized to the values of the �rst two numbers
	 and 	� Each new number is computed as a sum of the previous two until the limit is reached�
Figure ��	� shows the code�

���� OPERATORS AND EXPRESSION EVALUATION ��	

�� File� fib�c

Program computes and prints Fibonacci numbers less than a

specified limit of ����

��

�include �stdio�h�

�define LIM ���

void fib�int lim�

main��

�

printf�����Fibonacci Numbers����n��

printf��Limit is �d �n�� LIM�

fib�LIM�

�� Function computes and prints the Fibonacci numbers less than lim� ��

void fib�int lim�

� int i� j� n

printf����n��n��
 �� print the first two fib� numbers ��

for �i � �� j � �� n � �
 n � lim
 i � j� j � n� �

n � i � j
 �� compute the next fib� number ��

if �n � lim�

printf���d�n�� n�
 �� print the next fib� number ��

Figure ��	�� Revised Fibonacci

��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

The function� fib��� prints Fibonacci numbers less than its argument� lim� It uses a for

loop with comma expressions for the �rst and last expressions� The �rst expression initializes two
variables� i and j to 	� with i assumed to be the �rst and j assumed to be the second number in
the sequence� The variable� n� the next number in the sequence� is initialized to zero so that the
loop condition may be tested the �rst time with some value of n less than lim� The sum of i and
j is the next number in the sequence� n� which is computed and printed in the loop body� The
variables are then updated to the new values� j assigned the value of n and i assigned the value
of j� Thus� i and j always have the values of the last two Fibonacci numbers in the sequence�
The process is repeated until n exceeds lim�

The output of the program is shown below�

���Fibonacci Numbers���

Limit is ���

�

�

�

�

�

��

��

��

��

The sizeof Operator

The exact amount of space reserved in memory for di�erent data types depends on the imple�
mentation� Typically� a character is assigned � bits or one byte of space� integers are generally
assigned � or � bytes of storage� float numbers usually require at least four bytes� and double at
least eight bytes� Table ��� shows some typical examples for the HP
���� an HP UX Unix system�
and the IBM PC� a DOS environment� It is sometimes necessary to use the sizes of objects in
expressions� and since the sizes are implementation dependent� to make our programs portable�
we should not build the values into our programs as constants� For any implementation� size of
an object can be easily determined by the use of the sizeof operator with syntax�

sizeof �expression�

The unary operator� sizeof� yields the size� in bytes� of the type of its operand� The operand
may be an arbitrary expression� however� the expression is NOT evaluated� the sizeof expression
simply evaluates to the number of bytes used for the type of the result� For example� the expression�
sizeof x� evaluates to the size of x in bytes� Here is a code fragment using the sizeof operator�

���� OPERATORS AND EXPRESSION EVALUATION ���

Data types HP
��� IBM PC
Bytes Bytes

char 	 	
int � �
short int � �
long int � �
float � �
double � �
long double 	� �

Table ���� Space allocation in Bytes for data types

int x

double y

printf��Size of x is �d bytes�n�� sizeof x�

printf��Size of x�y is �d bytes�n�� sizeof �x�y��

The �rst printf�� statement will print the size
in bytes� of the int type object� x� The second
will print the size of the value of the expression� x�y� As we saw earlier� this addition would be
done in double precision and the result would be a double� Remember� the expression� x�y is not
evaluated� only its size is used by the sizeof operator� Also remember that sizeof is an operator�
like �� not a function call� It has a precedence and associativity like any other operator
shown in
Table ��	�� That is why the parentheses are required in that second printf��� the precedence of
sizeof is higher than �� Without the parentheses� the expression would be evaluated as�

�sizeof x� � y

It is also possible for the operand of sizeof to be a parenthesized type name� like a cast operator�
rather than a variable name� for example�

sizeof �int�

sizeof �float�

sizeof �long int�

sizeof �unsigned long int�

We can easily write a program to determine the sizes of di�erent types for the host implemen�
tation� The code is shown in Figure ��	�� A sample output for the HP
��� is�

���Sizeof operator���

��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

�� File� size�c ��

main��

� int x

double y

printf�����Sizeof operator����n�n��

printf��Size of x is �d bytes�n�� sizeof x�

printf��Size of x�y is �d bytes�n�n�� sizeof �x�y��

printf��Size of data types in bytes��n��

printf��Size of int type is �d�n�� sizeof�int��

printf��Size of long int is �d�n�� sizeof�long int��

printf��Size of short int is �d�n�� sizeof�short int��

printf��Size of unsigned int is �d�n�� sizeof�unsigned int��

printf��Size of float is �d�n�� sizeof�float��

printf��Size of double is �d�n�� sizeof�double��

Figure ��	�� Testing sizeof Operator

Size of x is � bytes

Size of x�y is � bytes

Size of data types in bytes�

Size of int type is �

Size of long int is �

Size of short int is �

Size of unsigned int is �

Size of float is �

Size of double is �

Whenever the size of a type is required in a program� the sizeof operator should be used
rather than the actual size� since the actual value is implementation dependent� Such a use of
the sizeof operator in a program ensures that the program will be portable from one type of
computer to another�

��� Common Errors

	� A result may be outside the range of values possible for a given data type� Use a data type
with greater range and�or precision�

�� Prototypes are not declared� instead� default integer type declaration is assumed for func�
tions� If there is no prototype declaration for a function and if the argument in the function
call is a float� it is converted to double� If the formal parameter in the function de�nition

���� COMMON ERRORS ���

is declared as a float� there is a possible mismatch� A double object passed as an argu�
ment might be accessed as a float resulting in a possible wrong value� The actual situation
depends on the compiler� Here is an example�

�� File� default�c

Program illustrates problems with default declarations for functions�

��

�include �stdio�h�

main��

� float x

x � ���

printf��Truncated Square of �f � �d�n�� x� trunc�square�x��

int trunc�square�float z�

�

return �int� �z � z�

The function trunc square�� returns integer type and main�� uses the default declaration
for trunc square��� The float argument� x in the function call in main�� is converted to
double� But trunc square�� declares a float formal parameter� z� An attempt will be
made to access a double object as a float� The function may not access the correct value
passed as an argument� Thus� it is always best to use function prototypes to avoid confusion�

�� An expression is written without consideration of precedence and associativity of the oper�
ators� For example�

while �x � scanf���d�� �n� �� EOF�

���

Wrong� The scanf�� value is compared �rst with EOF and the result of the comparison is
assigned to x� Using parentheses�

while ��x � scanf���d�� �n�� �� EOF�

���

x is assigned the value returned by scanf��� and the value of x is then compared with EOF�
Examples where associativity must be considered include�

a � ��
 b �

 c � ��
 d � �

a � b � c is ��

a � b � c � d is �

a � d � b � c is �

�� Increment and decrement operators are used incorrectly� Remember that post�x implies
increment�decrement after evaluation and pre�x implies increment�decrement before evalu�
ation�

��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

��� Summary

In this chapter we have tied up some loose ends and formalized some of the concepts from previous
chapters� We have seen how the �nite number of bits available to represent numbers limits the
range and precision of the numbers stored in the computer� We have introduced additional data
types which can extend the range and increase precision as needed for some applications� We
have discussed the data types void
when no value is expected� and enum
for improving program
readability�� We have also shown how user de�ned names for data types can be de�ned using
typedef with syntax�

typedef �existing�type�speci	er� �new�type�speci	er��

We have extended our available control constructs by introducing two variations on the looping
constructs provided in the language� the for statement and the do���while statement� with
syntax�

for ��expr��� �expr��� �expr��� �statement� equivalent to

�expr���
while ��expr��� f

�statement�
�expr���

g
and

do
�statement�

while ��expression���

We have also described how expressions are evaluated� including the determination of the
type of the result and the order of applying operators� giving the full precedence and associa�
tivity table for all C operators
Table ��	�� We have described some new operators� such as the
increment�decrement operators�

�� �Lvalue�
�� �Lvalue�
�Lvalue� ��

�Lvalue� ��

composite assignment operators�

�Lvalue� �op�
 �expression�

the conditional expression�

��	� SUMMARY ���

�expr�� � �expr�� � �expr��

the comma operator�

�expression��
 �expression��

and the sizeof operator�

sizeof �expression�

Other operators in the table such as the indirection� array subscripting� structure accessing� and
bitwise operators will be described in later chapters�

��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

��� Exercises

	� If x is 	�� and z is ���� what is the output of the following�

if �z � x�

printf��z � �d� x � �d�n�� z� x�

�� With the following declarations�

int a � ��� b � �
� c � �

float x � �

double y � ��

long int m � �
L

What are the values and types of the following expressions�

a � b � c � x

a � b � x � c

a � b � y � c

a � b � m � c

x � a � b

x � �int� a � b

�� Evaluate the expressions following the declarations�

int x� y� z

float u� v� w

x � ��
 y� ��
 z � ��

x � z � y � y

x � x � y � z

x � x � y � z

�� Evaluate the expressions�

int x� y� z

float u� v� w

x � ��
 y� ��
 z � ��

u �
��
 v � ����
 w � ����

x � w � y � y

u � z � y � y

u � w � y � y

u � x � y � w � u � v

��
� EXERCISES ��

�� What is the output of the following program

�define PRHAPS

�define TWICEZ z � z

main��

� int w� x� y� z

float a� b� c

w � ��
 x �

 y � �

 z � �

a � ���
 b � ���
 c � ���

�ifdef PRHAPS

x � �

y �

�endif

printf���a�� �d �d�n�� x� y�

printf���b�� �d�n�� TWICEZ � ��

printf���c�� �f �f�n�� w � z � a � c� z � w � b � c�

printf���d�� �d�n�� z � y � x�

�� What will be the output in the following cases�

a� �define SWAP�x� y� int temp
 temp � x
 x � y
 y � temp

main��

� int x� � ��� x� � ��

SWAP�x�� x��

printf��x� � �d� x� � �d�n�� x�� x��

b� �define SWAP�x� y� �int temp
 temp � x
 x � y
 y � temp

main��

� int x� � ��� x� � ��

SWAP�x�� x��

printf��x� � �d� x� � �d�n�� x�� x��

c� �define SWAP�x� y� int temp
 temp � x
 x � y
 y � temp

main��

� int x� � ��� x� � ��

printf��Swapping Values�n��

SWAP�x�� x��

printf��x� � �d� x� � �d�n�� x�� x��

��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

�� Write a while and a do���while loop to read and echo long integers until end of �le� Allow
for the possibility that the �rst input is an end of �le�

�� Write a for loop to print out squares of integers in the sequence �� 	�� 	�� ��� ��� etc� until
	���

� Given the following declarations�

int x � ���� y

What are the values of x and y after each of the following expressions is evaluated
the
expressions are evaluated in sequence�

y � x��

y � ��x

y � ��x

y � x��

	�� What are the values of the following expressions considered sequentially�

x � ���
 y � ���

y � y�� � ��x

y � ��y � x��

y � ��y � �

y � � � x��

		� Evaluate the following�

x � ���
 y � ���

y �� � � x��

y �� � � ��x

y �� x

	�� Evaluate the following�

x � ���
 y � ���
 z � �

z � y � x ' x � y

z � �z �� x �� z �� y� ' z � x � y � z � x � y

���� PROBLEMS ��	

��	 Problems

	� Write a program to calculate the roots of a quadratic equation�

a � x� � b � x� c � �

The program should repeatedly read the set of coe�cients a� b� and c� For each set� calculate
the roots if and only if b � b is not less than � � a � c� Otherwise� write a message that the
roots are not real and proceed to the next set of coe�cients� The two roots of a quadratic
are�

x� �
�b�p

b� � � � a � c
� � a

x� �
�b�p

b� � � � a � c
� � a

Use the sq root�� function de�ned in the chapter�

�� Write a function to �nd exp�x� whose value is given by the Taylor series�

	 �
x�

	�
�

x�

��
�

x�

��
� � � �

where n� is n factorial� Write and use a function� power�x� n�� which returns the nth power
of x� where n is an integer� Use a function� fact��� to compute the factorial� Write a driver
that reads input values of x� and �nds exp�x�� Use as many terms as needed to make values
before and after an additional term very close�

�� Write a function to evaluate sin�x� using the expansion shown below� Use it in a program
to �nd the sine of values read until end of �le�

sin
x� �
x�

	�
� x�

��
�

x�

��
� x�

��
�

x�

�
� � � �

�� Write a function� cos�x�� using the expansion below and use it in a program to �nd the
cosine of values read until EOF�

cos
x� � 	� x�

��
�

x�

��
� x�

��
�

x	

��
� � � �

�� What are the limitations on the accuracy of the above expansions

�� Write a function that returns the number of ways that r items can be taken together out of
n items� The value of combination is�

comb
n� r� �
n�

n � r�� � r�
Use long integers for factorials�

�� Extend the range of possible values for Problem � by cancelling out common factors in
numerator and denominator�

��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

�� Write a program that uses Newton�s method to �nd the roots of the equation�

f
x� � x� � � � x� � � �

Newton�s method uses successive approximations� Start with a guess value for root� The
improved value of root is given by�

newroot � root � f
root�

f �
root�

where f
root� is the value of the function when x equals root� and f �
root� is the value of
the function below when x equals root�

f �
x� � � � x� �

� Write a program that �nds the approximate value of an integral of a function whose four
sample values s�� s�� s�� s� are speci�ed at time instants t�� t� � h� t� � � � h� t� � � � h�
The user should be asked for the value of the interval size� h� and starting instant� t�� The
approximate value of an integral from t� to t� � � � h is the sum of the area under each
rectangle made up of the sample value and the inter�sample distance� i�e��

s� � h� s� � h� s� � h� s� � h

	�� Write a program that reads in the coe�cients and the right hand side values for two linear
simultaneous equations� Solve the equations for the unknowns and print the solution values�
The equations are�

a
���� � x� � a
���� � x� � c�

a
���� � x� � a
���� � x� � c�

where a
����� a
����� c�� a
����� a
����� and c� are the coe�cients to be read� and x� and x�
are the unknowns� To solve the equations� multiply the �rst equation coe�cients and right
hand side by �a�����

a�����
and add the corresponding values to those of the second equation� The

new� modi�ed value of a
���� will be zero� so the second equation can be solved for x�� and�
substituting the value of x� in the �rst equation� solve for x��

		� Given coe�cients and the right hand side of two simultaneous equations� verify if a given
set of values for x� and x� is correct� If the left hand side and the right hand side are within
a small error margin the solution is assumed to be correct� Let the margin of error be a
speci�able value with an assumed default value�

	�� Write a menu�driven program to solve and verify two linear equations as per Problems 	�
and 		� Allow the following commands� get data� display data� solve equations� display
solution� verify solution� help� and quit�

	�� Write a program to determine the current and the power consumed in an electrical resistor

load� of 	���� ohms if it is connected to a battery of 	� volts� Power consumed in a resistor
is V ��R� where V is the volts across the resistor and R is the resistor value in ohms� The
current in a resistor is given by V�R�

���� PROBLEMS ���

	�� Use for loops to write a program that �nds all prime numbers less than a speci�ed value�

	�� Use do���while loops to write Problem 	��

	�� Write a program that reads a year� a month� and a day of the month� It then determines
the number of the day in the year�
Use the de�nition of a leap year given in Problem �����
Use enumeration type for the months� and a switch statement which uses the number of
days in the year prior to the �rst of each month�

	�� Modify Problem 	� so the program reads the day of the week on the �rst of January and
determines the day of the week for the speci�ed date�

	�� Write a program to read the current date in the order� year� month� and day of the month�
The program then prints the date in words� Today is the nth day of Month of the year Year�
Example�

Today is the ��th day of December of the year �����

	
� If the GCD of two numbers� m and n is 	� they have no common divisor� Write a program
to �nd all pairs of numbers� in the range � to ��� that have no common divisors�
Refer to
Problem ��	� for the de�nition of GCD��

��� A rational number is maintained as a ratio of two integers� e�g� ������ ������ etc� Rational
number arithmetic adds� subtracts� multiplies and divides two rational numbers� Write a
program that repeatedly reads and adds two rational numbers� The program should print
the result in each case as a rational number�

�	� Write a function to subtract two rational numbers�

��� Write a function to multiply two rational numbers�

��� Write a function to divide two rational numbers�

��� Write a function to reduce a rational number� A reduced rational number is one in which
all common factors in the numerator and the denominator have been cancelled out� For
example� ����� is reduce to ���� ���	� is reduced to ���� and so forth� The GCD can be
used to reduce a rational number�

��� Modify the rational numbers programs in Problems �� through �� so the result is �rst
reduced before it is printed�

��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

Chapter �

Pointers

In the preceding chapters� our programs have been written to access objects directly� i�e� using
the variable names� We have postponed until now a discussion of the concept of indirect access�
i�e� access of objects using their address� As we have seen� variables local to a function may
be accessed using their name only within that function� When arguments are passed to another
function� only the values are passed� and the called function may use these values� but cannot
a�ect the variable cells in the calling function� Sometimes� however� a function needs to have
direct access to the cells in another function� This can be done in C through indirect access� using
the address of the cell� called a pointer�

In this chapter� we will introduce the concepts of indirect access� pointer types� and dereferenced
pointer variables� We will use these concepts to write functions that indirectly access objects in a
calling function�

��� What is a Pointer�

Frequently� a called function needs to make changes to objects declared in the calling function� For
example� the function� scanf��� needs to access objects in the calling function to store the data
read and converted into an object de�ned there� Therefore� we supply scanf�� with the address

of objects rather than their values� Here� we will see how any function can indirectly access an
object by its address�

Another common use of pointers is to write functions that �return� more than one value� As
we have seen� every function in C returns a value as the value of the function� however� if a
function	s meaning includes the return of several pieces of information� this single return value
is not su
cient� In these cases� we can have the function return multiple data values indirectly�
using pointers�

���

��
 CHAPTER �� POINTERS

����� Data vs Address

Before we discuss passing pointers and indirectly accessing data between functions� let us look at
how we can declare pointer variables and access data using them� Consider the following simple
program�

main��

� int x�

int iptr�

printf�����Testing Pointer Variables����n���

x 	
��

iptr 	 �x�

printf��
d�n��iptr��

�

We have declared two integers� x� intended to hold an integer value� and iptr which is intended
to hold a pointer to an integer� i�e� and address of an integer� We then assign a value to x� and
the address of x to the variable iptr using the � �address of� operator� The address of a variable
is simply the byte address of the cell which was allocated by the declaration� An address is an
integer �actually and unsigned integer� so may be stored in an int type variable� The situation is
shown in Figure
��a�� When we compile and execute this program the result is�

���Testing Pointer Variables���

���

What if we had wanted to print the value of the cell pointed to by iptr and not the value of
iptr itself� The indirection operator� �� accesses the object pointed to by its operand� In our
example� the value of iptr is ���� which is an address of some object� i�e� iptr points to some

object located at address ����� So we should be able to access that object with an expression like�

�iptr

However� there is no way to know how many bytes to access at address ����� nor how to interpret
the data� unless the type of object at address ���� is known� is it an int� a float� a char�
etc� In order for the compiler to know how to access an object indirectly� it must know the type
of that object� We specify the type of object to access by indicating to the compiler the type of
objects a pointer refers to when we declare the pointer� So� in our example� we should declare the
variable� iptr as a �pointer to an integer� as follows�

int �iptr�

���� WHAT IS A POINTER� ���

or�

int � iptr�

�white space may separate the operator� �� and the variable name� iptr�� The declaration speci�es
a variable� iptr� of type int �� i�e� integer pointer �the type is read directly from the declaration��
So� int � is the type of iptr� and int is the type of �iptr� the thing it points to� This statement
declares an integer pointer variable� iptr� and allocates memory for a pointer variable� Similarly�
we can declare float pointers or character pointers�

float � pa� � pb�

char � pc�

These statements declare variables� pa and pb� which can point to float type objects� and pc

which can point to a char type object� All pointer variables store addresses� which are unsigned
integers� and so need the same amount of memory space regardless of the pointer types�

Since the compiler now knows that iptr points to an integer object� it can access the object
correctly� Our simple program becomes�

main��

� int x�

int �iptr�

printf�����Testing Pointer Variables����n���

x 	
��

iptr 	 �x�

printf��Address
d holds value
d�n��iptr��iptr��

�

which produces the output�

���Testing Pointer Variables���

Address
��� holds value
�

We are generally not interested in the value of the pointer variable itself� it may even be di�erent
each time a program is run� Instead� we are interested in the cell the pointer is pointing to� so
we indicate the value of a pointer variable in diagrams and program traces using an arrow ��� as
shown in Figure
��b�

In summary� the address of an object is called a pointer to that object since the address tells
one where to go in order to access the object� The address by itself does not provide su
cient

��� CHAPTER �� POINTERS

�

main��

main��

a�

b�

int x int iptr

int �iptrint x

�� ����

�� �

Figure
��� Declaring Pointer Variables

���� WHAT IS A POINTER� ���

information to access an object� we must know what type of object the address is pointing to�
If the pointer �address� value and the data type of the object that it points to are both known�
then it is possible to access the object correctly� In other words� pointers must be speci�ed to be
int pointers� pointing to an integer type object� float pointers� pointing to a �oating point type
object� char pointers� etc�

����� Indirect Access of Values

The indirection operator� �� accesses an object of a speci�ed type at an address� Accessing an
object by its address is called indirect access� Thus� �iptr indirectly accesses the object that
iptr points to� i�e� �iptr accesses x� The indirection operator is also called the contents of
operator or the dereference operator� Applying the indirection operator to a pointer variable
is referred to as dereferencing the pointer variable� i�e� �iptr dereferences iptr� The address of
operator� �� is used to get the address of an object� We have already used it in calls to scanf���
We can also use it to assign a value to a pointer variable�

Let us consider some examples using the following declarations�

int x� z�

float y�

char ch� � pch�

int � pi� �pi��

float � pf�

When these declarations are encountered� memory cells are allocated for these variables at some
addresses as shown in Figure
��� Variables x and z are int types� y is float� and ch is char�
Pointer variables pi and pi� are variables that can point to integers� pf is a float pointer� and
pch is a character pointer� Note that the initial values of all variables� including pointer variables�
are unknown� Just as we must initialize int and float variables� we must also initialize pointer
variables� Here are some examples�

x 	
���

y 	 ����

z 	 ���

pi 	 �x� �� pi points to x ��

pi� 	 �z� �� pi� points to z ��

pch 	 �ch� �� pch points to ch ��

The result of executing these statements is shown in Figure
��� pi points to the cell for the
variable x� pi� points to z� pch points to ch� and pf still contains garbage� Remember� the value

of a pointer variable is stored as an address in the cell� however� we do not need to be concerned
with the value itself� Instead� our �gure simply shows what the initialized pointer variables point

�
� CHAPTER �� POINTERS

� � ��

main��

int x int z �oat y char ch

int �pi int �pi� �oat �pf char �pch

� � � � � � � �

� � � �

Figure
��� Declaration of Pointer Variables

� � ��
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
��

main��

int x int z �oat y char ch

int �pi int �pi� �oat �pf char �pch

� �

�

��� �� ����

Figure
��� Assignments of pointers

���� WHAT IS A POINTER� �
�

� � ��
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
��

C
C
C
C
C
C
C
C
C
C
C
C
CO

main��

int x int z �oat y char ch

int �pi int �pi� �oat �pf char �pch

� �

�

��� �� ����

Figure
��� E�ect of Pointer to Pointer Assignment � Statement ��

to� These initialized pointers may now be used to indirectly access the objects they point to� or
they be may be changed by new assignments� Here are some examples of statements and how
they change things for the above memory organization� �The statements are numbered in order
to reference them� the numbers are not part of the code��

� pi� 	 pi� �� pi� points to where pi points ��

�� i�e� pi� 		� x ��

�� pi 	 �z� �� pi now points to z� pi� still points to x ��

�� i�e� pi 		� z� pi� 		� x ��

�� �pi 	 �pi�� �� z 	 x� i�e� z 	
�� ��

�� �pi 	 ���� �� z 	 ���� x is unchanged ��

�� �pi� 	 �pi� � ���� �� x 	 ���� z is unchanged ��

Statement �� Assigns value of pi to pi�� so pi� now also points to x �see Figure
���� Since
both of the variables are type int � this assignment is allowed�

Statement �� Makes pi point to z �see Figure
���� The expression �z evaluates to the
address of z� i�e� an int pointer�

Statement �� Since pi� points to x� the value of the right hand side� �pi�� dereferences
the pointer and evaluates to the value in the cell� i�e� ���� This value is assigned to
the object accessed by the left hand side� �pi� i�e� the place pointed to by pi or the

�
� CHAPTER �� POINTERS

� � ��
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
��

C
C
C
C
C
C
C
C
C
C
C
C
CO

main��

int x int z �oat y char ch

int �pi int �pi� �oat �pf char �pch

� �

�

��� �� ����

Figure
��� E�ect of Pointer Reassignment � Statement ��

object z �see Figure
�
�� This has the same e�ect as the assignment z 	 x� Note�
we have used a dereferenced pointer variable as the Lvalue on the left hand side of an
assignment operator� The semantics is to access the object indirectly and store the
value of the expression on the right hand side�

Statement �� The value� ���� is assigned to �pi� i�e� z �see Figure
���� Again� we have
used an indirect access for the Lvalue of the assignment�

Statement �� The right hand side evaluates to ���� since ��� is added to �pi�� so ��� is
assigned to �pi�� i�e� x �see Figure
���� Again� we have used an indirect access on
both the left and right hand sides�

We see that the left hand side of an assignment operator� the Lvalue� can be a reference to
an object either by direct access �i�e� a variable name� or by indirect access �i�e� a dereferenced
pointer variable�� Also notice that we were very careful about the type of the objects on the left
and right hand side of the assignment operators� We have assigned an integer value to a cell
pointed to by an integer pointer� and when assigning pointers� we have assigned an integer pointer
to a cell declared as an int �� An assignment statement such as�

pi 	 x�

���� WHAT IS A POINTER� �
�

� � ��
�
�
�
�
�
�
�
�
�
�
�
���

�
�
�
�
�
�
�
�
�
�
�
���

C
C
C
C
C
C
C
C
C
C
C
CCO

main��

int x int z �oat y char ch

int �pi int �pi� �oat �pf char �pch

� �

�

��� �������

Figure
�
� E�ect of Indirect Pointer Access and Assignment � Statement �

� � ��
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
��

C
C
C
C
C
C
C
C
C
C
C
C
CO

main��

int x int z �oat y char ch

int �pi int �pi� �oat �pf char �pch

� �

�

��� �������

Figure
��� E�ect of Indirect Assignment � Statement �

�
� CHAPTER �� POINTERS

� � ��
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
��

C
C
C
C
C
C
C
C
C
C
C
C
CO

main��

int x int z �oat y char ch

int �pi int �pi� �oat �pf char �pch

� �

�

����������

Figure
��� E�ect of Indirect Pointer Access and Assignment � Statement �

is a legal statement in C� assigning an integer value to a pointer cell� However� the e�ect may
not be as we would expect� The value of x will be placed in the pointer cell� pi� and subsequent
dereferencing of pi� ��pi�� will use that value as a pointer �an address� to �nd the cell to indirectly
access� This is almost never what we intend to do in this statement� Most C compilers will generate
a warning at compile time stating that an illegal integer�pointer combination in an assignment was
encountered to indicate that something is possibly wrong here� A warning is not an error� it does
not prevent the compiler from generating a functional object �le� However� it is an indication that
the statement may not be what the programmer intended� Such a statement is probably correctly
written as�

�pi 	 x� or pi 	 �x�

which assign a value to the cell pointed to by pi or to assign an address to pi itself� respectively�
�In the RARE instance where such an assignment of an integer to a pointer cell is intended� the
syntax�

pi 	 �int ��x�

i�e� casting the integer to an integer pointer� should be used��

Likewise� an attempt to use the uninitialized variable� pf will be a disaster� Suppose we write�

���� WHAT IS A POINTER� �
�

printf��
f�n�� �pf��

The value of pf is garbage so �pf will attempt to access the garbage address for a float object�
The garbage value of pf may be an invalid memory address� in which case� the program will be
aborted due to a memory fault� a run time error� This is bad news� however� we may be even more
unfortunate if the value in pf is a valid memory address� In this case� we would access a value
from some unknown place in memory� The situation is even worse when an uninitialized pointer
is used indirectly as an Lvalue�

�pf 	 ����

Since we do not know where pf is pointing� if it happens to be a legal address� we have just
placed the value� ���� in some unknown location in memory� possible a cell belonging to a variable
in another part of the program� Finding this type of bug is very di
cult� The lesson here is
that care should be taken when using pointers� particularly ensuring that pointers are properly
initialized�

On the other hand� the character variable� ch� is not initialized� but the pointer variable� pch
is initialized to point to ch so the expression� �pch� will access the object� ch� correctly� If the
value of �pch is accessed� it will be garbage� but a value can be stored in �pch correctly�

With proper care� the value of an initialized pointer variable �the address of some object� allows
us to indirectly access the object by dereferencing the pointer variable� An example program�
shown in Figure
��� illustrates the value of a pointer variable and the value of the object indirectly

accessed by it�

Figure
��� shows program trace graphically� The program �rst declares an int and an int �

variables �Figure
���a��� The �rst printf�� statement prints the program title followed by the
initialization of i
 and iptr �Figure
���b��� The next printf�� gives the hexadecimal value of
iptr� which is the address of i
� The next statement prints the value of the same object indirectly
accessed by �iptr and directly accessed by i
� Then� the value of �iptr is changed �Figure
���c���
and the last statement prints the changed value of the object� accessed �rst indirectly and then
directly�

The output for a sample run is�

Pointers� Direct and Indirect Access

iptr 	 �����

�iptr 	
�� i
 	
�

�iptr 	
��� i
 	
��

�

 CHAPTER �� POINTERS

�� File� access�c

This program prints out the values of pointers and values of

dereferenced pointer variables�

��

�include �stdio�h�

main��

� int �iptr� �� integer pointer ��

i
�

printf��Pointers� Direct and Indirect Access�n�n���

�� initializations ��

i
 	
��

iptr 	 �i
� �� iptr points to the object whose name is i
 ��

�� print value of iptr� i�e�� address of i
 ��

printf��iptr 	
u�n�� iptr��

�� print value of the object accessed indirectly and directly ��

printf���iptr 	
d� i
 	
d�n�� �iptr� i
��

�iptr 	 �iptr �
�� �� value of �iptr changed ��

�� print values of the object again ��

printf���iptr 	
d� i
 	
d�n�� �iptr� i
��

�

Figure
��� Example Code with Direct and Indirect Access

���� WHAT IS A POINTER� �
�

�

main��

int i�

int �iptr

�

main��

int i�

int �iptr

�

main��

int i�

int �iptr

� �

a� b� c�

�

� � �� ���

Figure
���� Trace for Direct and Indirect Access

�
� CHAPTER �� POINTERS

��� Passing Pointers to Functions

As we have seen� in C� arguments are passed to functions by value� i�e� only the values of argument
expressions are passed to the called function� Some programming languages allow arguments
passed by reference� which allows the called function to make changes in argument objects� C
allows only call by value� not call by reference� however� if a called function is to change the value
of an object de�ned in the calling function� it can be passed a value which is a pointer to the
object� The called function can then dereference the pointer to access the object indirectly� We
have also seen that a C function can return a single value as the value of the function� However� by
indirect access� a called function can e�ectively �return� several values� Only one value is actually
returned as the value of the function� all other values may be indirectly stored in objects in the
calling function� This use of pointer variables is one of the most common in C� Let us look at
some simple examples that use indirect access�

����� Indirectly Incrementing a Variable

We will �rst write a program which uses a function to increment the value of an object de�ned
in main��� As explained above� the called function must indirectly access the object de�ned in
main��� i�e� it must use a pointer to access the desired object� Therefore� the calling function
must pass an argument which is a pointer to the object which the called function can indirectly
access�

Figure
��� shows the code for the program and the program trace is shown graphically in
Figure
���� The function� main�� declares a single integer variable and initializes it to � �see
Figure
���a��� When main�� calls indirect incr��� it passes the pointer� �x �the address of
x�� The formal parameter� p� is de�ned in indirect incr�� as a pointer variable of type int ��
When indirect incr�� is called� the variable� p gets the value of a pointer the the cell named
x in main�� �see Figure
���b��� The function� indirect incr��� indirectly accesses the object
pointed to by p� i�e� the int object� x� de�ned in main��� The assignment statement indirectly
accesses the value� �� in this cell� and increments it to �� storing it indirectly in the cell� x� in
main�� �see Figure
���c���

Sample Session�

���Indirect Access���

Original value of x is �

The value of x is �

����� Computing the Square and Cube

Sometimes� whether a value should be returned as the value of a called function or indirectly stored
in an object is a matter of choice� For example� consider a function which is required to �return�

���� PASSING POINTERS TO FUNCTIONS �
�

�� File� indincr�c

Program illustrates indirect access

to x by a function indirect�incr���

Function increments x by
�

��

�include �stdio�h�

void indirect�incr�int � p��

main��

� int x�

printf�����Indirect Access����n���

x 	 ��

printf��Original value of x is
d�n�� x��

indirect�incr��x��

printf��The value of x is
d�n�� x��

�

�� Function indirectly accesses object in calling function� ��

void indirect�incr�int � p�

�

�p 	 �p �
�

�

Figure
���� Code for Indirect Access by a Function

��� CHAPTER �� POINTERS

int x

�

main��

int x

�

main��

�int � �

p

�int � �

p

S
S

S
S

S
S

SSo

S
S

S
S

S
S

SSo

a� b� c�

int x

main��

�

indirect incr� indirect incr�

Figure
���� Trace for Indirect Access by a Function

���� PASSING POINTERS TO FUNCTIONS ���

�� File� sqcube�c

Program uses a function that returns a square of its argument and

indirectly stores the cube�

��

�include �stdio�h�

double sqcube�double x� double � pcube��

main��

� double x� square� cube�

printf�����Directly and Indirectly Returned Values����n���

x 	 ��

square 	 sqcube�x� �cube��

printf��x 	
f� square 	
f� cube 	
f�n��

x� square� cube��

�

�� Function return square of x� and indirectly stores cube of x ��

double sqcube�double x� double � pcube�

�

�pcube 	 x � x � x�

return �x � x��

�

Figure
���� Code for Indirectly Returned Values

two values to the calling function� We know that only one value can be returned as the value of
the function� so we can decide to write the function with one of the two values formally returned
by a return statement� and the other value stored� by indirect access� in an object de�ned in the
calling function� The two values are �returned� to the calling function� one formally and one by
indirection�

Let us write a function to return the square and the cube of a value� We decide that the
function returns the square as its value� and �returns� the cube by indirection� We need two
parameters� one to pass the value to be squared and cubed to the function� and one pointer type
parameter which will be used to indirectly access an appropriate object in the calling function to
store the cube of the value� We assume all objects are of type double�

The code is shown in Figure
���� The prototype for sqcube�� is de�ned to have two param�
eters� a double and a pointer to double� and it returns a double value� The printf�� prints the
value of x� the value of square which is the value returned by sqcube�� �the square of x�� and�
the value of cube �the cube of x� which is indirectly stored by sqcube���

��� CHAPTER �� POINTERS

�

	

main��

double x double square double cube

� �� ����

sqcube�double double � �

double

pcubex

Figure
���� Trace for sqcube � Step �

���� PASSING POINTERS TO FUNCTIONS ���

�

	

B
B
B
B
B
B
B
B
B
B
BM

main��

double x double square double cube

� �� ����

sqcube�double double � �

double

pcubex

���

Figure
���� Trace for sqcube � Step �

��� CHAPTER �� POINTERS

�

	

B
B
B
B
B
B
B
B
B
B
BM

main��

double x double square double cube

� ����

sqcube�double double � �

double

pcubex

���

����

Figure
��
� Trace for sqcube � Step �

���� PASSING POINTERS TO FUNCTIONS ���

�
B
B
B
B
B
B
B
B
B
B
BM�

main��

double x double square double cube

���

sqcube�double double � �

double

pcubex

���

�������

Figure
���� Trace for sqcube � Step �

��
 CHAPTER �� POINTERS

Figures
��� �
��� show a step�by�step trace of the changes in objects� both in the calling
function and in the called function� In the �rst step �Figure
����� the declarations for the function�
main�� and the template for the function� sqcube�� are shown with the initialization of the
variable� x� in main��� In the second step �Figure
����� the function� sqcube�� is called from
main�� passing the value of x ����� to the �rst parameter� �called x in sqcube���� and the value of
�cube� namely a pointer to cube� as the second argument to the parameter� pcube� In the third
step �Figure
��
�� the �rst statement in sqcube�� has been executed� computing the cube of the
local variable� x� and storing the value indirectly in the cell pointed to by pcube� Finally� Figure

��� shows the situation just as sqcube�� is returning� computing the square of x and returning
the value which is assigned to the variable� square� by the assignment in main���

While only one value can be returned as the value of a function� we loosely say that this
function �returns� two values� the square and the cube of x� The distinction between a formally
returned value and an indirectly or loosely �returned� value will be clear from the context�

Sample Session�

���Directly and Indirectly Returned Values���

x 	 ��������� square 	 ��������� cube 	 ���������

����� A function to Swap Values

We have already seen how values of two objects can be swapped directly in the code in main���
We now write a function� swap��� that swaps values of two objects de�ned in main�� �or any
other function� by accessing them indirectly� i�e� through pointers� The function main�� calls the
function� swap��� passing pointers to the two variables� The code is shown in Figure
���� �We
assume integer type objects in main����

The function� swap��� has two formal parameters� integer pointers� ptr
 and ptr�� A tempo�
rary variable is needed in the function body to save the value of one of the objects� The objects
are accessed indirectly and swapped� Figures
��� �
��� show the process of function call� passed
values� and steps in the swap�

Sample Session�

Original values� dat
 	
��� dat� 	 ���

Swapped values� dat
 	 ���� dat� 	
��

��� Returning to the Payroll Task with Pointers

We will now modify our pay calculation program so that the driver calls upon other functions to
perform all subtasks� The driver� main��� represents only the overall logic of the program� the

���� RETURNING TO THE PAYROLL TASK WITH POINTERS ���

�� File� swapfnc�c

Program uses a function to swap values of two objects�

��

�include �stdio�h�

�� arguments of swap�� are integer pointers ��

void swap�int � p
� int � p���

main��

� int dat
 	
��� dat� 	 ����

printf��Original values� dat
 	
d� dat� 	
d�n�� dat
� dat���

swap��dat
� �dat���

printf��Swapped values� dat
 	
d� dat� 	
d�n�� dat
� dat���

�

�� Function swaps values of objects pointed to by ptr
 and ptr� ��

void swap�int � ptr
� int � ptr��

� int temp�

temp 	 �ptr
�

�ptr
 	 �ptr��

�ptr� 	 temp�

�

Figure
���� Code for a Function� swap��

��� CHAPTER �� POINTERS

� �

int dat�

���

int dat�

���
� �

main��

swap� int � int � �

ptr� ptr�

int temp

� �

Figure
���� Trace for swap�� � Step �

���� RETURNING TO THE PAYROLL TASK WITH POINTERS ���

� �

int dat�

���

int dat�

���
� �

main��

swap� int � int � �

ptr� ptr�

int temp

���

Figure
���� Trace for swap�� � Step �

��� CHAPTER �� POINTERS

� �

� �

main��

swap� int � int � �

ptr� ptr�

int temp

���

int dat� int dat�

������

Figure
���� Trace for swap�� � Step �

���� RETURNING TO THE PAYROLL TASK WITH POINTERS ���

� �

� �

main��

swap� int � int � �

ptr� ptr�

int temp

���

int dat� int dat�

��� ���

Figure
���� Trace for swap�� � Step �

��� CHAPTER �� POINTERS

details are hidden in the functions that perform the various subtasks� The algorithm for the driver
is�

get data

repeat the following while there is more data

calculate pay

print data and results

get data

For each step of the algorithm� we will use functions to do the tasks of getting data� printing
data and results� and calculating pay� We have already written functions in Chapters � and � to
calculate pay and to print data and results� and will repeat them here for easy reference� making
some modi�cations and improvements� We have postponed until now writing a function to read
data as such a function would require returning more than one value� By using pointers� we now
have the tool at our disposal to implement such a function�

Before we write these functions� we should design them by describing what the functions do
and specifying the interface to these functions� i�e� by indicating the arguments and their types
to be passed to the functions �the information given to the functions� and the meaning and type
of the return values �the information returned from the function�� Here are our choices�

get data��� This function reads the id number� hours worked� and rate of pay for one employee
and stores their values indirectly using pointers� Since these values are returned indirectly�
the arguments must be pointers to appropriate objects in the calling function �main�� in
our case�� The function returns True� if it found new data in the input� it returns False
otherwise� Here is the prototype�

int get�data�int � pid� float � phrs� float � prate��

We use names pid� phrs� and prate� to indicate that they are pointers to cells for the id�
hours and rate� respectively� It is a good habit to distinguish between object names and
pointer names whenever there is a possibility of confusion�

print data��� This function writes the id number� hours worked� and rate of pay passed to it� It
has no useful information to return so returns a void type� Here is the prototype�

void print�data�int id� float hrs� float rate� float pay��

print pay��� This function is given values for the regular pay� overtime pay� and total pay and
writes them to the output� It also returns a void type�

void print�pay�float regular� float overtime� float total��

calc pay��� Given the necessary information �hours and rate�� this function calculates and returns
the total pay� and indirectly returns the regular and overtime pay� In addition to the values
of hours worked and rate of pay� pointers to regular pay and overtime pay are passed to the
function� The prototype is�

���� RETURNING TO THE PAYROLL TASK WITH POINTERS ���

�� File� payutil�h ��

�define REG�LIMIT ��

�define OT�FACTOR
��

int get�data�int �pid� float �phrs� float �prate��

void print�data�int id� float hrs� float rate��

void print�pay�float regular� float overtime� float total��

float calc�pay�float hours� float rate� float � pregular�

float � povertime��

Figure
���� Header �le payutil�h

float calc�pay�float hours� float rate� float � pregular�

float � povertime��

Here� pregular and povertime are pointers to cells for regular and overtime pay objects in
the calling function�

All of these functions will be de�ned in a �le� payutil�c and their prototypes are included in
payutil�h� Figure
��� shows the header �le� We have also included the de�nitions for symbolic
constants REG LIMIT and OT FACTOR in the header �le� This header �le will be included in all
relevant source �les�

With the information in this �le �and the preceding discussion of the function� we have su
cient
information to write the driver for the program using the functions prior to writing the actual
code for them� Figure
��� shows the driver� It also includes the �le� tfdef�h which de�nes the
macros� TRUE and FALSE�

The logic of the driver is as follows� After the program title is printed� the �rst statement calls
get data�� to get the id number� hours worked� and rate of pay� As indicated in the prototype�
pointers to these objects are passed as arguments so that get data�� can indirectly access them
and store values� The function� get data��� returns True or False depending on whether there
is new data� The True�False value is assigned to the variable� moredata� The while loop is
executed as long as there is more data� i�e� moredata is True� The loop body calls on calc pay��

to calculate the pay� print data�� to print the input data� print pay�� to print the results� and
get data�� again to get more data� Since calc pay�� returns the values of overtime and total
pay indirectly� main�� passes pointers to objects which will hold these values�

The overall logic in the driver is easy to read and understand� at this top level of logic�
the details of the computations are not important and would only complicate understanding the
program� The driver will remain the same no matter how the various functions are de�ned� The
actual details in one or more functions may be changed at a later time without disturbing the
driver or the other functions� This program is implemented in functional modules� Such a modular
programming style makes program development� debugging and maintenance much easier�

��� CHAPTER �� POINTERS

�� File� pay��c

Other Files� payutil�c

Header Files� tfdef�h� payutil�h

The program gets payroll data� calculates pay� and prints out

the results for a number of people� Modular functions are used

to get data� calculate total pay� print data� and print results�

��

�include �stdio�h�

�include �tfdef�h�

�include �payutil�h�

main��

�

�� declarations ��

int id�number� moredata�

float hours�worked� rate�of�pay� regular�pay� overtime�pay� total�pay�

�� print title ��

printf�����Pay Calculation����n�n���

�� get data and initialize loop variable ��

moredata 	 get�data��id�number� �hours�worked�

�rate�of�pay��

�� process while moredata ��

while �moredata� �

total�pay 	 calc�pay�hours�worked� rate�of�pay� �regular�pay�

�overtime�pay��

print�data�id�number� hours�worked� rate�of�pay��

print�pay�regular�pay� overtime�pay� total�pay��

moredata 	 get�data��id�number� �hours�worked�

�rate�of�pay��

�

�

Figure
���� Code for the Driver for pay��c

���� RETURNING TO THE PAYROLL TASK WITH POINTERS ���

�� File� payutil�c ��

�include �stdio�h�

�include �tfdef�h�

�include �payutil�h�

�� Function prints out the input data ��

void print�data�int id� float hours� float rate�

�

printf���nID Number 	
d�n�� id��

printf��Hours Worked 	
f� Rate of Pay 	
f�n��

hours� rate��

�

�� Function prints pay data ��

void print�pay�float regular� float overtime� float pay�

�

printf��Regular Pay 	
f� Overtime Pay 	
f�n��

regular� overtime��

printf��Total Pay 	
f�n�� pay��

�

Figure
���� Code for print data�� and print pay��

Of course� we still have to write the various functions used in the above driver� We write each
of these functions in turn� Figure
��� shows the code for print data�� and print pay�� in the
�le payutil�c which are simple enough�

The next two functions require indirect access� The function� calc pay��� must indirectly
store the regular and overtime pay so the formal parameters include two pointers� preg �pointing
to the cell for regular pay� and pover �pointing to the cell for overtime pay�� The function returns
the value of the total pay� It is shown in Figure
��
� Finally� get data��must indirectly store the
values of the id number� hours worked� and rate of pay� and return True if id number is positive�
and False otherwise� Figure
��� shows the code� The formal parameters pid� phrs� and prate

are pointers to objects in the calling function �main�� in our case�� Recall� when scanf�� is called
to read data� it requires arguments that are pointers to the objects where the data is to be placed
so that it can indirectly store the values� Therefore� when get data�� calls scanf��� it must
pass pointers to relevant objects as arguments� i�e� it passes the pointers� pid� phrs� and prate�
These pointer variables point to the objects where values are to be stored� We do NOT want to
pass �pid� �phrs� �prate as these are the addresses of the pointers� pid� phrs� and prate� they
are NOT the addresses cells to hold the data� If the id number stored in �pid is not positive�
i�e� ��pid �� ��� get data�� returns FALSE to indicate that there is no more data� If �pid is
positive� the rest of the function is executed� in which case the rest of the input data is read� The
value� TRUE is returned to indicate that more data is present�

The above functions are in the source �le� payutil�c which must be compiled and linked with
the source program �le� pay��c� A sample session would be similar to the ones for similar previous

��
 CHAPTER �� POINTERS

�� File� payutil�c continued ��

�� Function calculates and returns total pay ��

float calc�pay�float hours� float rate� float � preg� float � pover�

� float total�

if �hours � REG�LIMIT� �

�preg 	 REG�LIMIT � rate�

�pover 	 OT�FACTOR � rate � �hours REG�LIMIT��

�

else �

�preg 	 hours � rate�

�pover 	 ��

�

total 	 �preg � �pover�

return total�

�

Figure
��
� Code for calc pay��

�� File� payutil�c continued ��

�� Function reads in the payroll data ��

int get�data�int � pid� float � phrs� float � prate�

�

printf��Type ID Number� zero to quit� ���

scanf��
d�� pid��

if ��pid �	 �� �� if ID number is �	 �� ��

return FALSE� �� return � to calling function ��

printf��Hours Worked� ��� �� ID number is valid� get data ��

scanf��
f�� phrs��

printf��Hourly Rate� ���

scanf��
f�� prate��

return TRUE� �� valid data entered� return
 ��

�

Figure
���� Code for get data��

���� COMMON ERRORS ���

programs and is not shown here�

��� Common Errors

�� Using an uninitialized pointer� Remember� declaring a pointer variable simply allocates a
cell that can hold a pointer � it does not place a value in the cell� So� for example� a code
fragment like�

� int � iptr�

�iptr 	 ��

� � �

�

will attempt to place the value� �� in the cell pointed to by iptr� however� iptr has not been
initialized� so some garbage value will be used as the address of there to place the value�
On some systems this may result in an attempt to access an illegal address� and a memory
violation� Avoid this error by remembering to initialize all pointer variables before they are
used�

�� Instead of using a pointer to an object� a pointer to a pointer is used� Consider a function�
read int��� It reads an integer and stores it where its argument points� The correct version
is�

void read�int�int � pn�

�

scanf��
d�� pn��

�

pn is a pointer to the object where the integer is to be stored� When passing the argument
to scanf��� we pass the pointer� pn� NOT �pn�

�� Confusion between the address of operator and the dereference operator�

��� calling�func�����

� int x�

called�func��x�� �� should be �x ��

���

�

��� called�func�int �px� �� should be � px ��

�

���

�

A useful mnemonic aid is that the �address of� operator is the �and� symbol� � � both
start with letter� a�

��� CHAPTER �� POINTERS

��� Summary

In this Chapter we have introduced a new data type� a pointer� We have seen how we can declare
variables of this type using the � and indicating the type of object this variable can point to� for
example�

int � iptr�

float � fptr�

char � cptr�

declare three pointer variables� iptr which can point to an integer cell� fptr which can point to
a cell holding a �oating point variable� and cptr which can point to a character cell�

We have seen how we can assign values to pointer variables using the �address of� operator� �
as well as from other pointer variables� For example�

� int x�

int � ip�

int � iptr�

iptr 	 �x�

ip 	 iptr�

� � �

�

declares an integer variable� x� and two integer pointers� ip and iptr� which can point to integers
�we can read this last declaration from right to left� as saying that � iptr points to an int��� We
then assign the address of x to the pointer variable� iptr� and the pointer in iptr to the variable�
ip�

We have also shown how pointer variables may be used to indirectly access the value in a cell
using the dereference operator� ��

y 	 �iptr�

which assigns the value of the cell pointed to by iptr to the variable� y� Values may also be stored
indirectly using pointer variables�

�iptr 	 y�

which assigns the value in the variable� y� to the cell pointed to by iptr�

We have also seen that we can pass pointers to functions and use them to modify the values
of cells in the calling function� For example�

��	� SUMMARY ���

main��

� int x� y� z�

z 	 set�em� �x� �y��

� � �

�

int set�em� int �a� int �b�

�

�a 	
�

�b 	 ��

return ��

�

Here the function� set em will set the values �� �� and � into the variables x� y� and z respectively�
The �rst two values are assigned indirectly using the pointers passed to the function� and the third
is returned as the value of the function and assigned to z by the assignment statement in main���
This� the function� set em��� has �e�ectively� returned three values�

Finally� we have used this new indirect access mechanism to write several programs� including
an update to our payroll program� As we will see in succeeding chapters� pointers are very useful
in developing complex programs� The concept of pointers may be confusing at �rst� however� a
useful tool for understanding the behavior of a program using pointers is to draw the memory
picture showing which to cells each pointer is pointing�

��� CHAPTER �� POINTERS

��� Exercises

�� What is the output of the following code�

int x� y� z� w�

int � pa� � pb� � pc� � pd�

x 	
�� y 	 ��� z 	 ���

pa 	 �x�

pb 	 �y�

printf��
d�
d�
d�n�� �pa� �pb� �pc��

pc 	 pb�

printf��
d�
d�
d�n�� �pa� �pb� �pc��

pb 	 pa�

printf��
d�
d�
d�n�� �pa� �pb� �pc��

pa 	 �z�

printf��
d�
d�
d�n�� �pa� �pb� �pc��

�pa 	 �pb�

printf��
d�
d�
d�n�� �pa� �pb� �pc��

What is the output for each of the following programs�

�� �define SWAP�x� y� �int temp� temp 	 x� x 	 y� y 	 temp� �

main��

� int data
 	
�� data�	 ���

SWAP�data
� data���

printf��Data
 	
d� data� 	
d�n�� data
� data���

�

�� �define SWAP�x� y� �int �temp� temp 	 x� x 	 y� y 	 temp� �

main��

� int data
 	
�� data�	 ���

int �p
� �p��

p
 	 �data
� p� 	 �data��

SWAP�p
� p���

printf���p
 	
d� �p� 	
d�n�� �p
� �p���

�

Correct the code in the following problems�

�� main��

� int x� �p�

x 	
��

ind�square��p��

�

���� EXERCISES ���

ind�square�int �p�

�

�p 	 �p � �p�

�

�� main��

� int x� �p�

x 	
�� p 	 �x�

ind�square��p��

�

ind�square�int �p�

�

�p 	 �p � �p�

�

� main��

� int x� �p�

x 	
��

ind�square�x��

�

ind�square�int �p�

�

�p 	 �p � �p�

�

�� main��

� int x� �p�

x 	
��

ind�square�p��

�

ind�square�int �p�

�

�p 	 �p � �p�

�

��� CHAPTER �� POINTERS

��	 Problems

�� Write a program that initializes integer type variables� data
 and data� to the values ���
and ���� Declare pointers� ptr
 and ptr�� initialize ptr
 to point to data
 and ptr� to
point to data�� Swap the values of data
 and data� values using direct access and using
indirect access� Next� swap the values of the pointers� ptr
 and ptr� and print the values
indirectly accessed by the swapped pointers�

�� Write a function �that returns void� which reads and indirectly stores three values in the
calling function� The types of the three data items are an integer� a character� and a �oat�

�� Write a function maxmin�float x� float � pmax� float � pmin� where x is a new value
which is to be compared with the largest and the smallest values pointed to by pmax and
pmin� respectively� The function should indirectly update the largest and the smallest values
appropriately� Write a program that reads a sequence of numbers and uses the above function
to update the maximum and the minimum until end of �le� when the maximum and the
minimum should be printed�

�� Repeat Problem ���� using functions get course data��� calc gpr��� and print gpr���

�� Rewrite Problem ��� as a function that �nds the roots of a quadratic and returns them
indirectly�

� Rewrite the program to solve simultaneous equations �Problem ������ The program should
use a function� solve eqns�� to solve for the unknowns� The function must indirectly access
objects in main�� to store the solution values�

�� Write a menu�driven program that uses the function� solve eqns��� of Problem
� The
commands are� get data� display data� solve equations� print solution� verify solution� help�
and quit� Use functions to implemnent the code for each command�

�� A rational number is maintained as a ratio of two integers� e�g�� ������ ����
� etc� Rational
number arithmetic adds� subtracts� multiplies and divides two rational numbers� Write a
function to add two rational numbers�

�� Write a function to subtract two rational numbers�

��� Write a function to multiply two rational numbers�

��� Write a function to divide two rational numbers�

��� Write a function to reduce a rational number� A reduced rational number is one in which
all common factors in the numerator and the denominator have been cancelled out� For
example� ����� is reduce to ���� ����� is reduced to ���� and so forth�

��� Use the function� reduce��� of Problem �� to implement the functions in Problems � through
���

��� Rewrite the program of Problem ���� to calculate the current and the power in a resistor
using a function instead to perform the calculations� One value may be returned as a function
value� the other must be indirectly stored in the calling function�

Chapter �

Arrays

A programmer is concerned with developing and implementing algorithms for a variety of tasks�
As tasks become more complex� algorithm development is facilitated by structuring or organizing
data in specialized ways� There is no best data structure for all tasks� suitable data structures must
be selected for the speci�c task� Some data structures are provided by programming languages�
others must be derived by the programmer from available data types and structures�

So far we have used integer� �oating point and character data types as well as pointers to
them� These data types are called base or scalar data types� Such base data types may be
used to derive data structures which are organized groupings of instances of these types� The C
language provides some widely used compound or derived data types together with mechanisms
which allow the programmer to de�ne variables of these types and access the data stored within
them�

The �rst such type we will discuss is called an array� Many tasks require storing and processing
a list of data items� For example� we may need to store a list of exam scores and to process it in
numerous ways� �nd the maximum and minimum� average the scores� sort the scores in descending
order� search for a speci�c score� etc� Data items in simple lists are usually of the same scalar
type� for example a list of exam scores consists of all integer type items� We naturally think of a
list as a data structure that should be referenced as a unit� C provides a derived data type that
stores such a list of objects where each object is of the same data type � the array�

In this chapter� we will discuss arrays� how they are declared and data is accessed in an
array� We will discuss the relationship between arrays and pointers and how arrays are passed
as arguments in function calls� We will present several example programs using arrays� including
a revision of our 	payroll
 task from previous chapters� One important use of arrays is to hold
strings of characters� We will introduce strings in this chapter and show how they are stored
in C� however� since strings are important in handling non�numeric data� we will discuss string
processing at length in Chapter �
�

���

��� CHAPTER �� ARRAYS

��� A Compound Data Type � array

As described above� an array is a compound data type which allows a collection of data of the
same type to be grouped into a single object� As with any data type� to understand how to use an
array� one must know how such a structure can be declared� how data may be stored and accessed
in the structure� and what operations may be performed using this new type�

����� Declaring Arrays

Let us consider the task of reading and printing a list of exam scores�

LIST
� Read and store a list of exam scores and then print it�

Since we are required to store the entire list of scores before printing it� we will use an array
hold the data� Successive elements of the list will be stored in successive elements of the array�
We will use a counter to indicate the next available position in the array� Such a counter is called
an index into the array� Here is an algorithm for our task�

initialize the index to the beginning of the array

while there are more data items

read a score and store in array at the current index

increment index

set another counter� count � index � the number of items in the array

traverse the array� for each index starting at the beginning to count

print the array element at index

The algorithm reads exam scores and stores them in successive elements of an array� Once the list
is stored in an array� the algorithm traverses the array� i�e� accesses successive elements� and prints
them� A count of items read in is kept and the traversal continues until that count is reached�

We can implement the above algorithm in a C program as shown in Figure ���� Before ex�
plaining this code� here is a sample session generated by executing this program�

���List of Exam Scores���

Type scores� EOF to quit

��

�	

�

��

D

���Exam Scores���

���� A COMPOUND DATA TYPE � ARRAY ���

�� File� scores�c

This program reads a list of integer exam scores and prints them out�

��

�include �stdio�h�

�define MAX ���

main��

� int exam�scores�MAX�� index� n� count�

printf�����List of Exam Scores����n�n���

printf��Type scores� EOF to quit�n���

�� read scores and store them in an array ��

index � ��

while ��index � MAX� �� �scanf���d�� �n� � EOF��

exam�scores�index!!� � n�

count � index�

�� print scores from the array ��

printf���n���Exam Scores����n�n���

for �index � �� index � count� index!!�

printf���d�n�� exam�scores�index���

"

Figure ���� Code for scores�c

��� CHAPTER �� ARRAYS

� � �

� � �

int exam scores�MAX�

�
�
�

i

MAX � �
MAX � �

exam scores���
exam scores���
exam scores���

exam scores�i�

exam scores�MAX���
exam scores�MAX���

subscripted expressionindex

Figure ���� An Array of size MAX

��

�	

�

��

Referring to the code in Figure ���� the program �rst declares an array� exam scores�MAX��
of type integer� This declaration allocates a contiguous block of memory for objects of integer
type as shown in Figure ���� The macro� MAX� in square brackets gives the size of the array�
i�e� the number of elements this compound data structure is to contain� The name of the array�
exam scores� refers to the entire collection of MAX integer cells� Individual objects in the array may
be accessed by specifying the name of the array and the index� or element number� of the object� a
process called indexing� In C� the elements in the array are numbered from
 to MAX � �� So� the
elements of the array are referred to as exam scores���� exam scores���� � � � � exam scores�MAX

� ��� where the index of each element is placed in square brackets� These index speci�ers are
sometimes called subsctipts� analogous to the mathematical expression exam scoresia� These
indexed or subscripted array expressions are the names of each object in the array and may be
used just like any other variable name�

In the code� the while loop reads a score into the variable� n� places it in the array by assigning
it to exam scores�index�� and increments index� The loop is terminated either when index

reaches MAX �indicating a full array� or when scanf�� returns EOF� indicating the end of the data�

���� A COMPOUND DATA TYPE � ARRAY ���

We could have also read each data item directly into exam scores�index� by writing scanf�� as
follows�

scanf���d�� �exam�scores�index��

We choose to separate reading an item and storing it in the array because the use of the increment
operator� !!� for index is clearer if reading and storing of data items are separated�

Once the data items are read and stored in the array� a count of items read is stored in the
variable count� The list is then printed using a for loop� The array is traversed from element

to element count � �� printing each element in turn�

From the above example� we have seen how we can declare a variable to be of the compound
data type� array� how data can be stored in the elements of the array� and subsequently accessed�
More formally� the syntax for an array declaration is�

�type�speci�er��identi�er���size���

where the �type�speci�er� may be any scalar or derived data type� and the �size� must evaluate�
at compile time� to an unsigned integer� Such a declaration allocates a contiguous block of memory
for objects of the speci�ed type� The data type for each object in the block is speci�ed by the
�type�speci�er�� and the number of objects in the block is given by �sf �size� as seen in Figure
���� As stated above� the index values for all arrays in C must start with
 and end with the
highest index� which is one less than the size of the array� The subscripting expression with the
syntax�

�identi�er���expression��

is the name of one element object and may be used like any other variable name� The subscript�
�expression� must evaluate� at run time� to an integer� Examples include�

int a�����

float b�����

char s������

int i � ��

a�#� � �#�

a�	� �
 � a�#��

b��� � �����

printf��The value of b��� is �f�n�� b�����

scanf���c�� �s�����

c�i� � c�i!���

Through the remainder of this chapter� we will use the following symbolic constants for many
of our examples�

��� CHAPTER �� ARRAYS

�� File� araydef�h ��

�define MAX ��

�define SIZE ���

In programming with arrays� we frequently need to initialize the elements� Here is a loop that
traverses an array and initializes the array elements to zero�

int i� ex�MAX��

for �i � �� i � MAX� i!!�

ex�i� � ��

The loop assigns zero to ex�i� until i becomes MAX� at which point it terminates and the array
elements are all initialized to zero� One precaution to programmers using arrays is that C does not
check if the index used as a subscript is within the size of the declared array� leaving such checks
as the programmer�s responsibility� Failure to do so can� and probably will result in catastrophe�

����� Character Strings as Arrays

Our next task is to store and print non�numeric text data� i�e� a sequence of characters which are
called strings� A string is an list �or string� of characters stored contiguously with a marker to
indicate the end of the string� Let us consider the task�

STRING
� Read and store a string of characters and print it out�

Since the characters of a string are stored contiguously� we can easily implement a string
by using an array of characters if we keep track of the number of elements stored in the array�
However� common operations on strings include breaking them up into parts �called substrings��
joining them together to create new strings� replacing parts of them with other strings� etc� There
must be some way of detecting the size of a current valid string stored in an array of characters�

In C� a string of characters is stored in successive elements of a character array and terminated
by the NULL character� For example� the string �Hello� is stored in a character array� msg��� as
follows�

char msg�SIZE��

msg��� � H�

msg��� � e�

msg��� � l�

msg�#� � l�

msg�%� � o�

msg�	� � $��$�

���� A COMPOUND DATA TYPE � ARRAY ���

�

index� � � � 	

� � ��
h

e

l

l

o

n�

�

Figure ���� A String Stored in Memory

The NULL character is written using the escape sequence �n
�� The ASCII value of NULL is
�
and NULL is de�ned as a macro to be
 in stdio�h� so programs can use the symbol� NULL� in
expressions if the header �le is included� The remaining elements in the array after the NULL may
have any garbage values� When the string is retrieved� it will be retrieved starting at index

and succeeding characters are obtained by incrementing the index until the �rst NULL character is
reached signaling the end of the string� Figure ��� shows a string as it is stored in memory�

Given this implementation of strings in C� the algorithm to implement our task is now easily
written� We will assume that a string input is a sequence of characters terminated by a newline
character� �The newline character is not part of the string�� Here is the algorithm�

initialize index to zero

while not a newline character

read and store a character in the array at the next index

increment the index value

terminate the string of characters in the array with a NULL char�

initialize index to zero

traverse the array until a NULL character is reached

print the array character at index

increment the index value

The program implementation has�

� a loop to read string characters until a newline is reached�

� a statement to terminate the string with a NULL�

� and a loop to print out the string�

The code is shown in Figure ��� and a sample session form the program is shown below�

Sample Session�

���Character Strings���

Type characters terminated by a RETURN or ENTER

�

 CHAPTER �� ARRAYS

�� File� string�c

This program reads characters until a newline� stores them in an

array� and terminates the string with a NULL character� It then prints

out the string�

��

�include �stdio�h�

�include �araydef�h�

main��

� char msg�SIZE�� ch�

int i � ��

printf�����Character Strings����n�n���

printf��Type characters terminated by a RETURN or ENTER�n���

while ��ch � getchar��� � $�n$�

msg�i!!� � ch�

msg�i� � $��$�

i � ��

while �msg�i� � $��$�

putchar�msg�i!!���

printf���n���

"

Figure ���� Code for string�c

���� A COMPOUND DATA TYPE � ARRAY �
�

Hello
Hello

The �rst while loop reads a character into ch and checks if it is a newline� which discarded
and the loop terminated� Otherwise� the character is stored in msg�i� and the array index� i�
incremented� When the loop terminates� a NULL character is appended to the string of characters�
In this program� we have assumed that the size of msg�� is large enough to store the string� Since
a line on a terminal is �
 characters wide and since we have de�ned SIZE to be �

� this seems a
safe assumption�

The next while loop in the program traverses the string and prints each character until a NULL
character is reached� Note� we do not need to keep a count of the number of characters stored in
the array in this program since the �rst NULL character encountered indicates the end of the string�
In our program� when the �rst NULL is reached we terminate the string output with a newline�

The assignment expression in the above program�

msg�i� � $��$�

can also be written as�

msg�i� � NULL�

or�

msg�i� � ��

In the �rst case� the character whose ASCII value is
 is assigned to msg�i�� where in the other
cases� a zero value is assigned to msg�i�� The above assignment expressions are identical� The
�rst expression makes it clear that a null character is assigned to msg�i�� but the second uses a
symbolic constant which is easier to read and understand�

To accommodate the terminating NULL character� the size of an array that houses a string must
be at least one greater than the expected maximum size of string� Since di�erent strings may be
stored in an array at di�erent times� the �rst NULL character in the array delimits a valid strin�
The importance of the NULL character to signal the end of a valid string is obvious� If there were
no NULL character inserted after the valid string� the loop traversal would continue to print values
interpreted as characters� possibly beyond the array boundary until it fortuitously found a NULL

�
� character�

The second while loop may also be written�

while �msg�i� � NULL�

putchar�msg�i!!���

�
� CHAPTER �� ARRAYS

and the while condition further simpli�ed as�

while �msg�i��

putchar�msg�i!!���

If msg�i� is any character with a non�zero ASCII value� the while expression evaluates to True�
If msg�i� is the NULL character� its value is zero and thus False� The last form of the while

condition is the more common usage� While we have used the increment operator in the putchar��
argument� it may also be used separately for clarity�

while �msg�i�� �

putchar�msg�i���

i!!�

"

It is possible for a string to be empty� that is� a string may have no characters in it� An empty
string is a character array with the NULL character in the zeroth index position� msg����

��� Passing Arrays to Functions

We have now seen two examples of the use of arrays � to hold numeric data such as test scores�
and to hold character strings� We have also seen two methods for determining how many cells
of an array hold useful information � storing a count in a separate variable� and marking the
end of the data with a special character� In both cases� the details of array processing can easily
obscure the actual logic of a program � processing a set of scores or a character string� It is often
best to treat an array as an abstract data type with a set of allowed operations on the array which
are performed by functional modules� Let us return to our exam score example to read and store
scores in an array and then print them� except that we now wish to use functions to read and
print the array�

LIST�� Read an array and print a list of scores using functional modules�

The algorithm is very similar to our previous task� except that the details of reading and
printing the array is hidden by functions� The function� read intaray��� reads scores and stores
them� returning the number of scores read� The function� print intaray��� prints the contents
of the array� The re�ned algorithm for main�� can be written as�

print title� etc�

n � read�intaray�exam�scores� MAX��

print�intaray�exam�scores� n��

Notice we have passed an array� exam scores� and a constant� MAX �specifying the maximum size
of the proposed list�� to read intarray�� and expect it to return the number of scores placed

���� PASSING ARRAYS TO FUNCTIONS �
�

in the array� Similarly� when we print the array using print intarray� we give it the array
to be printed and a count of elements it contains� We saw in Chapter � that in order for a
called function to access objects in the calling function �such as to store elements in an array�
we must use indirect access� i�e� pointers� So� read intaray�� must indirectly access the array�
exam scores� in main��� One unique feature of C is that array access is always indirect� thus
making it particularly easy for a called function to indirectly access elements of an array and store
or retrieve values� As we will see in later sections� array access by index value is interpreted as an
indirect access� so we may simply use array indexing as indirect access�

We are now ready to implement the algorithm for main�� using functions to read data into
the array and to print the array� The code is shown in Figure ���� The function calls in main��

pass the name of the array� exam scores� as an argument because the name of an array in an
expression evaluates to a pointer to the array� In other words� the expression� exam scores� is a
pointer to �the �rst element of� the array� exam scores��� Its type is� therefore� int �� and a
called function uses this pointer �passed as an argument� to indirectly access the elements of the
array� As seen in the Figure� for both functions� the headers and the prototypes show the �rst
formal parameter as an integer array without specifying the size� In C� this syntax is interpreted
as a pointer variable� so scores is declared aa an int � variable� We will soon discuss how arrays
are accessed in C� for now� we will assume that these pointers may be used to indirectly access
the arrays�

The second formal parameter in both functions is lim which speci�es the maximum number
of items� For read intaray��� this may be considered the maximum number of scores that can
be read so that it does not read more items than the size of the array allows �MAX�� The function
returns the actual number of items read which is saved in the variable� n� in main��� For the
function� print intaray��� lim represents the fact that it must not print more than n items�
Again� since arrays in C are accessed indirectly� these functions are able to access the array which
is de�ned and allocated in main��� A sample session for this implementation of the task would be
identical to the one shown earlier�

Similarly� we can modify the program� string�c� to use functions to read and print strings�
The task and the algorithm are the same as de�ned for STRING
 in the last section� except
that the program is terminated when an empty string is read� The code is shown in Figure ����
The driver calls read str�� and print str�� repeatedly until an empty string is read �detected
when s��� is zero� i�e� NULL�� The argument passed to read str�� and print str�� is str� a
pointer to �the �rst element of� a character array� i�e� a char �� The function� read str��� reads
characters until a newline is read and indirectly stores the characters into the string� s� The
function� print str��� prints characters from the string� s until NULL is reached and terminates
the output with a newline� Notice we have declared the formal parameter� s as a char �� rather
than as an array� char s��� As we will see in the next section� C treats the two declarations
exactly the same�

�
� CHAPTER �� ARRAYS

�� File� scores��c

This program uses functions to read scores into an array and to print

the scores�

��

�include �stdio�h�

�define MAX ��

int read�intaray�int scores��� int lim��

print�intaray�int scores��� int lim��

main��

� int n� exam�scores�MAX��

printf�����List of Exam Scores����n�n���

n � read�intaray�exam�scores� MAX��

print�intaray�exam�scores� n��

"

�� Function reads scores in an array� ��

int read�intaray�int scores��� int lim�

� int n� count � ��

printf��Type scores� EOF to quit�n���

while ��count � lim� �� �scanf���d�� �n� � EOF�� �

scores�count� � n�

count!!�

"

return count�

"

�� Function prints lim elements in the array scores� ��

void print�intaray�int scores��� int lim�

� int i�

printf���n���Exam Scores����n�n���

for �i � �� i � lim� i!!�

printf���d�n�� scores�i���

"

Figure ���� Code fore scores�c

���� PASSING ARRAYS TO FUNCTIONS �
�

�� File� string��c

This program reads and writes strings until an empty string is

read� It uses functions to read and print strings to standard

files�

��

�include �stdio�h�

�define SIZE ���

void print�str�char s����

void read�str�char s����

main��

� char str�SIZE��

do �

read�str�str��

print�str�str��

" while �str�����

"

�� Function reads a string from standard input until a newline is

read� A NULL is appended�

��

void read�str�char �s�

� int i�

char c�

for �i � �� �c � getchar��� � $�n$� i!!�

s�i� � c�

s�i� � NULL�

"

�� Function prints a string to standard output and terminates with a

newline�

��

void print�str�char �s�

� int i�

for �i � �� s�i�� i!!�

putchar�s�i���

putchar�$�n$��

"

Figure ���� Code for string��c

�
� CHAPTER �� ARRAYS

��� Arrays� Pointers� Pointer Arithmetic

Let us now examine how arrays are actually accessed in C� As we have seen� an array is a sequence
of objects� each of the same data type� The starting address of this array of objects� i�e� the
address of the �rst object in the array is called the base address of the array� The address of
each successive element of the array is o�set from the base by the size of the array type� e�g� for
each successive element of an integer array� the address is o�set by the size of an integer type
object� As we mentioned in the previous section� in C� the name of an array used by itself in
an expression evaluates to the base address of the array� That is� this value is a pointer type
and points to the �rst object of the array� The name of the array is said to point to the array�
Figure ��� shows an array� X�� with X pointing to �the �rst object of� the array� If the array is
an integer array� ��oat array� character array� etc�� then the type of X is int � �float �� char
�� etc��� Thus� the declaration of an array causes the compiler to allocate the speci�ed number of
contiguous cells of the indicated type� as well as to allocate an appropriate pointer cell� initialized
to point to the �rst cell of the array� This pointer cell is given the name of the array� Since X

points to X���� the following are equivalent�

X ����� �X���

Thus� the dereferenced pointer� �X� accesses the object� X���� i�e� the following are equivalent�

�X ����� X���

As we have seen� pointer variables point to objects of a speci�c type� We might suspect that they
can be increased or decreased to point to contiguous successive or preceding objects of the same
type� In C� adding one to a pointer makes the resulting pointer point to the next object of the
same type� �The value of the new pointer equals the original value of the pointer increased by
the size of the object pointed to�� For the array above� X ! � points to X���� the increase in the
pointer value is made by the appropriate size of the type involved� For example� if X is an integer
array and an integer requires � bytes� then the value of X ! � will be greater than that of X by
�� Adding k to a pointer results in a pointer to a successive object o�set by k objects from the
original� Thus� X ! � points to the start of the array �the �rst element� X����� X ! � points to
the next element� X���� and X ! k points to X�k� as can be seen in Figure ���� Similarly� �X�k� is
the same as X ! k� and X�k� is the same as ��X ! k�� Table ��� summarizes pointer arithmetic
and indirect access of elements of an array� Pointer arithmetic may also involve subtraction� the
resulting pointer points to a previous object o�set appropriately� Thus� for example� �X�#� � �

points to X���� �X�	� � # points to X���� and so on�

In C array access is always made through pointers and indirection operators� Whenever an
expression such as X�k� appears in a program� the compiler interprets it to mean ��X ! k�� In
other words� objects of an array are always accessed indirectly� As we have seen previously� this
makes it particularly easy for a called function to indirectly access elements of an array allocated
in the calling function to store or retrieve values� Let us see how function calls handle array access
using the program� scores��c of the last section� The relevant function calls in main�� and the
corresponding function headers are shown below for easy reference�

���� ARRAYS� POINTERS� POINTER ARITHMETIC �
�

�

�

�

�

�

�

� � �

� � �

subscripted expressionindex

X�n�

X���
X���
X���

X�i�

X or X � �
X � �
X � �

X � i

X � n � �
X � n � �

X�n���
X�n���

Figure ���� Pointer Arithmetic

Pointer Address of Array Indirect
Arithmetic Operator Subscripting Reference

X �
 �X�
� X�
� ��X �
�
X � � �X��� X��� ��X � ��
X � � �X��� X��� ��X � ��
X � � �X��� X��� ��X � ��
� � � � � � � � � � � �

X � k �X�k� X�k� ��X � k�

Table ���� Pointer Arithmetic and Indirect Access

�
� CHAPTER �� ARRAYS

main��

� int exam�scores�MAX��

���

n � read�intaray�exam�scores� MAX��

print�intaray�exam�scores� n��

"

int read�intaray�int scores��� int lim�

�

���

"

void print�intaray�int scores��� int lim�

�

���

"

When a formal parameter is declared in a function header as an array� it is interpreted as a pointer
variable� NOT an array� Even if a size were speci�ed in the formal parameter declaration� only a
pointer cell is allocated for the variable� not the entire array� The type of the pointer variable is the
speci�ed type� In our example� the formal parameter� scores� is an integer pointer� It is initialized
to the pointer value passed as an argument in the function call� The value passed in main�� is
exam scores� a pointer to the �rst element of the array� exam scores��� Figure ��� illustrates
the connection between the calling function� main��� and the called function� read intaray��� In
this case� the formal parameter� scores� is initialized to point to the value of exam scores which
is a pointer to �the �rst element of� the array exam scores��� The Figure also shows that lim is
initialized to �
�

Within the function� read scores��� it is now possible to access all the elements of the ar�
ray� exam scores��� indirectly� Since the variable� scores� in read intaray�� points to the
�rst element of the array� exam scores��� �scores accesses the �rst element of the array� i�e�
exam scores���� In addition� scores ! � points to the next element of the array� so ��scores

! �� accesses the next element� i�e� exam scores���� In general� ��scores ! count� accesses
the element exam scores�count�� To access elements of the array� we can either write ��scores
! count� or we can write scores�count�� because dereferenced array pointers and indexed array
elements are identical ways of writing expressions for array access�

The functions� read intaray�� and print intaray�� can be used to read objects into any

integer array and to print element values of any integer array� respectively� The calling function
must simply pass� as arguments� an appropriate array pointer and maximum number of elements�

These functions may also be written explicitly in terms of indirect access� for example�

�� Function reads scores in an array� ��

int read�intaray��int � scores� int lim�

� int n� count � ��

printf��Type scores� EOF to quit�n���

���� ARRAYS� POINTERS� POINTER ARITHMETIC �
�

�
���

�

main��

scores

exam scores

�

int

lim

�
�

�

�

�

read intaray� int 	

�

�

�

�

�

	

Figure ���� Array Pointers as Function Parameters

��
 CHAPTER �� ARRAYS

while ��count � lim� �� �scanf���d�� �n� � EOF�� �

��scores ! count� � n�

count!!�

"

return count�

"

Alternatively� since scores is a pointer variable� we can increment its value each time so that it
points to the next object of integer type in the array� such as�

�� Function reads scores in an array� ��

int read�intaray#�int � scores� int lim�

� int n� count � ��

printf��Type scores� EOF to quit�n���

while ��count � lim� �� �scanf���d�� �n� � EOF�� �

�scores � n�

count!!�

scores!!�

"

return count�

"

The �rst time the loop is executed� �scores accesses the element of the array at index
� The
local pointer cell� scores� is then incremented to point to the next element of the array� at index ��
The second time the loop is executed� �scores accesses the array element at index �� The process
continues until the loop terminates�

It is also possible to mix dereferenced pointers and array indexing�

�� Function reads scores in an array� ��

int read�intaray%�int scores��� int lim�

� int n� count � ��

printf��Type scores� EOF to quit�n���

while ��count � lim� �� �scanf���d�� �n� � EOF�� �

��scores ! count� � n�

count!!�

"

return count�

"

or�

�� Function reads scores in an array� ��

���� ARRAYS� POINTERS� POINTER ARITHMETIC ���

int read�intaray	�int � scores� int lim�

� int n� count � ��

printf��Type scores� EOF to quit�n���

while ��count � lim� �� �scanf���d�� �n� � EOF�� �

scores�count� � n�

count!!�

"

return count�

"

We can also consider parts of an array� called a sub�array� A pointer to a sub�array is also an
array pointer� it simply speci�es the base of the sub�array� In fact� as far as C is concerned� there
is no di�erence between an entire array and any of its sub�arrays� For example� a function call
can be made to print a sub�array by specifying the starting pointer of the sub�array and its size�
Suppose we wish to print the sub�array starting at exam scores�#� containing �ve elements� the
expression� �exam scores�#� is a pointer to an array starting at exam scores�#�� The function
call is�

print�intaray��exam�scores�#�� 	��

Alternately� since exam scores ! # points to exam scores�#�� the function call can be�

print�intaray�exam�scores ! #� 	��

The passed parameters are shown visually in Figure ���� If either of the above function calls
is used in the program� scores��c� the values of exam scores�#�� exam scores�%�� ���� and
exam scores��� will be printed�

��
�� Pointers� Increment and Decrement

We have just seen that an array name� e�g� aa� is a pointer to the array and that aa ! i points to
aa�i�� We can illustrate this point in the program below� where the values of pointers themselves
are printed� A pointer value is a byte address and is printed as an unsigned integer �using
conversion speci�cation for unsigned integer� �u�� The program shows the relationships between
array elements� pointers� and pointer arithmetic�

�� File� arayptr�c

This program shows the relation between arrays and pointers�

��

�include �stdio�h�

�define N 	

��� CHAPTER �� ARRAYS

�

�

�

main��

scores

exam scores

�

int

lim

�

�

�

�

read intaray� int 	

�

�

�

�

�

	

�

Figure ���� Pointer to a Sub�array

���� ARRAYS� POINTERS� POINTER ARITHMETIC ���

main��

� int i� j� aa�N��

printf�����Pointers� Arrays� and Pointer Arithmetic����n�n���

for �i � �� i � N� i!!� �

aa�i� � i � i�

printf��aa ! �d � �u� �aa��d� � �u�n�� i� aa ! i� i� �aa�i���

printf����aa ! �d� � �d� aa��d� � �d�n�� i� ��aa ! i�� i� aa�i���

"

"

In the loop� we �rst assign a value to each aa�i�� We then print values to show that pointers� aa
! i and �aa�i� are the same� i�e� that aa ! i points to aa�i�� Next� we print the array element
values to show that ��aa ! i� is the same as aa�i�� A sample output for the program is shown
below�

���Pointers� Arrays� and Pointer Arithmetic���

aa ! � � �	%
�� �aa��� � �	%
�

��aa ! �� � �� aa��� � �

aa ! � � �	%
�� �aa��� � �	%
�

��aa ! �� � �� aa��� � �

aa ! � � �	%
%� �aa��� � �	%
%

��aa ! �� � %� aa��� � %

aa ! # � �	%
�� �aa�#� � �	%
�

��aa ! #� � �� aa�#� � �

aa ! % � �	%

� �aa�%� � �	%

��aa ! %� � ��� aa�%� � ��

�In the host implementation where the above program was executed� two bytes are required for
integers� therefore� successive array element addresses are two bytes apart��

The next example shows that pointers may be incremented and decremented� In either case�
if the original pointer points to an object of a speci�c type� the new pointer points to the next
or previous object of the same type� i�e� pointers are incremented or decremented in steps of the
object size that the pointer points to� Thus� it is possible to traverse an array starting from a
pointer to any element in the array� Consider the code�

�� File� arayptr��c

Pointers and pointer arithmetic�

��

�include �stdio�h�

�define N 	

��� CHAPTER �� ARRAYS

main��

� float faray�N�� �fptr�

int �iptr� iaray�N�� i�

�� initialize ��

for �i � �� i � N� i!!� �

faray�i� � ��#�

iaray�i� � ��

"

�� initialize fptr to point to element faray�#� ��

fptr � �faray�#��

�fptr � ��� �� faray�#� � �� ��

��fptr � �� � ��� �� faray��� � �� ��

��fptr ! �� � ���� �� faray�%� � ��� ��

�� initialize iptr in the same way ��

iptr � �iaray�#��

�iptr � ��

��iptr � �� � ���

��iptr ! �� � ��

for �i � �� i � N� i!!� �

printf��faray��d� � �f �� i� ��faray ! ����

printf��iaray��d� � �d�n�� i� iaray�i���

"

"

The program is straightforward� It declares a �oat array of size �� and an integer array of the same
size� The �oat array elements are all initialized to
��� and the integer array elements to �� The
program also declares two pointer variables� one a �oat pointer and the other an integer pointer�
Each pointer variable is initialized to point to the array element with index �� for example� fptr is
initialized to point to the �oat array element� faray�#�� Therefore� fptr � � points to faray����
and fptr ! � points to faray�%�� The value of �fptr is then modi�ed� as is the value of ��fptr
� �� and ��fptr ! ��� Similar changes are made in the integer array� Finally� the arrays are
printed� Here is the output of the program�

faray��� � ��#����� iaray��� � �

faray��� � ��#����� iaray��� � �

faray��� � �������� iaray��� � ��

faray�#� � �������� iaray�#� � �

faray�%� � �������� iaray�%� � �

���� ARRAYS� POINTERS� POINTER ARITHMETIC ���

��
�� Array Names vs Pointer Variables

As we have seen� when we declare an array� a contiguous block of memory is allocated for the cells
of the array and a pointer cell �of the appropriate type� is also allocated and initialized to point
to the �rst cell of the array� This pointer cell is given the name of the array� When memory is
allocated for the array cells� the starting address is �xed� i�e� it cannot be changed during program
execution� Therefore� the value of the pointer cell should not be changed� To ensure that this
pointer is not changed� in C� array names may not be used as variables on the left of an assignment
statement� i�e� they may not be used as an Lvalue� Instead� if necessary� separate pointer variables
of the appropriate type may be declared and used as Lvalues� For example� we can use pointer
arithmetic and the dereference operator to initialize an array as follows�

�� Use of pointers to initialize an array ��

�include �stdio�h�

main��

� int i�

float X�MAX��

for �i � �� i � MAX� i!!�

��X ! i� � ���� �� same as X�i� ��

"

In the loop� ��X ! i� is the same as X�i�� Since X �the pointer cell� has a �xed value we cannot
use the increment operator or the assignment operator to change the value of X�

X � X ! �� �� ERROR ��

Here is an example of a common error which attempts to use an array as an Lvalue�

�� BUG� Attempt to use an array name as an Lvalue ��

�include �stdio�h�

main��

� int i�

float X�MAX��

for �i � �� i � MAX� i!!� �

�X � ����

X!!� �� BUG� X � X ! �� ��

"

"

In this example� X is �xed and cannot be used as an Lvalue� the compiler will generate an error
stating that an Lvalue is required for the !! operator� However� we can declare a pointer variable�

��� CHAPTER �� ARRAYS

which can point to the same type as the type of the array� and initialize it to the value of array
pointer� This pointer variable CAN be used as an Lvalue� so we can then rewrite the previous
array initialization loop as follows�

�� OK� A pointer variable is initialized to an array pointer and then

used as an Lvalue�

��

�include �stdio�h�

main��

� int i�

float �ptr� X�MAX��

ptr � X� �� ptr is a variable which can be assigned a value ��

for �i � �� i � MAX� i!!� �

�ptr � ���� �� �ptr accesses X�i� ��

ptr!!�

"

"

Observe that the pointer variable� ptr� is type float �� because the array is of type float� It is
initialized to the value of the �xed pointer� X �i�e� the initial value of ptr is set to the same as that
of X� namely� �X����� and may subsequently be modi�ed in the loop to traverse the array� The
�rst time through the loop� �ptr � X���� is set to zero and ptr is incremented by one so that it
points to the next element in the array� The process repeats and each element of the array is set
to
�
� This behavior is shown in Figure ���
� Observe that the �nal increment of ptr makes it
point to X�MAX�� however� no such element exists �recall� an array of size MAX has cells indexed
 to
MAX � ��� At the end of the for loop� the value of ptr is meaningless since it now points outside
the array� Unfortunately� C does not prevent a program from accessing objects outside an array
boundary� it merely increments the pointer value and accesses memory at the new address� The
results of accessing the array with the pointer� ptr at this point will be meaningless and possibly
disastrous� It is the responsibility of the programmer to make sure that the array boundaries are
not breached� The best way of ensuring that a program stays within array boundaries is to write
all loops that terminate when array limits are reached� When passing arrays in function calls�
always pass the array limit as an argument as well�

Here is a similar error in handling strings and pointers�

�� BUG� Common error in accessing strings ��

�include �stdio�h�

�define SIZE ���

main��

� char c� msg�SIZE��

while ��c � getchar��� � $�n$� �

�msg � c�

���� ARRAYS� POINTERS� POINTER ARITHMETIC ���

��

�
� �

�

�

�

� � �

� � �

�oat X�MAX�
X

ptr

�

�

Figure ���
� Pointer Variables and Arrays

msg!!� �� msg is fixed� it cannot be an Lvalue ��

"

�msg � $��$�

"

The array name� msg is a constant pointer� it cannot be used as an Lvalue� We can rewrite the
loop correctly to read a character string as�

�� OK� Correct use of pointers to access a string ��

�include �stdio�h�

�define SIZE ���

main��

� char c� �mp� msg�SIZE��

mp � msg�

while ��c � getchar��� � $�n$� �

�mp � c�

mp!!� �� mp is a variable� it can be an Lvalue ��

"

�mp � $��$�

"

��� CHAPTER �� ARRAYS

�

�

�

� � � � � �

� � �
h

e

l

l

o

n�

msg

mp

Figure ����� Pointer Variables and Strings

Observe in this case� mp is a character pointer since the array is a character array� The variable�
mp is initialized to the value of msg� The dereferenced pointer variable� �mp� then accesses the
elements of the array in sequence as mp is incremented �see Figure ������ The loop terminates
when a newline is read� and a terminating NULL is added to the string�

Remember� pointer variables must be initialized to point to valid objects� otherwise� fatal
errors will most likely occur� For example� if the pointer� mp� in the above code were not initialized
to the value of msg� a serious and probably fatal error will occur when the pointer is dereferenced
and an attempt is made to access the memory cell pointed to by mp� This is because the initial
value of mp would be some garbage value which may point to an invalid memory address causing
a fatal memory fault to occur� If the garbage value were not an invalid memory address� the loop
would write characters to an unknown memory address� possibly destroying other valid data�

As we�ve said� an array names cannot be used as an Lvalues� On the other hand� when a
function is used to access an array� the corresponding formal parameter is a pointer variable� This
pointer variable can be used as an Lvalue� Here is a function to print a string�

�� Function prints a string pointed to by mp� ��

void our�strprint�char �mp�

�

while ��mp� �

putchar��mp��

mp!!� �� mp is a variable� it can be an Lvalue ��

"

putchar�$�n$��

"

Here� mp is a pointer variable� which� when the function is called� we assume will be initialized to
point to some NULL terminated string� The expression� �mp� accesses the elements of the array� and
the loop continues as long as �mp is not NULL� Each time the loop is executed� a character� �mp�
is written� and mp is incremented to point to the next character in the array� When �mp accesses
the NULL� the loop terminates and a newline character is written�

��	� STRING ASSIGNMENT AND I
O ���

��� String Assignment and I	O

As we have seen� a character string in C is an array of characters with a terminating NULL character�
Access to a character string requires only a pointer to the character array containing the characters�
It is common to use the term� string� to loosely refer to either an array of characters holding the
string� or to a character pointer that may be used to access the string� it should be clear from
context which is meant�

When a character string constant is used in a program� the compiler automatically allocates
an array of characters� stores the string in the array� appends the NULL character� and replaces the
string constant by the value of a pointer to the string� Therefore� the value of a string constant is
the value of a pointer to the string� We can use string constants in expressions just as we can use
the names of arrays� Here is an example�

char �mp� msg�SIZE��

mp � �This is a message�n��

The compiler replaces the string constant by a pointer to a corresponding string� Since mp is a
character pointer variable� we can assign a value of a �xed string pointer to mp� If necessary we
can traverse and print the string using this pointer� On the other hand� since msg�� is declared
as a character array� we cannot make the following assignment�

msg � �This is a message�n�� �� ERROR ��

since we are attempting to modify a constant pointer� msg�

A string constant is just another string appropriately initialized and accessed by a pointer to it�
We will therefore make no distinctions between strings and string constants� they are both strings
referenced by string pointers� While strings and string constants are both strings� the contents of
string constants cannot be changed in ANSI C�

We have been using string constants as format strings for printf�� and in scanf��� which
expect their �rst argument to be a string pointer� i�e� a char pointer� The compiler has automat�
ically created an appropriate string and replaced the string by a string pointer� Instead of writing
a format string directly in a function call� we could pass a string pointer that points to a format
string� Here is an example�

char �mesg�

int n�

n � ��

mesg � �This is message number �d�n��

printf�mesg� n��

��
 CHAPTER �� ARRAYS

The string constant is stored by the compiler somewhere in memory as an array of characters with
an appended NULL character� A pointer to this character array is assigned to the character pointer
variable� mesg� The function printf�� then uses the pointer to retrieve the format string� and
print the string�

This is message number �

The functions� printf�� and scanf�� can be used for string input and output as well� Array
names or properly initialized pointers to strings must be passed as arguments in both cases� The
conversion speci�cation for strings is �s� For example� consider the task of reading strings and
writing them out� Here is an example program�

�� File� fcopy�c

This program reads strings from standard input using scanf�� and writes

them to standard output using printf���

��

�include �stdio�h�

�include �araydef�h�

main��

� char mesg�SIZE��

printf�����Strings� Formatted I�O����n�n���

printf��Type characters� EOF to quit�n���

while �scanf���s�� mesg� � EOF�

printf���s�n�� mesg��

"

Sample Session�

���Strings� Formatted I�O���

Type characters� EOF to quit

This is a test
This

is

a

test

D

The conversion speci�cation� �s indicates a string and the corresponding matching argument must
be a char pointer� When scanf�� reads a string it stores it at the location pointed to by mesg �
note we do not use �mesg since mesg is already a pointer to an array of characters� Then� printf��
prints the string pointed to by mesg� When scanf�� reads a string using �s� it behaves like it

���� ARRAY INITIALIZERS ���

does for numeric input� skipping over leading white space� and reading the string of characters
until a white space is reached� Thus� scanf�� can read only single words� storing the string of
characters read into an array pointed to by the argument� mesg and appending a NULL character
to mark the end of the string� On the other hand� printf�� prints the string pointed to by its
argument� mesg� printing the entire string �including any white space� until a NULL character is
reached� The sample session shows that each time scanf�� reads a string� only a single word is
read from the input line and then printed�

As we said� when scanf�� reads a string� the string argument must be a pointer that points to
an array where the input characters are to be stored� For example� here are correct and incorrect
ways of using scanf���

char � mp� � mptr� msg�SIZE��

scanf���s�� mp�� �� BUG ��

scanf���s�� msg�� �� OK ��

mptr � msg�

scanf���s�� mptr�� �� OK ��

The �rst scanf�� is incorrect because mp has not been initialized and� therefore� does not point
to an array where a string is to be stored� The other statements are correct� in each case� the
pointer points to an array�

��
 Array Initializers

ANSI C allows automatic array variables to be initialized in declarations by constant initializers
as we have seen we can do for scalar variables� These initializing expressions must be constant

�known at compile time� values� expressions with identi�ers or function calls may not be used in
the initializers� The initializers are speci�ed within braces and separated by commas� Here are
some declarations with constant initializers�

int ex���� � � ��� �#� �� ��� ��� %� "�

char word���� � � h� e� l� l� o� $��$ "�

Each constant initializer in the braces is assigned� in sequence� to an element of the array starting
with index
� If there are not enough initializers for the whole array� the remaining elements of
the array are initialized to zero� Thus� ex��� through ex�	� are assigned the values ��� ��� ��
��� ��� and ��� while ex��� through ex��� are initialized to zero� Similarly� word is initialized
to a string �hello�� String initializers may be written as string constants instead of character
constants within braces� for example�

char mesg�� � �This is a message��

char name���� � �John Doe��

��� CHAPTER �� ARRAYS

In the case of mesg��� enough memory is allocated to accommodate the string plus a terminating
NULL� and we do not need to specify the size of the array� The above string initializers are allowed
as a convenience� the compiler initializes the array at compile time� Remember� initializations
are not assignment statements� they are declarations that allocate and initialize memory� As with
other arrays� these array names cannot be used as Lvalues in assignment statements�

Here is a short program that shows the use of initializers�

�� File� init�c

Program shows use of initializers for arrays�

��

�include �stdio�h�

�define MAX ��

main��

� int i� ex�MAX� � � ��� �#� �� ��� ��� %� "�

char word�MAX� � �S� m� i� l� e� $��$"�

char mesg�� � �Message of the day is� ��

printf�����Array Declarations with Initializers����n�n���

printf���s�s�n�� mesg� word��

printf��Initialized Array��n���

for �i� �� i � MAX� i!!�

printf���d�n�� ex�i���

"

Sample Output�

���Array Declarations with Constant Initializers���

Message of the day is� Smile

��

�#

�

��

��

%�

�

�

�

�

The �rst printf�� statement uses �s to print each of the two strings accessed by pointers� mesg
and word� Finally� the loop prints the array� ex� one element per line�

���� ARRAYS FOR DATABASES ���

�

�

�

�

�

�

�

�

�

�
id hrs rate regular overtime

index

index i

Figure ����� Data Record Spread Over Several Arrays

��� Arrays for Databases

We now consider our payroll task that reads input data and calculates pay as before� but the
program prints a table of computed pay for all the id�s� The algorithm uses arrays to store the
data� but is otherwise very similar to our earlier programs� get data� calculate pay� and print
results� We will use functions to perform these subtasks� Here are the prototypes�

�� File� payutil�h ��

int getdata�int id��� float hrs��� float rate��� int lim��

void calcpay�float hrs��� float rate��� float reg��� float over��� int n��

void printdata�int id��� float hrs��� float rate���

float reg��� float over��� int n��

The function� getdata�� gets the data into the appropriate arrays for id�s� hours worked� and
rate of pay� returning the number of id�s entered by the user� While the arrays id��� hrs��� and
rate�� are individual arrays� we make sure that the same value of the array index accesses the
data for a given id� For example� id�i� accesses an id number and hrs�i� and rate�i� access
hours worked and rate of pay for that id number� In other words� an input data record for each id
number resides at the same index in these arrays�oWe can think of this data structure as a table�
where the columns are the arrays holding di�erent pieces of information� and the rows are the
data for an individual id� as shown in Figure �����

Next� calcpay�� calculates and stores regular and overtime pay for each id in arrays� regpay��
and overpay�� �columns�� at the same array index as the input data record� Thus� the entire pay�
roll data record for each id number is at a unique index in each of the arrays� Finally� printdata��

��� CHAPTER �� ARRAYS

�� File� paytab�c

Other Source Files� payutil�c

Header FIles� paydef�h� payutil�h

Program calculates and stores payroll data for a number of id$s� Gets

data� calculates pay� and prints data for all id$s�

��

�include �stdio�h�

�include �paydef�h�

�include �payutil�h�

�define MAX ��

main��

� int n� id�MAX��

float hrs�MAX�� rate�MAX�� regpay�MAX�� overpay�MAX��

printf�����Payroll Program����n�n���

n � getdata�id� hrs� rate� MAX��

calcpay�hrs� rate� regpay� overpay� n��

printdata�id� hrs� rate� regpay� overpay� n��

"

Figure ����� Code for paytab�c

prints each payroll record� i�e� the input data as well as the calculated regular� overtime� and total
pay� We will write getdata��� printdata��� and calcpay�� in the �le� payutil�c� The proto�
types shown above for these functions are in the �le� payutil�h� This header �le is included in
the program �le paytab�c� where main�� will reside �see Figure ������ We also include the header
�le� paydef�h which de�nes the symbolic constants� REG LIMIT and OT FACTOR��

�� paydef�h ��

�define REG�LIMIT %�

�define OT�FACTOR ��	

The program calls getdata�� which reads data into the appropriate arrays and stores the
returned value �the number of id�s� into n� It then calls on calcpay�� to calculate the pay for n
people� �lling in the regpay�� and overpay�� arrays� and calls printdata�� to print the input
data and the results for n people� The code for these functions is shown in Figure �����

In the function� getdata��� scanf�� is used to read data for the itemsa� using n to count and
index the data items in the arrays� We use pointer arithmetic to pass the necessary arguments to
scanf��� For example� to read data into id�n�� we must pass its address �id�n�� Instead� we
pass id ! n which is identical to �id�n�� The function� getdata��� reads data for as many id�s
as possible� returning either when there is no more data �a zero id value� or the arrays are full �n
reaches the limit� lim passed in�� If the array limit is reached� an appropriate message is printed

���� ARRAYS FOR DATABASES ���

�� File� payutil�c ��

�include �stdio�h�

�include �paydef�h�

�include �payutil�h�

�� Gets data for all valid id$s and returns the number of id$s ��

int getdata�int id��� float hrs��� float rate��� int lim�

� int n � ��

while �n � lim� �

printf��ID �zero to quit�� ���

scanf���d�� id ! n�� �� id ! n is same as �id�n� ��

if �id�n� �� �� return n�

printf��Hours Worked� ���

scanf���f�� hrs ! n�� �� hrs ! n is same as �hrs�n� ��

printf��Rate of Pay� ���

scanf���f�� rate ! n�� �� rate ! n is same as �rate�n� ��

n!!�

"

printf��No more space for data � processing data�n���

return n�

"

�� Calculates regular and overtime pay for each id ��

void calcpay�float hrs��� float rate��� float reg��� float over��� int n�

� int i�

for �i � �� i � n� i!!� �

if �hrs�i� �� REG�LIMIT� �

reg�i� � hrs�i� � rate�i��

over�i� � ��

"

else �

reg�i� � REG�LIMIT � rate�i��

over�i� � �hrs�i� � REG�LIMIT� � OT�FACTOR � rate�i��

"

"

"

�� Prints a table of payroll data for all id$s� ��

void printdata�int id��� float hrs��� float rate���

float reg��� float over��� int n�

� int i�

printf�����PAYROLL� FINAL REPORT����n�n���

printf���%s�t�	s�t�	s�t��s�t��s�t��s�n�� �ID�� �HRS�� �RATE��

�REG�� �OVER�� �TOT���

for �i � �� i � n� i!!�

printf���%d�t�	��f�t�	��f�t����f�t����f�t����f�n��

id�i�� hrs�i�� rate�i�� reg�i�� over�i��

reg�i� ! over�i���

"

Figure ����� Code for payutil�c

��� CHAPTER �� ARRAYS

and the input is terminated� The function returns the number of id�s placed in the arrays� The
other functions in the program are straight forward� each index accesses the data record for the
id at that index�

As written� getdata�� terminates input of data when an invalid id �id �� �� is entered� An
alternative might be to read a data item in a temporary variable �rst� examine it for validity if
desired� and then assign it to an array element� For example�

scanf���d�� �x��

if �x � ��

id�n� � x�

else

return n�

Here is a sample session for the program� paytab�c compiled and linked with payutil�c�

Sample Session�

���Payroll Program���

ID �zero to quit�� �
Hours Worked� �	
Rate of Pay�
�
ID �zero to quit��
�
Hours Worked� ��
Rate of Pay�
�
�	
ID �zero to quit�� �
Hours Worked� �	
Rate of Pay� �
ID �zero to quit�� �
Hours Worked� �	
Rate of Pay�
	
ID �zero to quit�� 	
���PAYROLL� FINAL REPORT���

ID HRS RATE REG OVER TOT

 	���� �%��� 	����� ������ ������

�� %	��� ���	� 	����� �#��	 	�#��	

� ����� 	��� ������ ���� ������

	 %���� ����� %����� ���� %�����

���� COMMON ERRORS ���

��� Common Errors

�� Use of an array name as an Lvalue� An array name has a �xed value of the address where
the array is allocated� It is NOT a variable� it cannot be used as an Lvalue and assigned a
new value� Here are some example�

�a� int x�����

while ��x� �

���

x!!� �� ERROR ��

"

x cannot be used as an Lvalue and assigned new values�

�b� char msg�
���

���

while ��msg� �

���

msg!!� �� ERROR ��

"

msg cannot be used as an Lvalue�

�c� char msg�
���

msg � �This is a message�� �� ERROR ��

msg cannot be an Lvalue� The right hand side is not a problem� Value of a string
constant is a pointer to an array automatically allocated by the compiler�

�d� char msg�
�� � �This is a message��

�� OK� array initialized to the string when memory is allocated ��

A string constant initializer is correct� When memory is allocated for the array� it is
initialized to the string constant speci�ed�

�� Failure to de�ne an array� De�nition of an array is required to allocate memory for storage
of an array of objects� A pointer type allocates memory for a pointer variable� NOT for
an array of objects� Suppose� read str�� reads a string and stores it where its argument
points�

int �pmsg� �� memory allocated for a pointer variable ��

read�str�pmsg�� �� ERROR� memory not allocated for a string ��

No memory is allocated for a string� i�e� an array of characters� The variable� pmsg points to
some garbage address� read str�� will attempt to store the string at that garbage address�
The address may be invalid� in which case there will be a memory fault� a fatal error�
Allocate memory for a string with an array declaration�

��� CHAPTER �� ARRAYS

int str�MAX��

read�str�str��

�� Array pointer not passed to a called function� If a called function is to store values in an
array for later use by the calling function� it should be passed a pointer to an array de�ned
in the calling function� Here is a program with an error�

�include �stdio�h�

main��

� char � p� s�
���

� get�word�char � s��

p � get�word�s�� �� ERROR� returned pointer points to freed memory ��

puts�p�� �� Prints garbage ��

"

char � get�word�char �str�

� char wd�#��� �� memory allocated for array wd�� ��

int i � ��

while ��str �� $ $� �� skip leading blanks ��

�

while ��str � $ $� �� while not a delimiter ��

wd�i!!� � �str!!� �� copy char into array wd�� ��

wd�i� � $��$� �� append a NULL to string in wd�� ��

return wd� �� return pointer to wd�� ��

" �� memory for array wd�� is freed ��

The function� get word�� copies a word from a string� s� into an automatic array� wd�� for
which memory is allocated in get word��� When get word�� returns� a pointer� wd� to the
calling function� the memory allocated for wd�� is freed for other uses� since it was allocated
only for get word��� The data stored in wd�� may be overwritten with other data� In the
calling function� p is assigned an address value which points to freed memory� The function�
puts��� will print a garbage sequence of characters pointed to by p� At times� the memory
may not be reused right away and it will print the correct string� At other times� it will
print out garbage�

�� Errors in passing array arguments� Only array names� i�e�� pointers to arrays� should be
passed as arguments� The following are all in ERROR�

func�s����

func�s�
����

func��s��

Pointers to arrays� i�e� array names by themselves� should be passed as arguments in function
calls� Arguments in the above function calls are not pointers� The �rst one is meaningless
in an expression� the second attempts to pass an element at index �
� the third passes a
dereferenced pointer� not the pointer to the array�

��
� SUMMARY ���

�� Errors in declaring formal parameters� Formal parameters referencing arrays in function
de�nitions should be speci�ed to be pointers� not objects of a base type� Consider a function�
init��� that initializes elements of an integer array to some values� The following is an error�

init�int aray�

�

���

"

The parameter declared is an integer not a pointer to an integer� It should be either of the
following�

init�int � aray�

OR

init�int aray���

In either of the above cases� memory for an integer pointer is allocated� NOT for a new array
of integers�

�� Misinterpreting formal parameter declarations� Even if an array size is speci�ed in a formal
parameter� memory is not allocated for an array but for a pointer�

init�int aray�����

The above declares aray as an integer pointer�

�� Pointers are not initialized�

int x� � px�

x � ���

printf���px � �d�n�� �px��

Since value of px is garbage� there will be a fatal memory fault when an attempt is made to
evaluate �px�

��� Summary

In this Chapter� we have introduced one form of compound data type� the array� An array is a
block of a number of data items all of the same type allocated in contiguous memory cells� We
have seen that� in C� an array may be declared using the syntax�

�type�speci�er��identi�er���size���

��
 CHAPTER �� ARRAYS

specifying the type of the data items� and the number of elements to be allocated in the array�
As we saw� such a declaration in a function causes �size� data items of type �type�speci�er� to
be allocated in contiguous memory� AND a pointer cell to be allocated of type �type�speci�er��
�pointer to �type�speci�er��� given the name� �identi�er�� and initialized to point to the �rst cell
of the array� More speci�cally� for a declaration like�

int data������

allocates �

 int cells� and an int � cell named data which is initialized to point to the block of
integers�

We saw that the data items in an array can be accessed using an index� i�e� the number of
the item in the block� Numbering of data items begins with index
� to the size � �� We use the
index of an element in a subscripting expression with syntax�

�identi�er���expression��

where �identi�er� is the name of the array� and the �expression� in the square brackets ���� is
evaluated to the index value� So� for our previous example� the statement�

data��� � 	�

sets the integer value� �� into the �rst cell of the array� data� While�

data�i� � data�i����

would copy the value from the element with index i � � to its immediate successor in the array�

The data types of the elements of an array may be any scalar data type� int� float� or char�
�We will see other types for array elements in later chapters�� We have cautioned that� in C� no
checking is done on the subscripting expressions to ensure that the index is withing the block
of data allocated �i�e� that the subscript is in bounds�� It is the programmers responsibility to
ensure the subscript is in bounds� We have seen two ways of doing this� to keep the value of the
limit or the extent of data in the array in a separate integer variable and perform the necessary
comparisons� or to mark the last item in the array with a special value� The most common use of
this later method is in the case of an array of characters �called a string�� where the end of the
string is indicated with the special character� NULL �whose value is
��

We have also discussed the equivalence of subscripting expressions and pointer arithmetic�
i�e� that a subscripting expression� data�i�� is equivalent to �and treated by the compiler as� the
pointer expression� ��data ! i�� Remember� the name of the array is a pointer variable� pointing
to the �rst element of the array� These two forms of array access may be used interchangebly
in programs� as �ts the logic of the operation being performed� It is the semantics of pointer
arithmetic that will compute the address of the indexed element correctly�

��
� SUMMARY ���

In addition� we have seen that passing arrays as parameters to functions is done by passing a
pointer to the array �the array name�� The cells of data are allocated in the calling function� and
the called function can access them indirectly using either a pointer expression or a subscripting
expression� Remember� a parameter like�

int func� int a�� �

�even if it has a �size� in the brackets� does NOT allocate integer cells for the array� it merely
allocates an int � cell which will be given a pointer to an array in the function call� Such a
parameter is exactly equivalent to�

int func� int �a�

We have discussed the fact that the pointer cell� referenced using the name of the array� is
a constant pointer cell� i�e� it may not be changed by the program �it may not be used as an
Lvalue�� However� additional pointer cells of the appropriate type may be declared and initialized
to point to the array �by the programmer� and can then be used to traverse the array with pointer
arithmetic �such as the !! or �� operators��

We have shown how arrays can be initialized in the declaration �a bracketed� comma separated
list of values� or� for strings� a string constant�� We have seen the semantics of string assignment
and how strings can be read and printed by scanf�� and printf�� using the �s conversion
speci�er� Remember� for scanf��� �s behaves like the numeric conversion speci�ers� it skips
leading white space and terminates the string �with a NULL� at the �rst following white space
character�

Finally� we have shown an example of using arrays in a data base type applications� where
arrays of di�erent types were used to hold a collection of payroll records for individuals� In that
example� the elements at a speci�c index in all of the arrays corresponded to one particular data
record�

The array is an important and powerful data structure in any programming language� Once
you master the use of arrays in C� the scale and scope of your programming abilities expand
tremendously to include just about any application�

��� CHAPTER �� ARRAYS

��
 Exercises

With the following declaration�

int �p� x�����

char �t� s������

Explain each of the following expressions� If there is an error� explain why it is an error�

�� �a� x

�b� x ! i

�c� ��x ! i�

�d� x!!�

�� �a� p � x�

�b� �p

�c� p!!�

�d� p!!�

�e� p���

�f� ��p�

�� �a� p � x ! 	�

�b� �p�

�c� ��p�

�d� p��

�� scanf���s�� s��

Input� Hello� Hello�

�� printf���s�n�� s��

�� scanf���s�� t��

t � s�

scanf���s�� t��

Check the following problems� �nd and correct errors� if any� What will be the output in
each case�

���� EXERCISES ���

�� main��
� int i� x���� � � �� �� #� %"�

for �i � �� i � ��� i!!� �

printf���d�n�� �x��

x!!�

"

"

�� main��
� int i� �ptr� x���� � � �� �� #� %"�

for �i � �� i � ��� i!!� �

printf���d�n�� �ptr��

ptr!!�

"

"

�� main��
� int i� x���� � � �� �� #� %"�

for �i � �� i � ��� i!!�

printf���d�n�� �x ! i���

"

�
� main��

� int i� x���� � � �� �� #� %"�

for �i � �� i � ��� i!!�

printf���d�n�� ��x ! i���

"

��� main��

� int i� �ptr� x���� � ��� �� #� %"�

ptr � x�

for �i � �� i � ��� i!!� �

printf���d�n�� �ptr��

ptr!!�

"

"

��� main��

� int i� �ptr� x���� � ��� �� #� %"�

ptr � x�

for �i � �� i � ��� i!!� �

printf���d�n�� ptr��

��� CHAPTER �� ARRAYS

ptr!!�

"

"

��� main��

� char x�����

x � �Hawaii�

printf���s�n�� x��

"

��� main��

� char �ptr�

ptr � �Hawaii��

printf���s�n�� ptr��

"

��� main��

� char �ptr� x���� � �Hawaii��

for �i � �� i � ��� i!!�

printf���d �d �d�n�� x ! i� ��x ! i�� x�i���

"

��� main��

� char x�����

scanf���s�� x��

printf���s�n�� x��

"

The Input is�

Good Day to You

��� main��

� char �ptr�

scanf���s�� ptr��

printf���s�n�� ptr��

"

The Input is�

Good Day to You

��� Here is the data stored in an array

���� EXERCISES ���

char s������

Hawaii��Manoa��

What will be printed out by the following loop

i � ��

while �s�i�� �

putchar�s�i���

i!!�

"

��� CHAPTER �� ARRAYS

���� Problems

�� Write a program that uses the sizeof operator to print the size of an array declared in the
program� Use the sizeof operator on the name of the array�

�� Write a function that prints� using dereferenced pointers� the elements of an array of type
�oat�

�� Write a function that checks if a given integer item is in a list� Traverse the array and check
each element of the list� If an element is found return True� if the array is exhausted� return
False�

�� Write a function that takes an array of integers and returns the index where the maximum
value is found�

�� Write a function that takes an array and �nds the index of the maximumand of the minimum�

Use arrays to house sets of integers� A set is a list of items� Each item of a list is a member
of a list and appears once and only once in a list� Write the following set functions�

�� Test if a number is a member of a set� is the number present in the set

�� Union of two sets A and B� the union is a set that contains members of each of the two sets
A and B�

�� Intersection of two sets A and B� the intersection contains only those members that are
members of both the sets A and B�

�� Di�erence of two sets A and B� The new set contains elements that are members of A that
are not also members of B�

�
� Write a function to read a string from the standard input� Read characters until a newline
is reached� discard the newline� and append a NULL� Use array indexing�

��� Write a function to read a string from the standard input� Read characters until a newline
is reached� discard the newline� and append a NULL� Use pointers�

��� Write a function to write a string to the standard output� Write characters until a NULL is
reached� discard the NULL� and append a newline� Use pointers�

��� Write a function to change characters in a string� change upper case to lower case and vice
versa� Use array indexing�

��� Write a function to change characters in a string� change upper case to lower case and vice
versa� Use pointers�

��� Write a function that counts and returns the number of characters in a string� Do not count
the terminating NULL� Use array indexing�

��� Write a function that counts and returns the number of characters in a string� Do not count
the terminating NULL� Use array indexing�

����� PROBLEMS ���

��� Write a function that removes the last character in a string� Use array indexing to reach the
last element and replace it with a NULL�

��� Write a function that removes the last character in a string� Use pointers to traverse the
array�

��� Repeat problems �� and ��� but use the function of problems �� or ���

��� CHAPTER �� ARRAYS

Chapter �

Functions and Files

In this Chapter� we tie up some loose ends concerning some of the built in functions provided
by the C language� In previous chapters we have been using such functions in our programming
examples to do data input and output� functions such as scanf��� printf� getchar��� and
putchar��� These routines are part of a library of standard routines� As we have seen� we can use
these functions by including the header �le in which they are declared �in this case �stdio�h���
These header �les contain the prototypes for functions as well as macros that are needed for their
use�

Previously� when we have needed routines for other operations �e�g� testing if a character is
a digit�� we have written our own� Such operations are common enough in C programs that the
implementors have included prede�ned routines to perform them� These routines are collectively
called the C Standard Library� We begin this Chapter by describing a few other built in functions
provided in the Standard Library� describing their use and using them in a few sample programs�
A longer �though not complete� listing of the Standard Library� together with descriptions� is
provided in Appendix C�

We next give a more thorough description of our I�O functions� scanf�� and printf��� Finally�
we discuss variations of the standard I�O routines� which allow direct access to data stored in �les�

��� The C Standard Library

We have already used several I�O routines from the standard library	 scanf��� printf��� getchar��
and putchar��� Many other useful routines are provided in one or more libraries supplied with
the compiler or in header �les� When a function in one of these libraries is used� the name of
the library must be supplied to the linker� Otherwise� the linker is unable to resolve the reference
to that function� If the function resides in the standard library� the linker does not need to be
supplied the name� The linker always searches the standard library by default for any unresolved
functions used in the program�

Standard header �les supplied with the compiler declare function prototypes for standard
library functions in several categories� They also de�ne data types� symbolic constants� and
macros� Header �les must be included in the source program if any of the de�nitions� macros� or
function prototypes declared in them are to be used�

Many of the functions we have de�ned in our example programs are available either as standard
macros in a header �le or as functions in the standard library� We could have used these standard

�

�� CHAPTER �� FUNCTIONS AND FILES

routines in many of our examples� However� we wrote our own versions because it is instructive
to see how functions are written�

The following are descriptions of some of the commonly used routines� Similar descriptions of
other routines will be provided as we use them� A listing of ANSI standard library routines is
provided in Appendix C� It must be understood that the standard is a suggested standard� and
all vendors of C compilers may not follow the suggested standard exactly�

The listing below speci�es what header �le must be included� if any� before the routine listed
may be used� It also speci�es which �le contains the prototypes� if applicable�

����� Character Processing Routines

Character Classi�cation Routines

is��� Prototype�

int isalnum�int c��

int isalpha�int c��

int isascii�int c��

int iscntrl�int c��

int isdigit�int c��

int isgraph�int c��

int islower�int c��

int isprint�int c��

int ispunct�int c��

int isspace�int c��

int isupper�int c��

int isxdigit�int c��

in� �ctype�h�

Returns�

isalnum TRUE if c is a letter or a digit� ��A���Z�� �a���z�� �	���
���
isalpha TRUE if c is a letter� ��A���Z�� �a���z��
isascii TRUE if c is in the range
�����
iscntrl TRUE if c is a control character� �
�
�� ����
isdigit TRUE if c is a digit� ��	���
��
isgraph TRUE if c is a graphical character� i�e� a printable character except for space�

�

�����
islower TRUE if c is a lower case letter� ��a���z��
isprint TRUE if c is a printable character� �
������
ispunct TRUE if c is a punctuation character�
isspace TRUE if c is a space� tab� newline� or any white space character� ����
�
��
isupper TRUE if c is an upper case letter� ��A���Z��
isxdigit TRUE if c is a hexadecimal digit� ��	���
�� �A���F�� �a���f��

Description� These are macros that classify a character� c� given as an integer type
�ASCII� value� They return non�zero if TRUE and zero if FALSE�

���� THE C STANDARD LIBRARY
��

Character Conversion Routines

toascii Prototype� int toascii�int c�� in� �ctype�h�

Returns� converted value of c�

Description� Converts an integer� c� to ASCII format by clearing all but the lower
seven bits� The value returned is in the range
�����

tolower Prototype� int tolower�int c�� in� � ctype�h�

Returns� Lower case value of c if c was upper case� c otherwise�

toupper Prototype� int toupper�int c�� in� � ctype�h�

Returns� Converts c to upper case if c is lower case� otherwise� c is left unchanged�

Note that all the above library character routines use an int type argument� Since the value
of a character is its ASCII value of type int� passing a char type argument to these routines is
the same as passing an int type ASCII value�

Character Routines Programming Examples

Let us use some of the above library routines to write a variation on our previous program to pick
out words in the input text� The revised program only picks out valid words� namely identi�ers�
We will assume that a valid identi�er starts with a letter and may be followed by any number of
letters and�or digits� White space delimits an identi�er� otherwise� it is ignored� Any character
that does not belong in an identi�er is an illegal character� and also delimits an identi�er�

We will need to test each character to see if it is a letter� a digit� a white space� etc� We will
use library functions isalpha��� isalnum��� and isspace�� to test for these characters� The
descriptions for them states that we must include �le �ctype�h�� In addition to �nding and
printing identi�ers� the program also keeps a count of them�

The only change in the previous algorithm is that now we start a word if and only if it starts
with a letter� Once a word is started� it continues as long as characters are letters or digits�
otherwise� the word is terminated and counted� The program is shown in Figure ����

We test if the �rst character after white space is a letter� If so� we build an identi�er� Otherwise�
if it is EOF� we terminate the loop� Otherwise� it must be an illegal character�

Sample Session	

���Print Identifiers���

Type text� terminate with EOF

Programming is easy
Programming

is

easy

once an algorithm is developed
once

an

algorithm

�� CHAPTER �� FUNCTIONS AND FILES

�� File
 ident�c

Program reads characters one at a time until EOF� It prints out

each identifier in the input text and counts the total number of

identifiers� It ignores white space except as a delimiter for an

identifier� An identifier starts with an alphabetic letter and may be

followed by any number of letters or digits� All other characters are

considered illegal�

��

�include �stdio�h�

�include �ctype�h�

main��

� int cnt � 	�

signed char c�

printf�����Print Identifiers����n�n���

printf��Type text� terminate with EOF �Z or �D��n���

c � getchar���

while �c �� EOF� �

while �isspace�c�� �� skip leading white space ��

c � getchar���

if �isalpha�c�� � �� if a word starts with a letter ��

while �isalnum�c�� � �� while c is letter or digit ��

putchar�c�� �� print c ��

c � getchar��� �� read next char ��

�

putchar���n��� �� end identifier with a newline ��

cnt��� �� increment cnt ��

�

else if �c �� EOF� �� if end of file ��

break� �� break out of loop ��

else � �� otherwise� it is an illegal char ��

printf��Illegal character �c�n�� c��

c � getchar���

�

�

printf��Number of Identifiers � �d�n�� cnt��

�

Figure ���	 Code for ident�c

���� THE C STANDARD LIBRARY
��

is

developed

�D

Number of Identifiers � �

����� Math Routines

There are many mathematical routines in the standard library� such as abs��� pow��� sqrt���
rand��� sin��� cos��� tan��� and so forth� The prototypes for these are de�ned in the header
�le� �math�h�� which must be included whenever these functions are used in a program� In
addition� on Unix systems� the math library is maintained separately from the standard library�
thus requiring that it be linked when the code is compiled� This can be done with the compiler
command	

cc filename�c �lm

The option �l speci�es that a library must be linked with the code and the m speci�es the math
library� Note that this option MUST appear as the last item on the command line�

Most of the functions listed above are self explanatory �and are described in detail in Appendix
C�� As an example� let us look at the function� rand�� which generates pseudo�random integers
in the range of numbers from
 to the largest positive integer value� The numbers cannot be com�
pletely random because the range is limited� However� for the most part� the numbers generated
by rand�� appear to be quite random� The prototype for the function is	

int rand�void��

Each time the function is called� it returns a random integer number� Figure ��� shows an example
which generates and prints some random numbers�

Sample Session	

���

��	

�	
��

�	
	

��� �

The random number generator will always start with the same number unless it is �seeded� �rst
by calling the function� srand��� The prototype for it is	

void srand�unsigned x��

In the example in Figure ��
� we seed the random number generator with a user supplied number�
The program then �nds random throws for a single dice� After the random generator is seeded�
every random number generated� n� is evaluated modulo �� i�e� n � � is evaluated� This results
in numbers from
 to �� We add one to obtain the dice throws from � to ��

Sample Session	

���Single Dice Throw Program���

�� CHAPTER �� FUNCTIONS AND FILES

�� File
 rand�c

Program uses random number generator to print some random

numbers�

��

�include �stdio�h�

�include �math�h�

main��

� int i�

int x�

for �i � 	� i � � i��� �

x � rand���

printf���d�n�� x��

�

�

Figure ���	 Small program to generate random numbers

�� File
 dice�c

Program throws a single dice repeatedly�

��

�include �stdio�h�

�include �math�h�

main��

� int i� d��

printf�����Single Dice Throw Program����n�n���

printf��Type a random unsigned integer to start
 ���

scanf���d�� !i��

srand�i��

for �i � 	� i � � i��� �

d� � rand�� � � � ��

printf��throw � �d�n�� d���

�

�

Figure ��
	 Program for generating random dice values

���� FORMATTED INPUT�OUTPUT
��

Type a random unsigned integer to start
 �����
throw � �

throw � �

throw � �

throw � �

throw �

Similarly� we can write a program that draws a card from a full deck of �� cards as shown
in Figure ���� It starts by seeding the random number generator before its use� Next� a random
number is generated and evaluated modulo ��� resulting in a random number between
 and
��� representing a card� For a number� n� the value n � �� is in the range
 through
� each
corresponding to a suit	 say
 is clubs� � is diamonds� � is hearts� and
 is spades� In addition� n
� �� � � evaluates to a number in the range � through �
� corresponding to a card in a suit	 say
� is ace� � is deuce� � � � � �� is jack� �� is queen� and �
 is king�

Sample Session	

���Single Card Draw Program���

Type a random unsigned integer to start
 �����
Diamond �

Heart Jack

Heart �

Diamond Queen

Diamond �	

The next program uses the library function� sqrt��� to obtain square roots of randomly gen�
erated numbers� The function� sqrt��� requires its argument to be of type double� and it returns
type double� In the program shown in Figure ���� the randomly generated whole number is
assigned to a double variable before �nding its square root�

Sample Session	

���Square Root Program � Random Numbers���

Sq�Rt� of ����						 is ����	�	"

Sq�Rt� of ��	�						 is ����	�" �

Sq�Rt� of �	
���						 is �	��"
 	��

Sq�Rt� of �	
	�						 is ���	� ���

Sq�Rt� of ��� ��						 is �	"�
��
 "

These have been just a few examples of using routines available in the math library� A complete
listing of math routines is provided in Appendix C� Rather than writing our own functions all the
time� we will make use of library functions in our code wherever we can in the future�

��� Formatted Input�Output

We have been using the I�O built�in functions printf�� and scanf�� which are the primary
routines for formatted output and input in C �the �f� stands for formatted�� We have already

�
 CHAPTER �� FUNCTIONS AND FILES

�� File
 card�c

Program draws a card each time from a full deck of � cards�

��

�include �stdio�h�

�include �math�h�

�define CLUB 	

�define DIAMOND �

�define HEART �

�define SPADE �

�define ACE �

�define JACK ��

�define QUEEN ��

�define KING ��

main��

� int i� d�� card� suit�

printf�����Single Card Draw Program����n�n���

printf��Type a random unsigned integer to start
 ���

scanf���d�� !i��

srand�i�� �� seed the random number generator ��

for �i � 	� i � � i��� �

d� � rand�� � �� �� draw a card ��

suit � d� � ��� �� find the suit 	������ ��

card � d� � �� � �� �� find the card �� �� ���� �� ��

switch �suit� � �� print suit ��

case CLUB
 printf��Club ��� break�

case DIAMOND
 printf��Diamond ��� break�

case HEART
 printf��Heart ��� break�

case SPADE
 printf��Spade ��� break�

�

switch �card� � �� print the card within a suit ��

case ACE
 printf��Ace��� break�

case JACK
 printf��Jack��� break�

case QUEEN
 printf��Queen��� break�

case KING
 printf��King��� break�

default
 printf���d�� card��

�

printf���n���

�

�

Figure ���	 Program for randomly picking a card

���� FORMATTED INPUT�OUTPUT
��

�� File sqrt��c

Program computes and prints square roots of numbers randomly

generated�

��

�include �stdio�h�

�include �math�h�

main��

� int i�

double x�

printf�����Square Root Program � Random Numbers����n�n���

for �i � 	� i � � i��� �

x � rand���

printf��Sq�Rt� of �f is �f�n�� x� sqrt�x���

�

�

Figure ���	 Code for �nding the square root of random numbers

discussed many of the conversion speci�cations� we now present a more complete description of the
formatted I�O functions together with examples� �While our discussion here concerns printf��
and scanf��� it applies equally well to conversion speci�cations for fprintf�� and fscanf��

described in the next Section�

����� Formatted Output� printf��

As we have seen� printf�� expects arguments giving a format string and values to be printed�
The printf�� prototype� in stdio�h� is	

int printf�char �� �����

The �rst argument of printf�� is the format string �we will see what the above type declaration
means in the next chapter�� The number of remaining arguments depends on the number of
conversion speci�ers in the format string� In C� an ellipsis� i�e� �� � � �� is used to indicate an
arbitrary number of arguments� The return value of printf�� is an int giving the number
of bytes output� if successful� otherwise it returns EOF� This information from printf�� is not
generally very useful� and we often simply ignore the return value�

The function� printf��� converts� formats� and prints its arguments on the standard output
using the conversion speci�cations given in the format string� The format string is made up of
two kinds of characters	 regular characters� which are simply copied to the output� and conversion
speci�cation characters� A conversion speci�cation indicates how the corresponding argument
value is to be converted and formatted before being printed� The number of conversion speci��
cations in the format string must match exactly the number of arguments that follow� otherwise�
the results are unde�ned� The data type of the argument should also match the data type it

�� CHAPTER �� FUNCTIONS AND FILES

will be converted to� for example� integral types for decimal integer formats� float or double

types for �oating point or exponential formats� and so on� If the proper type is not used� the
conversion is performed anyway assuming correct data types and the results can be very strange
and unexpected� Of course� character values are integral types� so characters can be converted
to ASCII integer values for printing� or printed as characters� We have already seen most of the
conversion characters� Table ��� gives a complete list with their meanings� We will discuss some
examples� given the following declarations and initializations	

int i�

char c�

float f��

double d��

char �s�

long x�

i � ���

c � �e��

f� � ���� �		

d� � ���� �		

s � �This is a test��

x � ���� �"�
�

Di�erent conversion characters may be used to print the values of these variables� The space used
to print a value is called the �eld� and by default� is exactly the space needed to print the value�
We show examples of conversion characters and default output below	

Conversion Variable Output
Speci�er

�d i ��
�o i ��
�x i ��
�u i ��
�c c e
�d c �	�
�c i

�s s this is a test
�f f� or d� ������						
�e f� or d� ������		E�		�
�g f� or d� �����

So far� we have used very simple conversion speci�ers� such as �d� �f� and �c� A complete
conversion speci�cation starts with the character � and ends with a conversion character� Between
these two characters� special format characters may be used which can specify justi�cation� �eld
width� �eld separation� precision� and length modi�cation� The characters that follow the � char�
acter and precede the conversion characters are called format characters� All format characters
are optional� and if they are absent their default values are assumed� �We will indicate the default
value in each case below�� The syntax of a complete conversion speci�er is	

���� FORMATTED INPUT�OUTPUT
�

Character Conversion

d The argument is taken to be an integer and converted to decimal integer
notation�

o The argument is taken to be an integer and converted to unsigned octal
notation without a leading zero�

x The argument is taken to be an integer and converted to unsigned
hexadecimal notation without a leading 	x�

u The argument is taken to be an unsigned integer and converted to
unsigned decimal notation�

c The argument is taken to be an ASCII character value and converted
to a character�

s The argument is taken to be a string pointer� Unless a precision is
speci�ed as discussed below� characters from the string are printed out
until a NULL character is reached� �Strings will be discussed further in
the next chapter��

f The argument is taken to be a float or double� It is converted to
decimal notation of the form �	
ddd�dddddd� where the minus sign shown
in square brackets may or may not be present� The number of digits� d�
after the decimal point is � by default if no precision is speci�ed� The
number of digits� d� before the decimal is as required for the number�

e The argument is taken to be a float or double� It is converted to
decimal notation of the form �	
d�ddddddE��
	
xxx� where the leading
minus sign may be absent� There is one digit before the decimal point�
The number of digits� d� after the decimal point is � if no precision is
speci�ed� The E signi�es the exponent� ten� followed by a plus or minus
sign� followed by the exponent� The number of digits in the exponent�
x� is implementation dependent� but not less than two�

g The same as �e or �f whichever is shorter and excludes trailing zeros�

Table ���	 Conversion Speci�er Characters for printf��

�� CHAPTER �� FUNCTIONS AND FILES

�	DD�ddlX

where X is one of the conversion characters from Table ���� The other format characters must
appear in the order speci�ed above and represent the following formatting information	 �the
corresponding characters are shown in parentheses��

Justi�cation �	� The �rst format character is the minus sign� If present� it speci�es
left justi�cation of the converted argument in its �eld� The default
is right justi�cation� i�e� padding on the left with blanks if the �eld
speci�ed is wider than the converted argument�

Field Width �DD� The �eld width is the amount of space� in character positions� used to
print the data item� The digits� DD� specify the minimum �eld width�
A converted argument will be printed in a �eld of at least this size�
if it �ts into it� otherwise� the �eld width is made large enough to �t
the value� If a converted argument has fewer characters than the �eld
width� by default it will be padded with blanks to the left� unless left
justi�cation is speci�ed� in which case� padding is to the right�

Separator ��� A period is used as a separator between the �eld width and the pre�
cision speci�cation�

Precision �dd� The digits� dd� specify the precision of the argument� If the argument
is a float or double� this speci�es the number of digits to the right of
the decimal point� If an argument is a string� it speci�es the maximum
number of characters to be printed from the string�

Length Modi�er �l� The length modi�er� l� �ell� indicates that an integer type argument
is a long rather than an int type�

Some examples of format speci�cations using the previous variable types and values are shown
below� where the �eld width is shown between the markers� # and #�

Conversion Variable Output

Field Pos� 	���� �"�
	���� �"�

$$$

��	d i # ��#

���	d i #�� #

#

��	f f� #���� �						

���	f f� #���� �						

��	��f f� # ���� �		#

���	��f f� #���� �		 #

� c c # E#

�� c c #E #

��	s s #This is a test

���� FORMATTED INPUT�OUTPUT
��

��	s s # This is a test#

���	s s #This is a test #

��	��	s s # This is a #

�ld x #���� �"�

����ld x #���� �"�
 #

����� Formatted Input� scanf��

Like printf��� scanf�� expects its �rst argument to be a format string� but unlike printf���
the remaining arguments are addresses of the variables in which to put the data that is read� The
prototype for scanf��� also in stdio�h� is	

int scanf�char �� �����

As we�ve said� the returned value is the number of items read� or EOF� The format string controls
the input order� conversion of the input data to the speci�ed type� and format speci�cation�
Each conversion speci�cation appearing in the format string is applied� in turn� to the next input
data item in the input stream� After the speci�ed conversion� the item is placed where the next
succeeding argument points� so each of the arguments must be an address�

Besides the conversion speci�cations that start with �� the format string may also include
regular characters� Regular white space characters in the format string are ignored� Any regular
non�white space characters must be matched exactly in the input stream� For example	

scanf��x� �d�� !x��

The input stream must include the characters x�� which are matched by the corresponding char�
acter in the format string� before an integer value is read� A valid sample input for this format
string is	

x
 ����

The characters� x
� are �rst matched� then the integer� ��
�� is read and assigned to the variable�
x� If the characters� x
� are not matched in the input stream� no input is possible� and scanf��

will return the value
�
As before� a conversion speci�cation starts with a � and ends with one of the conversion

characters given in Table ���� Between � and the conversion character� there can be an optional
assignment suppression character� �� followed by an optional number indicating the maximum�eld
width� The maximum�eld width speci�es that no more than that number of characters in the input
streammay be used for the next data item� The converted result is stored where the corresponding
argument points unless the assignment suppression character is used� If the suppression character
is used� the result is discarded� The conversion characters with their meanings are given in Table
���� All of these except c and s may be preceded by the length modi�er� l �ell�� where� in the
case of integral type data� the corresponding argument should be long and in the case of �oating
point data� the argument should be double� For example� with the following declarations	

int i� k�

char c�

�� CHAPTER �� FUNCTIONS AND FILES

Character Conversion

d The input is expected to be a decimal integer� The corresponding
argument should be an integer address�

o The input is expected to be an octal number� The corresponding argu�
ment should be an integer address�

x The input is expected to be a hexadecimal number� The corresponding
argument should be an integer address�

c The input is expected to be a character� Any character including white
space may be input without being skipped over� The corresponding
argument should be a character address�

s The input is expected to be a string of characters� and the correspond�
ing argument should be a character pointer to an array of characters
large enough to accommodate the string plus the terminating NULL

character� �Arrays are discussed in Chapter ��� The input will skip
over initial white space and will terminate when a white space charac�
ter is encountered in the input stream�

f The input is expected to be a �oating point number and the corre�
sponding argument should be a float address� The input may have
a sign� followed by a string of digits� optionally followed by a decimal
point and a string of digits� which may be followed by an E or e and a
signed or unsigned integer exponent�

e Same as f�

Table ���	 Conversion Speci�er Characters for scanf��

���� DIRECT I�O WITH FILES
��

float f��

double d��

char s%�	&�

long x�

Consider the following statements with the input as shown below each statement�

scanf��Integer
 ��d �f�� !i� !f���

Input is	

Integer� �������

First� the regular characters� Integer� are matched� Then a �eld of � is used to read the integer�
����� Finally� a float� ����	 is read� The integer� ��
�� will be stored in i� and ����
 will be
stored in f��

scanf����s ��c �c�� s� !c��

Surprises are everywhere

A �eld of � is used to read a string� �Surp�� which is placed in s� The next character� �r�� will
be read and discarded� and the next character� �i�� will be stored in c�

scanf���s ��s �d�� s� !i��

Surprise number �

This time the string �Surprise� will be stored in s� the next string �number� will be discarded�
and the integer � will be stored in i�

��� Direct I�O with Files

So far all our programs have used standard �les for input and output� normally the keyboard
and screen� Unless the standard �les are redirected� users must enter data as needed� which may
become inconvenient or impractical as the amount of data gets large� However� if redirection is
used to read input data from other �les� then ALL input must come from redirected �les� which
means the programs cannot interact with the user� Practical programs require the ability to use
�les for I�O as well as to interact with users via standard �les� For example� data may be needed
repeatedly� by di�erent programs� over a period of time� Such data should be stored in �les on
disks or other peripheral devices� and programs should be able to retrieve data from these �les as
needed� In addition� programs can save useful data into �les for later use�

In this Section� we describe some variations on our previous Input�Output routines which
behave similarly� but access data directly from or to �les�

�� CHAPTER �� FUNCTIONS AND FILES

����� Character I�O

We have written programs for processing characters using the routines getchar�� and putchar��

which read or write single characters from or to the standard input or output� The standard
library provides additional� more general� routines which read or write single characters from or
to any �le �including stdin or stdout�� We will illustrate the use of these routines with two short
examples�

Our next task is to read text input from a non�standard input �le and compute the frequency
of occurrence of each digit in the text	

FREQ	 Read input from a speci�ed text �le and calculate the frequency of occurrence of each
digit in the �le�

Our task calls for us to read textual data from an input �le� In order for the program to be
able to read from a �le� the �le must be identi�ed to the program� This process is called opening

the �le� Likewise� when our use of the data in a �le is complete� the �le should be closed� Opening
a �le informs the program where data is to be read from� and initializes a system data structure
which keeps track of how far reading has progressed in the �le �along with other information
needed by the operating system�� Most �les in C programs are treated as a stream of characters
by the library routines that access them� and so� an open �le is sometimes also referred to as
a stream� Closing a �le relinquishes all use of the �le from the program back to the operating
system� When a �le is opened� the input starts at the beginning of the �le and continues until the
end of �le is reached� The standard �les� stdin and stdout� behave the same way� but they are
opened automatically at the beginning of the program� They cannot be re�opened and should not
normally be closed�

We can now write an algorithm for our task of counting frequency of occurrence of digits
in a �le �or stream�� We will use an array� digit freq%& to store the frequency of each digit�
For each character� ch read� if ch is a digit symbol� then ch � �	� is the numeric equivalent of
that digit and we will use digit freq%ch � �	�& to store the frequency of the digit� That is�
digit freq%	& will store frequency of digit character �	�� digit freq%�& will store frequency for
���� and so on� Here is the algorithm	

initialize array digit$freq%& to zero

open input file

while NOT EOF� read a character from input file stream

if a character ch is a digit

increment digit$freq%ch � �	�&

print results to standard output

close input file

We begin by initializing the array� digit freq%& to zero and each time a digit character is en�
countered� an appropriate frequency is incremented� The program implementation is shown in
Figure ��� and assumes that the �le to be read is named test�doc�

The input �le� test�doc consists of a single line shown below	

�� �" ��
 � ��

Sample Session	

���Digit Occurrence Counter���

���� DIRECT I�O WITH FILES
��

�� File
 cntdigits�c

This program reads characters from a file stream and counts the

number of occurrences of each digit�

��

�define MAX �	

�include �stdio�h�

�include �ctype�h� �� for isdigit�� ��

main��

�

int digit$freq%MAX&�i�

signed char ch�

FILE � fin�

printf�����Digit Occurrence Counter����n�n���

�� initialize the array ��

for �i � 	� i � MAX� i���

digit$freq%i& � 	�

fin � fopen��test�doc�� �r��� �� open input file ��

if ��fin� � �� if fin is a NULL pointer ��

printf��Unable to open input file
 test�doc�n���

exit�	�� �� exit program ��

�

while ��ch � getc�fin�� �� EOF� � �� read a character into ch ��

if �isdigit�ch�� �� if ch is a digit ��

digit$freq%ch � �	�&��� �� increment count for digit ch ��

�

fclose�fin��

�� summarize ��

for �i � 	� i � MAX� i���

printf��There are �d occurrences of �d in the input�n��

digit$freq%i&�i��

�

Figure ���	 Code for Counting Digits

 CHAPTER �� FUNCTIONS AND FILES

There are 	 occurrences of 	 in the input

There are � occurrences of � in the input

There are � occurrences of � in the input

There are 	 occurrences of � in the input

There are � occurrences of � in the input

There are � occurrences of in the input

There are 	 occurrences of � in the input

There are � occurrences of " in the input

There are � occurrences of � in the input

There are � occurrences of
 in the input

Let us �rst give a summary explanation� In the declaration section of the function� main� a �le
pointer variable� fin� is declared to be of type FILE �� The type FILE is de�ned using a typedef

in �stdio�h� as a special data structure containing the information about a �le need to access
it� After the array� digit freq%&� is initialized to zero� the �le� test�doc� is opened using the
standard library function� fopen��	

fin � fopen��test�doc�� �r���

The function� fopen��� takes two arguments	 a string which gives the name of the physical �le�
and a second string which speci�es the mode ��r� �for read� indicates an input �le�� If the �le can
be opened� fopen�� returns a �le pointer which can be used to access the corresponding stream�
If the �le cannot be opened� fopen�� returns a NULL pointer� so the program tests if the returned
value of the �le pointer� fin� is NULL and� if so� terminates the program after a message is printed�
If the �le opened �i�e� fin is not NULL�� then fin can be thought of as a �handle� on the �le which
is passed to an appropriate I�O routine to access the data� In our case� a character is read from
the stream using the standard library function� getc��	

ch � getc�fin�

The function� getc��� reads a character from the stream accessed by the �le pointer� fin� It
returns the value of character read if successful� and EOF otherwise� In the program� each character
read is examined to see if it is a digit� if it is� the count for that digit is incremented� Once the
end of input �le is reached� the �le is closed with the statement	

fclose�fin��

Finally� the program prints the results accumulated in the array�
Let us now examine some details� When a �le is opened� it is associated with a �le bu�er that

serves as the interface between the physical �le and the program� A program reads or writes a
stream of characters from or to a �le bu�er� A �le stream �bu�er� pointer must be maintained
to mark the next position in the �le bu�er� This information is stored in the data structure� of
type FILE� pointed to by the �le pointer� Once a physical �le is opened� i�e� associated with a �le
bu�er� and a �le pointer is initialized� a program uses only the �le pointer�

The derived data type� FILE� is de�ned in �stdio�h� using a typedef statement� and contains
information about a �le� such as the location of a �le bu�er� the current position in the bu�er�
�le mode �read� write� append�� whether errors have occurred� and whether an end of �le has
occurred� Users need not know the details of this data structure� instead� it is used to de�ne
pointer variables to a FILE type data item to be accessed by the library functions� For example�

���� DIRECT I�O WITH FILES

�

FILE �fin� �fout�

declares two �le pointer variables� fin and fout� It is now possible to associate these FILE
pointers with desired physical �les� We use the terms stream and �le pointer interchangeably with
FILE pointer� Standard �les are always open and standard �le pointer variables are available to
all programs� They are named stdin� stdout� and stderr�

The process of opening a �le connects a physical �le and associates a mode with the FILE

pointer� The mode speci�es whether a �le is opened for input� for output� or for both� The �le
open function� fopen��� associates a physical �le with a �le bu�er or stream and returns a FILE

pointer that is used to access the �le� Here is the prototype	

FILE � fopen�char � fname� char � mode��

The mode string� �r�� speci�es that the �le is to be opened for reading �i�e� an input �le�� �w�
speci�es writing mode �i�e� an output �le�� and �a� speci�es append mode �i�e� both an input and
an output �le�� If the �le was opened successfully� fopen�� returns a pointer that will access the
�le stream� If it was not possible to open the �le for some reason� fopen�� returns a NULL pointer
�a pointer whose value is zero � in C� the zero address is guaranteed to be an invalid address��
It is the programmer�s responsibility to check to see if the returned pointer is NULL� The most
common reason why a �le cannot be opened for reading is that it does not exist� i�e� an erroneous
�le name has been used�

Once a �le is opened� the library function� getc��� reads single characters from the �le stream�
The argument passed to getc�� must be a �le pointer� and it returns the �integer� value of a
character read or EOF if an end of �le is reached�

Files should be closed after their use is completed� Failure to close open �les may destroy �les
if a program terminates prematurely� The library function that closes a �le is fclose��� whose
argument must be a FILE pointer� The process of closing a �le frees the �le bu�er�

In the above program� we speci�ed the name of the input �le in the code itself� If the program
is to be used with any other input �le� we would have to modify the program and recompile�
Instead� a �exible program should ask the user to enter �le names as needed�

Our next task is to copy one �le to another� The algorithm is	 simple�

get input and output file names

open files for input and output

while NOT EOF� read a character ch from input stream

write ch to output stream

close files

The library routine� putc�ch� output� writes a character� ch� to a �le stream� output� The
program is shown in Figure ����

Sample Session	

���File Copy Program � Character I�O���

Input file
 ccopy�c

Output file
 xyz�c

File copy completed

� CHAPTER �� FUNCTIONS AND FILES

�� File
 ccopy�c

This program copies an input file to an output file one

character at a time� Standard files are not allowed�

��

�include �stdio�h�

main��

� FILE �input� �output�

char infile%� &� outfile%� &�

signed char ch�

printf�����File Copy Program � Character I�O����n�n���

printf��Input file
 ���

scanf���s�� infile��

printf��Output file
 ���

scanf���s�� outfile��

input � fopen�infile� �r���

if �input �� NULL� �

printf����� Can�t open input file ����n���

exit�	��

�

output � fopen�outfile� �w���

if �output �� NULL� �

printf����� Can�t open output file ����n���

exit�	��

�

while ��ch � getc�input�� �� EOF�

putc�ch� output��

fclose�input��

fclose�output��

printf��File copy completed�n���

�

Figure ���	 Code to copy one �le to another

���� DIRECT I�O WITH FILES

The program �rst reads the input and output �le names� We use scanf�� to read the �le names
into strings� infile and outfile� These �les are then opened for input and output� respectively�
If either of the �les cannot be opened� an error message is printed and the program is terminated
by an exit�� call� If both �les are opened successfully� the copying is done in a loop until EOF�
The loop reads a character from input into ch which is then written to the stream indicated by
outfile using putc��� When EOF is reached� the �les are closed and a message printed�

The �le routines� getc�� and putc�� can be used with standard �les as well� We just use the
prede�ned �le pointers for the standard �les	

ch � getc�stdin��

putc�ch� stdout��

The above programs terminate if an attempt to open a �le is unsuccessful� As an improvement to
these programs� friendly programs should allow the user to rectify possible errors in entering �le
names�

����� Formatted I�O

When we read or write numeric data from or to standard �le streams� scanf�� and printf��

convert character input to internal numeric values and vice versa� Similar functions are available
for non�standard �les� The function� fscanf�� reads formatted input from a �le and fprintf��

writes formatted output to a �le� The only di�erence between scanf��� printf�� and fscanf���
fprintf�� is that the latter require an additional argument which speci�es the input �le stream�
For example� to read and write an integer from and to a �le stream� we use	

fscanf�inp� ��d�� !n��

fprintf�outp� ��d�� n��

where inp and outp� are FILE pointers� The other arguments are the same as those for scanf��
and printf��� the format string gives the conversion speci�cations� and the arguments that follow
reference the objects where data is to be stored or whose values are to be written� The return
value of fscanf�� is the same as scanf��	 number of items read or EOF�

Our next task is to read exam scores into an array from a �le and determine the average� the
maximum� and the minimum� It is assumed that the data �le of exam scores is prepared using an
editor� The algorithm is simple enough	

get input file name

open input file

read exam scores into an array

process the array to find average� maximum� and minimum

We will use a function� proc aray��� to process the array� It will return the average but will
indirectly store the maximum and minimum values in the calling function� The program is shown
in Figure ����

The sample session assumes that the scores are in an input �le scores�dat prepared using an
editor and shown below	

� CHAPTER �� FUNCTIONS AND FILES

�� File
 avgfile�c

This program reads exam scores from a file and processes them to

find the average� the maximum� and the minimum� ��

�include �stdio�h�

�define MAX �		

float proc$aray�int ex%&� int lim� int �pmax� int �pmin��

main��

� int max� min� n� lim � 	� exam$scores%MAX&�

char infile%� &�

float avg�

FILE � inp�

printf�����Exam Scores
 Average� Maximum� Minimum����n�n���

printf��Input File
 ���

scanf���s�� infile��

inp � fopen�infile� �r���

if ��inp� �

printf��Unable to open input file�n���

exit�	��

�

while �lim � MAX !! fscanf�inp� ��d�� !n� �� EOF�

exam$scores%lim��& � n�

fclose�inp��

if �lim �� 	� exit�	��

avg � proc$aray�exam$scores� lim� !max� !min��

printf��Average � �f� Maximum � �d� Minimum � �d�n��

avg� max� min��

�

�� This function computes the average of an array� the maximum and

the minimum� Average is returned� the others are indirectly

stored in the calling function� ��

float proc$aray�int ex%&� int lim� int �pmax� int �pmin�

� int i� max� min�

float sum � 	�	�

max � min � ex%	&�

for �i � 	� i � lim� i��� �

sum �� ex%i&�

max � ex%i& � max ' ex%i&
 max�

min � ex%i& � min ' ex%i&
 min�

�

�pmax � max�

�pmin � min�

return sum � lim�

�

Figure ���	 Code for avg�le�c

���� COMMON ERRORS

�

�"

"

��

�

Sample Session	

���Exam Scores
 Average� Maximum� Minimum���

Input File
 scores�dat
Average � "��� 				� Maximum � ��� Minimum � �"

The driver opens the input �le and reads data into the array� exam scores%&� The number of
elements are counted by lim� If lim is zero� the program is terminated� otherwise� the program
calls proc aray�� to process the array for the average� the maximum� and the minimum� In the
call to proc aray��� main�� passes as arguments exam scores� lim� and pointers to max and min�

The function� proc aray��� initializes values of local variables� max and min� to the value of
the �rst element of the array� ex%	&� It then traverses the array� maintains a cumulative sum of
the scores� and updates the values of max and min using the following conditional expressions	

max � ex%i& � max ' ex%i&
 max�

min � ex%i& � min ' ex%i&
 min�

Here� if an array element� ex%i&� is greater than max� max is assigned ex%i&� otherwise� max is
assigned max� Similarly� the minimum is updated when an array element is smaller than the
minimum� Finally� the function indirectly stores values of maximum and minimum� and returns
the value of the average score�

��� Common Errors

�� Use of scanf�� to read strings with white space� When scanf�� is used to read a string�
only part of an input string may be read	 it skips over leading white space� and reads a
string until the next white space�

scanf���s�� msg��

Input
 this is a string

With the above input� scanf�� will read �this�� and NOT the whole string� into memory
pointed to by msg� However� printf�� will print the entire string until the terminating
NULL�

��� Summary

In this Chapter we have discussed various features available to the programmer in the C standard
library� While we have used some of the functions in previous chapters� particularly those for
I�O� we have given a more detailed description of the library� and the standard I�O routines

� CHAPTER �� FUNCTIONS AND FILES

provided there� We have seen that frequently used operations on characters for classifying or
converting which we have written for ourselves in the past� are available from the library� In
addition� routines for common math operations are also provided in the math library �which may
not be automatically linked by the compiler�� We have given a few short programs illustrating
the use of some of these functions� A more complete list of available library routines is provided
in Appendix C�

We have also given a complete description of the formatted I�O functions� scanf�� and
printf�� detailing the options available for formatting input and output� Finally� we have dis�
cussed variations on the I�O routines available� both for characters and formatted� which allow
direct access to data in �les from within a program� These new routines include getc��� putc���
fscanf��� and fprintf��� as well as functions for managing connection to the physical �les	
fopen�� and fclose���

The full power of the C standard library is now available for future program development in
later chapters�

���� EXERCISES

�

��	 Exercises

�� main��

� long n�

scanf���d�� !n��

�

�� main��

� long n � ��L�

printf���d�n�� n��

�

� main��

� double x�

scanf���f�� !x��

�

�� If x is �

 and z is �

� what is the output of the following	

if �z � x�

printf��z � �d� x � �d�n�� z� x��

� CHAPTER �� FUNCTIONS AND FILES

��
 Problems

�� Write a program to make a table of decimal� octal� and hexadecimal unsigned integers from

 to ����

�� Write a program to print a calendar for a month� given the number of days in the month
and the day of the week for the �rst day of the month� For example� given that there are

 days and the �rst of the month is on Tuesday� the program should print the calendar for
the month�

CALENDAR FOR THE MONTH

sun mon tue wed thu fri sat

� � � �

� " �
 �	 �� ��

�� �� � �� �" �� �

�	 �� �� �� �� � ��

�" �� �
 �	

� Write a program to read the current date in the order	 year� month� and day of month� The
program then prints the date in words	 Today is the nth day of Month of the year Year�
Example	

Today is the ��th day of December of the year �			�

�� Write a program that prints a calendar for a year given the day of the week on the �rst day
of the year� �Use Problem
�� for the de�nition of a leap year��

�� Write a program that prints a calendar for any year in this century given the day of the
week for the �rst day of the current year�

�� Write a function that returns the value of a random throw of two separate dice�

�� Write the following functions	

first�$card�� that draws a random card from a full deck�

second�$card�� that draws a random card from the remaining deck�

Similarly� write third�$card�� and fourth�$card���

For the last three functions� you will need arguments that indicate what cards have already
been drawn from the deck�

�� Write a program using the functions of Problem � to play a game of �black jack� with the
user� Each side is dealt cards alternately� First each side is dealt two cards� but one at a
time� Then� if necessary a maximum of one more card is allowed for each player� The player
with the highest score� not exceeding ��� wins� In a tie� the user wins� The program should
reshu�e the cards and play the game as long as the user wishes� The score is obtained by
summing the value of each card� The value of a card is the face value of the card� except
that an ace can be either � or �� and all picture cards are �
�

���� PROBLEMS

�

�� Randomly toss a coin	 repeat and count the number of heads and tails in �

 tosses� �

tosses� �

 tosses�

�
� Write a program to play a board game with the user� The game uses a throw of two dice�
The rules of the game are as follows� Each player takes a turn and is allowed a succession
of throws� If a player�s �rst throw is seven or eleven� he�she loses the turn� Otherwise� the
player�s score is increased by the value of each throw until the dice show a seven or a eleven�
The turns continue between the user and the program until a pre�set limit for the score is
reached�

��� Write a program to compare the routine sq root�� written in Chapter � with the standard
library routine� How close are the routines�

��� Write a function that returns the hypotenuse� given the two sides of a right angled triangle�
A hypotenuse is the square root of the sum of the squares of the two sides of a right angled
triangle�

�
� Find all the angles of a right angled triangle if the lengths of the two sides are given� Since
it is a right triangle� one angle is pi � �� Also� the ratio of the two sides in a right triangle
gives the tangent of one of the other angles� Therefore� one angle is the arctangent of the
ratio of the two sides� Use a library function to get the arctangent of a value� The other
angle is easily obtained since the three angles must add up to pi�

��� Use library routines to compare values of sine� cosine� and exponential with those calculated
by Chapter
 problems
�� through
�
�

��� Write a menu�driven program that handles the grades for a class� The program allows the
following commands�

Get data
 gets id numbers and integer scores for a set of � projects from a

file� Assume that the id numbers start at 	 and go up to a maximum of

�

Print data
 prints the scores�

Average scores
 averages each set of scores�

Change scores
 allows the user to make changes in scores for any project

and for any id number�

��� Write a program that reads a text of characters from a �le and keeps track of the frequency
of usage of each letter� digit� and punctuation�

��� Write a menu�driven program that reads input data from a �le� The program reads and
stores for each student the ID number� course numbers� credits� and grades� Assume a
maximum of
 courses per student� The program should compute and store the GPR for
each student� At the end of input� the program writes to a �le as well as to the standard
output all the input data and GPR for all students�

��� Write a program that shu�es and deals out all �� cards of a deck of playing cards to � players�
Each card is dealt in sequence around a table to players in the following order	 west� north�
east� south� Print out the hands of each player� You must use a random generator� but
discard a possible card if it has already been dealt out� Use an array of �� elements to keep
track of the cards already dealt out�

�
 CHAPTER �� FUNCTIONS AND FILES

��� Write a program to play the game of �� with a limit of �ve cards for each player� Assume
the program plays south and deals the cards� The other three players are in order west�
north� and east� Cards must be dealt randomly�

�
� Write a program that reads a positive integer n� it then generates a set of n random numbers
in a range from
 to ��� Store and count the frequency of occurrence of each number� Print
the frequency of each number�

��� Use an array to read from a �le and store the sample values of an experiment at regular
intervals� Plot the graph of the sample values versus time� Time should increase vertically
downwards� Use ��� to mark a point� Write a program to read in sample values and call a
function to plot the values�

��� Repeat Problem ��� but plot a bar chart for the sample values�

Chapter �

Two Dimensional Arrays

In Chapter � we have seen that C provides a compound data structure for storing a list of related
data� For some applications� however� such a structure may not be su�cient to capture the
organization of the data� For example� in our payroll task� we have several pieces of information
�hours worked� rate of pay� and regular and over time pay� for a list of employees� We have
organized such data as individual arrays� one for each �column	� to form the payroll data base

but conceptually� this information is all related� In this chapter we will introduce a data structure
which allows us to group together all such information into a single structure � a two dimensional
array� For a data base application� we can think of this �D organization as an array of arrays� As
another example of where such a structure is convenient� consider an array of names� We have
seen that we can store a name in a string� which is an array of characters� Then an array of strings
is also an array of arrays� or a two dimensional array�

In this chapter we will discuss how we can declare two dimensional arrays� and use them in
applications� We will see how we can access the data in such a structure using indices and pointers�
and see how this concept can be extended to multi
dimensional arrays� We will present examples
of � dimensional arrays for data base applications� string sorting and searching� and solutions
to systems of simultaneous linear algebraic equations� useful in scienti�c� engineering� and other
applications� e�g� electronic circuit analysis� economic analysis� structural analysis� etc� The one
restriction in the use of this data type is that all of the data stored in the structure must be of
the same type� �We will see how we can remove this restriction in the next chapter��

��� Two Dimensional Arrays

Our �rst task is to consider a number of exams for a class of students� The score for each exam is
to be weighted di�erently to compute the �nal score and grade� For example� the �rst exam may
contribute ��� of the �nal score� the second may contribute ���� and the third contribute ����
We must compute a weighted average of the scores for each student� The sum of the weights for
all the exams must add up to �� i�e� ����� Here is our task�

WTDAVG� Read the exam scores from a �le for several exams for a class of students� Read
the percent weight for each of the exams� Compute the weighted average score for each student�
Also� compute the averages of the scores for each exam and for the weighted average scores�

We can think of the exam scores and the weighted average score for a single student as a data
record and and represent it as a row of information� The data records for a number of students�

���

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

then� is a table of such rows� Here is our conceptual view of this collection of data�

exam� exam� exam� weighted avg
student� �� �� �� ��
student� �� �� ��� ��
student� �� �� �� ��
���
studentn �� �� �� ��

Let us assume that all scores will be stored as integers
 even the weighted averages� which will
be computed as �oat� will be rounded o� and stored as integers� To store this information in a
data structure� we can store each student�s data record� a row containing three exam scores and
the weighted average score� in a one dimensional array of integers� The entire table� then� is an
array of these one dimensional arrays � i�e� a two dimensional array� With this data structure�
we can access a record for an individual student by accessing the corresponding row� We can also
access the score for one of the exams or for the weighted average for all students by accessing each
column� The only restriction to using this data structure is that all items in an array must be
of the same data type� If the student id is an integer� we can even include a column for the id
numbers�

Suppose we need to represent id numbers� scores in � exams� and weighted average of scores
for �� students
 we need an array of ten data records� one for each student� Each data record
must be an array of �ve elements� one for each exam score� one for the weighted average score�
and one for the student id number� Then� we need an array� scores���� that has ten elements

each element of this array is� itself� an array of � integer elements� Here is the declaration of an
array of integer arrays�

int scores��������

The �rst range says the array has ten elements� scores���� scores���� � � � scores���� The
second range says that each of these ten arrays is an array of �ve elements� For example� scores���
has �ve elements� scores������� scores������� � � � scores������� Similarly� any other element
may be referenced by specifying two appropriate indices� scores�i��j�� The �rst array index
references the ith one dimensional array� scores�i�
 the second array index references the jth

element in the one dimensional array� scores�i��j��
A two dimensional array lends itself to a visual display in rows and columns� The �rst in

dex represents a row� and the second index represents a column� A visual display of the array�
scores�������� is shown in Figure ���� There are ten rows� ��
��� and �ve columns ��
��� An
element is accessed by row and column index� For example� scores�	��
� references an integer
element at row index � and column index ��

We will see in the next section that� as with one dimensional arrays� elements of a two dimen

sional array may be accessed indirectly using pointers� There� we will see the connection between
two dimensional arrays and pointers� For now� we will use array indexing as described above and
remember that arrays are always accessed indirectly� Also� just as with one dimensional arrays� a
�D array name can be used in function calls� and the called function accesses the array indirectly�
We can now easily set down the algorithm for our task�

���� TWO DIMENSIONAL ARRAYS ���

col� � col� � col� � col� � col� �

row � scores������ scores������ scores������ scores������ scores������
row � scores������ scores������ scores������ scores������ scores������
row � scores������ scores������ scores������ scores������ scores������
row � scores������ scores������ scores������ scores������ scores������
row � scores������ scores������ scores������ scores������ scores������
row � scores������ scores������ scores������ scores������ scores������
row � scores������ scores������ scores������ scores������ scores������
row � scores������ scores������ scores������ scores������ scores������
row � scores������ scores������ scores������ scores������ scores������
row � scores������ scores������ scores������ scores������ scores������

Figure ���� Rows and Columns in A Two Dimensional Array

read the number of exams into no�of�exams

get weights for each of the exams

read exam scores and id number for each student

into a two dimensional array

for each student� compute weighted average of scores in the exams

compute average score for each of the exams and

for the weighted average

print results

We can easily write the top level program driver using functions to do the work of reading scores�
getting the weights� computing the weighted averages� printing scores� averaging each set of scores�
and printing the averages� The driver is shown in Figure ����
We have declared an array� scores����� with MAX rows and COLS columns� where these macro

values are large enough to accommodate the expected data� We have used several functions�
which we will soon write and include in the same program �le� Their prototypes as well as those
of other functions are declared at the head of the �le� In the driver� getwts
� reads the weights
for the exams into an array� wts��� returning the number of exams� The function� read scores
��
reads the data records into the two dimensional array� scores����� and returns the number of
data records� The function� wtd avg
�� computes the weighted averages of all exam scores� and
avg scores
� computes an average of each exam score column as well as that of the weighted
average column� Finally� print scores
� and print avgs
� print the results including the input
data� the weighted averages� and the averages of the exams�
Let us �rst write getwts
�� It merely reads the weight for each of the exams as shown in Figure

���� The function prompts the user for the number of exam scores� and reads the corresponding
number of �oat values into the wts�� array� Notice that the loop index� i begins with the value
�� This is because the element wts���� corresponding to the student id column� does not have a
weight and should be ignored� After the weights have been read� we �ush the keyboard bu�er of
any remaining white space so that any kind of data �including character data� can be read from

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

�� File� wtdavg�c

Other Source Files� avg�c

Header Files� avg�h

This program computes weighted averages for a set of exam scores for

several individuals� The program reads scores from a file� computes

weighted averages for each individual� prints out a table of scores�

and prints averages for each of the exams and for the weighted average�

��

�include �stdio�h�

�define MAX 	�

�define COLS �

int getwts
float wts����

FILE �openinfile
void��

int read�scores
int ex���COLS�� int lim� int nexs��

void wtd�avg
int ex���COLS�� int lim� int nexs� float wts����

void avg�scores
int ex���COLS�� int avg��� int lim� int nexs��

void print�scores
int ex���COLS�� int lim� int nexs��

void print�avgs
int avg��� int nexs��

main
�

� int no�of�stds� no�of�exams�

int avg�COLS��

int scores�MAX��COLS��

float wts�COLS��

printf
����Weighted Average of Scores����n�n���

no�of�exams � getwts
wts��

no�of�stds � read�scores
scores� MAX� no�of�exams��

wtd�avg
scores� no�of�stds� no�of�exams� wts��

print�scores
scores� no�of�stds� no�of�exams��

avg�scores
scores� avg� no�of�stds� no�of�exams��

print�avgs
avg� no�of�exams��

�

Figure ���� Driver for Student Scores Program

���� TWO DIMENSIONAL ARRAYS ���

�� File� wtdavg�c � continued ��

�� Gets the number of exams and weights for the exams� flushes

the input buffer and returns the number of exams�

��

int getwts
float wts���

� int i� n�

printf
�Number of exams� ���

scanf
��d�� �n��

for
i � �� i �� n� i��� �

printf
�Percent Weight for Exam �d� �� i��

scanf
��f�� �wts�i���

�

while
getchar
� � !�n!�

�

return n�

�

Figure ���� Code for getwts
�

the input� The function returns the number of exams� n�

We will assume that the data for the student scores is stored in a �le in the format of one line
per student� with each line containing the student id followed by the exam scores� To read this
data into a two dimensional array� we must �rst open the input �le� This is done by the function
openfile
� shown in Figure ���� which prompts for the �le name and tries to open the �le� If
the �le opens successfully� the �le pointer is returned� Otherwise� the function prints a message
and asks the user to retype the �le name� The user may quit at any time by typing a newline
or end of �le� If an end of �le is typed or the typed string is empty� the program is terminated�
Once the input �le is opened� we read data items into the array� �lling in the elements one row
�student� at a time� We use two index variables� row and col� varying the row to access each row
in turn
 and� within each row� we vary col to access elements of each column in turn� We will
need a doubly nested loop to read the data in this manner� The function is given the number of
students� the variable stds� and the number of exams� nexs� We will use column � to store the
student id numbers and the next nexs columns to store the scores� Thus� in each row� we read
nexs�� data values into the array� This is done by the function� read scores
�� also shown in
Figure ���� The input �le is �rst opened using openfile
�� and the data records are read into the
array called ex���� within the function� The function returns the number of records read either
when EOF is reached or when the array is �lled� Each integer data item is read from a �le� fp� into
a temporary variable� n� This value is then assigned to the appropriate element� ex�row��col��
When all data has been read� the input �le is closed and the number of records read is returned�

Notice in main
� in Figure ���� we pass the �D array to read scores
� just as we did for
one dimensional arrays� passing the array name� As we shall see in the next section� the array

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

�� File� wtdavg�c � continued ��

�� Opens the input file and returns the file pointer� ��

FILE �openinfile
void�

� FILE �fp�

char infile�	���

printf
�Input File� RETURN to quit� ���

while
gets
infile�� �

if
 �infile� exit
��� �� empty string� exit ��

fp � fopen
infile� �r���

if
 fp� � �� no such file� continue ��

printf
�Unable to open input file � retype�n���

continue�

�

else return fp� �� file opened� return fp ��

�

exit
��� �� end of file typed� exit ��

�

�� Opens the input file and reads scores for nexs exams� returns

the number of individual student records�

��

int read�scores
int ex���COLS�� int stds� int nexs�

� int row� col� n� x�

FILE � fp�

fp � openinfile
��

for
row � �� row � stds� row���

for
col � �� col �� nexs� col��� �

x � fscanf
fp� ��d�� �n��

if
x �� EOF� �

fclose
fp��

return row�

�

ex�row��col� � n�

�

fclose
fp��

return row�

�

Figure ���� Code for openfile
� and read scores
�

���� TWO DIMENSIONAL ARRAYS ���

name is a pointer that allows indirect access to the array elements� The two dimensional array
as as argument must be declared in the function de�nition as a formal parameter� In Figure
���� we have declared it as ex���COL� with two sets of square brackets to indicate that it points
to a two dimensional array� In our declaration� we must include the number of columns in the
array because this speci�es the size of each row� Recall� the two dimensional array is an array of
rows� Once the compiler knows the size of a row in the array� it is able to correctly determine the
beginning of each row�
The next function called in main
� computes the weighted average for each row� The weighted

average for one record is just the sum of each of the exam score times the actual weight of that
exam� If the scores are in the array� ex����� then the following code will compute a weighted
average for a single row� row�

wtdavg � ����

for
col � �� col �� nexs� col���

wtdavg �� ex�row��col� � wts�col� � ������

We convert the percent weight to the actual weight multiply by the score� and accumulate it in
the sum� wtdavg yielding a �oat value� The wtdavg will be stored in the integer array� ex�����
after rounding to a nearest integer� If we simply cast wtdavg to an integer� it will be truncated�
To round to the nearest integer� we add ��� to wtdavg and then cast it to integer�

ex�row��nexs � �� �
int�
��� � wtdavg��

The weighted average is stored into the column of the array after the last exam score� The entire
function is shown in Figure ���
Computing average of each of the exams and the weighted average is simple� We just sum

each of the columns and divide by the number of items in the column� and is also shown in Figure
���� For each exam and for the weighted average column� the scores are added and divided by
lim� the number of rows in the array� using �oating point computation� The result is rounded to
the nearest integer and stored in the array� avg��� Figure ��� shows the �nal two functions for
printing the results�
Running the program with data �le�wtdin�dat as follows�

 "� "#

�	 �	 $�

�
 �� �#

�� �$ �	

�� �$ ��

�" ��� ��

#� ��� #�

#	 �� "#

#
 $# #�

"� ��� ��

"� "
 "

"� �� "�

produces the following sample session�

���Weighted Average of Scores���

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

�� File� wtdavg�c � continued ��

�� Computes the weighted average of the exam scores in ex���� for

lim individuals� nexs number of exams� and weights given by wts���

��

void wtd�avg
int ex���COLS�� int lim� int nexs� float wts���

� int i� j�

float wtdavg�

for
i � �� i � lim� i��� �

wtdavg � ����

for
j � �� j �� nexs� j���

wtdavg �� ex�i��j� � wts�j� � ������

ex�i��nexs � �� �
int�
wtdavg � �����

�

�

�� Averages exam and weighted average scores� ��

void avg�scores
int ex���COLS�� int avg��� int lim� int nexs�

� int i� j�

for
j � �� j �� nexs � �� j��� �

avg�j� � ��

for
i � �� i � lim� i���

avg�j� �� ex�i��j��

avg�j� �
int�
��� �
float� avg�j� �
float� lim��

�

�

Figure ���� Code for wtd avg
� and avg scores
�

���� TWO DIMENSIONAL ARRAYS ���

�� File� wtdavg�c � continued ��

�� Prints the scores for exams and the weighted average� ��

void print�scores
int ex���COLS�� int lim� int nexs�

� int i� j�

printf
�ID ��t���

for
j � �� j �� nexs� j���

printf
�Ex�d�t�� j�� �� print the headings ��

printf
�WtdAvg�n���

for
i � �� i � lim� i��� � �� print the scores and wtd avg ��

for
j � �� j �� nexs � �� j���

printf
��d�t�� ex�i��j���

printf
��n���

�

�

�� Prints the averages of exams and the average of the weighted average

of exams�

��

void print�avgs
int avg��� int nexs�

� int i�

for
i � �� i �� nexs� i���

printf
�Average for Exam �d � �d�n�� i� avg�i���

printf
�Average of the weighted average � �d�n�� avg�nexs � ����

�

Figure ���� Code for print scores
� and print avgs
�

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

Number of exams� �

Percent Weight for Exam �� ��

Percent Weight for Exam 	� ��

Input File� RETURN to quit� wtdin�dat

ID � Ex� Ex	 WtdAvg

 "� "# "

�	 �	 $� $#

�
 �� �# "#

�� �$ �	 ��

�� �$ �� �"

�" ��� �� �$

#� ��� #� $

#	 �� "# $#

#
 $# #� "#

"� ��� �� ��

"� "
 "
 "

"� �� "� $"
Average for Exam � � $$

Average for Exam 	 � "�

Average of the weighted average � $	

In this program� we have assumed that the input �le contains only the data to be read� i�e� the
student id numbers and exam scores� Our read scores
� function is written with this assumption�
However� the input �le might also contain some heading information such as the course name and
column headings in the �rst few lines of the �le� We can easily modify read scores
� to discard
the �rst few lines of headings�

As a second example of application of two dimensional arrays� consider our previous payroll
example� In this case� the data items in a pay data record are not all of the same data type� The
id numbers are integers� whereas all the other items are �oat� Therefore� we must use an array of
integers to store the id numbers� and a two dimensional �oat array to store the rest of the data
record� The algorithm is no di�erent from the program we developed in Chapter � that computed
pay� The di�erence is that now we use a two dimensional array for all �oat payroll data instead
of several one dimensional arrays� The id numbers are still stored in a separate one dimensional
array� Since the data structures are now di�erent� we must recode the functions to perform the
tasks of getting data� calculating pay� and printing results� but still using the same algorithms�

The program driver and the header �les are shown in Figure ���� The program declares an
integer array for id numbers and a two dimensional �oat array for the rest of the data record� The
successive columns in the two dimensional array store the hours worked� rate of pay� regular pay�
overtime pay� and total pay� respectively� We have de�ned macros for symbolic names for these
index values� As in the previous version� the program gets data� calculates pay� and prints data�
The di�erence is in the data structures used� Functions to perform the actual tasks are shown
in Figure ��� and ��� and included in the same program source �le� Each function uses a two
dimensional array� payrec����� The row index speci�es the data record for a single id� and the
column index speci�es a data item in the record� The data record also contains the total pay� A
sample interaction with the program� pay	rec�c� is shown below�

���� TWO DIMENSIONAL ARRAYS ���

�� File� pay	rec�c

Program calculates and stores payroll data for a number of id!s�

The program uses a one dimensional array for id!s� and a two

dimensional array for the rest of the pay record� The first column

is hours� the second is rate� the third is regular pay� the fourth

is overtime pay� and the fifth is total pay�

��

�include �stdio�h�

�define MAX ��

�define REG�LIMIT ��

�define OT�FACTOR ���

�define HRS �

�define RATE �

�define REG 	

�define OVER

�define TOT �

int get	data
int id��� float payrec���TOT � ��� int lim��

void calc	pay
float payrec���TOT � ��� int n��

void print	data
int id��� float payrec���TOT � ��� int n��

main
�

� int n � �� id�MAX��

float payrec�MAX��TOT � ���

printf
����Payroll Program � Records in 	 D arrays����n�n���

n � get	data
id� payrec� MAX��

calc	pay
payrec� n��

print	data
id� payrec� n��

�

Figure ���� Driver for Payroll Program Using �D Arrays

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

�� File� pay	rec�c � continued ��

�� Gets id!s in one array� and the rest of input data records

in a two dimensional array�

��

int get	data
int id��� float payrec���TOT � ��� int lim�

� int n � ��

float x�

while
n � lim� �

printf
�ID �zero to quit�� ���

scanf
��d�� �id�n���

if
id�n� �� ��

return n�

printf
�Hours Worked� ���

scanf
��f�� �x��

payrec�n��HRS� � x�

printf
�Rate of Pay� ���

scanf
��f�� �x��

payrec�n��RATE� � x�

n���

�

if
n �� lim� �

printf
�Table full� processing data�n���

return n�

�

�

Figure ���� Code for Payroll Program Functions � get	data
�

���� TWO DIMENSIONAL ARRAYS ���

�� Calculates pay for each id record in a two dimensional array� ��

void calc	pay
float payrec���TOT � ��� int n�

� int i�

for
i � �� i � n� i��� �

if
payrec�i��HRS� �� REG�LIMIT� �

payrec�i��REG� � payrec�i��HRS� � payrec�i��RATE��

payrec�i��OVER� � ��

�

else �

payrec�i��REG� � REG�LIMIT � payrec�i��RATE��

payrec�i��OVER� �
payrec�i��HRS� � REG�LIMIT� �

OT�FACTOR � payrec�i��RATE��

�

payrec�i��TOT� � payrec�i��REG� � payrec�i��OVER��

�

�

�� Prints a table of payroll data for all id!s� Id!s in one array�

and the rest of the records in a two dim� array�

��

void print	data
int id��� float payrec���TOT � ��� int n�

� int i� j�

printf
����PAYROLL� FINAL REPORT����n�n���

printf
����s���s���s���s���s���s�n�� �ID�� �HRS��

�RATE�� �REG�� �OVER�� �TOT���

for
i � �� i � n� i��� �

printf
����d�� id�i���

for
j � �� j �� TOT� j���

printf
�����	f�� payrec�i��j���

printf
��n���

�

�

Figure ���� Code for Payroll Program Functions � calc	pay
� and print	data
�

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

Sample Session�

���Payroll Program � Records in 	 D arrays���

ID �zero to quit�� �

Hours Worked� ��

Rate of Pay� ��

ID �zero to quit�� ��

Hours Worked� ��

Rate of Pay� ��

ID �zero to quit�� �

���PAYROLL� FINAL REPORT���
ID HRS RATE REG OVER TOT

�
���� �����
����� ����
�����

�� ����� �	��� �$���� �$���� ##����

��� Implementing Multi�Dimensional Arrays

In the last section we saw how we can use two dimensional arrays � how to declare them� pass
them to functions� and access the date elements they contain using array indexing notation� As
with one dimensional arrays� we can access elements in a �D array using pointers as well� In
order to understand how this is done� in this section we look at how multi dimensional arrays are
implemented in C�
As we saw in Chapter �� a one dimensional array is stored in a set of contiguous memory cells

and the name of the array is associated with a pointer cell to this block of memory� In C� a two
dimensional array is considered to be a one dimensional array of rows� which are� themselves�
one dimensional arrays� Therefore� a two dimensional array of integers� AA����� is stored as a
contiguous sequence of elements� each of which is a one dimensional array� The rows are stored
in sequence� starting with row � and continuing until the last row is stored� i�e� AA��� is stored
�rst� then AA���� then AA�	�� and so on to AA�MAX���� Each of these �elements	 is an array� so
is stored as a contiguous block of integer cells as seen in Figure ����� This storage organization
for two dimensional arrays is called row major order� The same is true for higher dimensional
arrays� An n dimensional array is considered to be a one dimensional array whose elements are�
themselves� arrays of dimension n� �� As such� in C� an array of any dimension is stored in row
major order in memory�
With this storage organization in mind� let us look at what implications this has to referencing

the array with pointers� Recall that an array name �without an index� represents a pointer to the
�rst object of the array� So the name� AA� is a pointer to the element AA���� iBut� AA��� is a one
dimensional array
 so� AA��� points to the �rst object in row �� i�e� AA��� points to AA�������
Similarly� for any k AA�k� points to the beginning of the kth row� i�e� AA�k� is the address of
AA�k����� Since AA�k� points to AA�k����� �AA�k� accesses AA�k����� an object of type integer�
If we add � to the pointer AA�k�� the resulting pointer will point to the next integer type element�
i�e� the value of AA�k����� In general� AA�k� � j points to AA�k��j�� and �
AA�k� � j� accesses
the value of AA�k��j�� This is shown in Tables ��� and ���� Each AA�k� points to an integer type
object� When an integer is added to the pointer AA�k�� the resulting pointer points to the next
object of the integer type�

���� IMPLEMENTING MULTI	DIMENSIONAL ARRAYS ���

� � �

� � �

���

AA���

AA���

AA�MAX���

Figure ����� A Two Dimensional Array in Row Major Order

AA��� �AA������
AA��� �AA������
AA��� �AA������
AA�k� �AA�k����

AA��� � �AA������
AA��� j �AA����j�

AA�k� j �AA�k��j�

Table ���� Array Pointers and Sub
Arrays

! AA��� AA������
AA�k� AA�k����

�AA��� �� AA������
�AA��� j� AA����j�

�AA�k� j� AA�k��j�

Table ���� Dereferencing Array Pointers

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

! AA AA��� �AA������
AA � AA��� � �AA������
AA j AA��� j �AA����j�

�AA �� AA��� �AA������
�AA k� AA�k� �AA�k����

�! AA� !AA��� AA������
�! �AA ��� !AA��� AA������
�! �AA k� j� !�AA�k� j� AA�k��j�

Table ���� Pointer Equivalence for Two Dimensional Arrays

The name� AA� is the name of the entire array� whose elements are themselves arrays of integers�
Therefore� AA points to the �rst object in this array of arrays� i�e� AA points to the array AA���� The
addresses represented by AA and AA��� are the same
 however� they point to objects of di�erent
types� AA��� points to AA������� so it is an integer pointer� AA points to AA���� so it is a pointer
to an integer pointer� If we add � to AA� the resulting pointer� AA � �� points to the array AA����
and AA � k points to the array AA�k�� When we add to a pointer to some type� we point to the
next object of that type� Therefore� adding to AA and AA��� result in pointers to di�erent objects�
Adding � to AA results in a pointer that points to the next array or row� i�e� AA���
 whereas adding
� to AA��� results in a pointer that points to AA������� Dereferencing such a pointer� �
AA � k��
accesses AA�k�� which as we saw� was �AA�k����� It follows that �
�
AA � k� � j� accesses the
integer� AA�k��j�� This pointer equivalence for two dimensional arrays is shown in Table ����
The C compiler converts array indexing to indirect access by dereferenced pointers as shown

in the table
 thus� all array access is indirect access When we pass a �D array to a function� we
pass its name �AA�� The function can access elements of the array argument either by indexing
or by pointers� We generally think of a two dimensional array as a table consisting of rows and
columns as seen in Figure ����� As such� it is usually easiest to access the elements by indexing

however� the pointer references are equally valid as seen in the �gure�
The relationships between di�erent pointers for a two dimensional array is further illustrated

with the program shown in Figure ����� The two
dimensional array� a� is not an integer pointer�
it points to the array of integers� a���� However� �a is an integer pointer
 it points to an integer
object� a������� To emphasize this point� we initialize an integer pointer� intptr to �a� i�e� a����
The initial value of intptr is the address of a������� We next print the values of a and �a� which
are the same address even though they point to di�erent types of objects� In the for loop� we
print the value of a � i� which is the same as that of a�i� even though they point to di�erent
types of objects� In the inner for loop� we print the address of the ith row and the jth column
element of the row major array using pointers�

�a � COL � i � j

The same value is printed using the address of operator� �a�i��j�� Finally� the value of a�i��j�
is printed using array indices as well as by dereferencing pointers� i�e� �
�
a � i� � j��
The value of intptr� initialized to �a� is incremented after each element value is printed

���� IMPLEMENTING MULTI	DIMENSIONAL ARRAYS ���

� �

�

�

�

��

�

�

��

AA���

AA���

AA���

AA�MAX���

AA

AA 	 �

AA 	 �

AA 	 MAX � �

AA���	�AA���	� AA���	MAXCOL��

� � �

� � �

� � �

���

� � �

Figure ����� Pointers and Two Dimensional Arrays

making it point to the next element� The value of intptr is printed as it is incremented� Observe
that it prints the address of each element of the array in one row� and proceeds to the next row
in sequence� This shows that arrays are stored in row major form�
Finally� the function� print	aray
� is used to print the two dimensional array in rows and

columns� The output of a sample run is shown below�

���	D Arrays� Pointers ���

array
row� pointer a � #��"�� �a � #��"�

a � � � #��"�

�a � COL � � � � � #��"�� intptr � #��"�

�a������ � #��"�

a������ � �	� �
�
a � �� � �� � �	

�a � COL � � � � � #��"#� intptr � #��"#

�a������ � #��"#

a������ � 	�� �
�
a � �� � �� � 	�

�a � COL � � � 	 � #��"$� intptr � #��"$

�a����	� � #��"$

a����	� � 	�� �
�
a � �� � 	� � 	�

a � � � #��$�

�a � COL � � � � � #��$�� intptr � #��$�

�a������ � #��$�

a������ � 	
� �
�
a � �� � �� � 	

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

�� File� ar	ptr�c

Other Source Files� ar	util�c

Header Files� ar	def�h� ar	util�h

Program shows relations between arrays and pointers for 	 dimensional

arrays�

��

�include �stdio�h�

�define ROW 	

�define COL

print	aray
int x���COL�� int r� int c��

main
�

� int i� j� �intptr� a�ROW��COL� �

� ��	� 	�� 	��� �	
� �"� ��� ��

printf
����	D Arrays� Pointers ����n�n���

intptr � �a�

printf
�array
row� pointer a � �u� �a � �u�n�� a� �a��

for
i � �� i � ROW� i��� �

printf
�a � �d � �u�n�� i� a � i��

for
j � �� j � COL� j��� �

printf
��a � COL � �d � �d � �u� intptr � �u�n��

i� j� �a � COL � i � j� intptr��

printf
��a��d���d� � �u�n�� i� j� �a�i��j���

printf
�a��d���d� � �d� �
�
a � �d� � �d� � �d�n��

i� j� a�i��j��

i� j� �
�
a � i� � j���

intptr���

�

�

print	aray
a� ROW� COL��

�

�� This Function prints a two dimensional integer array� ��

print	aray
int x���COL�� int r� int c�

� int i� j�

printf
��nThe two dimensional array is��n�n���

for
i � �� i � r� i��� �

for
j � �� j � c� j���

printf
��d �� x�i��j���

printf
��n���

�

�

Figure ����� Program Illustrating �D Array Pointers

���� ARRAYS OF STRINGS ���

�a � COL � � � � � #��$	� intptr � #��$	

�a������ � #��$	

a������ � �"� �
�
a � �� � �� � �"

�a � COL � � � 	 � #��$�� intptr � #��$�

�a����	� � #��$�

a����	� � ��� �
�
a � �� � 	� � ��

The two dimensional array is�
�	 	� 	�

	
 �" ��

As we mentioned in the last section� when a two dimensional array is passed to a function�
the parameter declaration in the function must include the number of columns� We can now see
why this is so� The number of columns in a row speci�es the size of each row in the array of rows�
Since the passed parameter is a pointer to a row object� it can be incremented and dereferenced�
as shown in Table ���� to access the elements of the two dimensional array� The compiler must
know the size of the row in order to be able to increment the pointer to the next row�
As we stated earlier� multi
dimensional arrays are arrays of arrays just like two dimensional

arrays� An n dimensional array is an array of n�� dimensional arrays� The same general approach
applies as for two dimensional arrays� When passing an n dimensional array� the declaration of
the formal parameter must specify all index ranges except for the �rst index�
As was seen in the program in Figure ����� multi
dimensional arrays may also be initialized in

declarations by specifying constant initializers within braces� Each initializer must be appropriate
for the corresponding lower dimensional array� For example� a two dimensional array may be
initialized as follows�

int x�	��
� � � ���� 	
�� ��� �	� �"� ��

The array has two elements� each of which is an array of three elements� The �rst initializer
initializes the �rst row of x� Since only the �rst two elements of the row are speci�ed� the third
element is zero� The second element initializes the second row� Thus� x is initialized to the array�

�� 	
 �

� �	 �"

��� Arrays of Strings

Besides data base applications� another common application of two dimensional arrays is to store
an array of strings� In this section we see how an array of strings can be declared and operations
such as reading� printing and sorting can be performed on them�
A string is an array of characters
 so� an array of strings is an array of arrays of characters�

Of course� the maximum size is the same for all the strings stored in a two dimensional array� We
can declare a two dimensional character array of MAX strings of size SIZE as follows�

char names�MAX��SIZE��

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

�

�

�

�

� � �

� � �

� � �

���

� � �J o h n n�

S u e n�
names���

names���

names���

names�MAX���

Figure ����� An Array of Strings

Since names is an array of character arrays� names�i� is the ith character array� i�e� it points
to the ith character array or string� and may be used as a string of maximum size SIZE � �� As
usual with strings� a NULL character must terminate each character string in the array� We can
think of an array of strings as a table of strings� where each row of the table is a string as seen in
Figure �����
We will need an array of strings in our next task to read strings� store them in an array� and

print them�
NAMES� Read and store a set of strings� Print the strings�
We can store a string into names�i� by reading a string using gets
� or by copying one into

it using strcpy
�� Since our task is to read strings� we will use gets
�� The algorithm is simple�

while array not exhausted and not end of file�

read a string into an array element

print out the strings in the array of strings

We will organize the program in several source �les since we will be using some of the functions
in several example programs� The program driver and the header �le are shown in Figure �����
The program reads character strings into an array� in this case� names� The program can� of

course� serve to read in any strings� The for loop in main
� reads strings into an array using
gets
� to read a string into names�n�� the nth row of the array� That is� the string is stored
where names�n� points to� The variable n keeps track of the number of names read� The loop is
terminated either if the number of names equals MAX� or when gets
� returns NULL indicating end
of �le has been reached� Next� the program calls on printstrtab
� to print the names stored in
the two dimensional array� names� The arguments passed are the array of strings and the number
of strings� n�
The function� printstrtab
� is included in the �le strtab�c and its prototype is included

in the �le strtab�h� Remember� the second range of the two dimensional array of strings must
be speci�ed in the formal parameter de�nition� otherwise the number of columns in a row are
unknown and the function cannot access successive rows correctly� A sample interaction for the
compiled and linked program is shown below�
Sample Session�

���Table of Strings � Names���

���� ARRAYS OF STRINGS ���

�� File� strtab�h ��

�define SIZE
� �� maximum size of a name plus a NULL ��

void printstrtab
char strtab���SIZE�� int n��

�� File� names�c

Other Source Files� strtab�c

Header Files� strtab�h

This program reads a set of names or strings into a two

dimensional array� It then prints out the names�

��

�include �stdio�h�

�define MAX ��

�include �strtab�h�

main
�

� int n� �� number of names ��

char names�MAX��SIZE�� �� 	�d array of names ��

printf
����Table of Strings � Names����n�n���

printf
�Enter one name per line� EOF to terminate�n���

for
n � ��
n � MAX� �� gets
names�n��� n���

�

if
n �� MAX�

printf
��n��Table full � input terminated�n���

printstrtab
names� n��

�

�� File� strtab�c ��

�include �stdio�h�

�include �strtab�h�

�� Prints n strings in the array strtab����� ��

void printstrtab
char strtab���SIZE�� int n�

� int k�

printf
�Names are��n���

for
k � �� k � n� k���

puts
strtab�k���

�

Figure ����� Code for String Table Driver

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

Enter one name per line� EOF to terminate

John Smith

David Jones

Helen Peterson

Maria Schell

D

Names are�

John Smith

David Jones

Helen Peterson

Maria Schell

����� String Sorting and Searching

Our next couple of tasks are simple and build on the last one� In one task we search �sequentially�
for a string and in another we sort a set of strings�

SRCHSTR� Search for a key string in a set of strings�
We will use a function� srchstr
�� to search for a string in an array of a speci�ed size� The

function returns either a valid index where the string is found or it returns
� to indicate failure�
The algorithm is simple enough and the implementation of a test program driver is shown in
Figure �����

The �le strtab�h includes the prototypes for functions in �le strtab�c� Observe the ini

tialization of the two dimensional array names���� using constant initializers written in braces
separated by commas� Each initializer initializes a one dimensional string array written as a string
constant� The program calls srchstrtab
� searching for the string �John Smith�� and prints the
returned index value�
As we have seen in Chapter �� the library function strcmp
� is used to compare two strings�

The function returns zero if the argument strings are equal� A sequential search process for strings
is easily developed by modifying the sequential search function of Chapter �� replacing the equality
operator with the function strcmp
� to compare two strings�

In the function� srchstrtab
�� we compare each string in the array with the desired string
until we either �nd a match or the array is exhausted� The function call requires the name of the
array of strings� the number of valid elements in the array� and the item to be searched for� For
example� suppose we wish to search for a string� key� in the array� names with n string elements�
then� the function call would be�

k � srchstrtab
names� n� key��

The value returned is assigned to an integer variable� k� If successful� srchstrtab
� returns the
index where the string was found
 otherwise� it returns
�� The function is shown in Figure ����� In
the for loop� the string that strtab�i� points to is compared with the string that key points to� If
they are equal� strcmp
� returns zero and the value of i is returned by the function� Otherwise� i
is incremented� and the process is repeated� The loop continues until the valid array is exhausted�
in which case
� is returned� Again� the formal parameter de�nition for the two dimensional array�
x� requires the size of the second dimension� SIZE� A sample run of the program is shown below�

���� ARRAYS OF STRINGS ���

�� File� strsrch�c

Other Source Files� strtab�c

Header Files� strtab�h

This program searches for a string
key� in a set of strings

in a two dimensional array� It prints the index where key is found�

It prints ��� if the string is not found�

��

�include �stdio�h�

�define MAX ��

�include �strtab�h�

main
�

� int k�

char names�MAX��SIZE� � � �John Jones�� �Sheila Smith��

�John Smith�� �Helen Kent���

printf
����String Search for John Smith����n�n���

k � srchstrtab
names� �� �John Smith���

printf
�John Smith found at index �d�n�� k��

�

Figure ����� Driver for String Search Program

�� File� strtab�c � continued ��

�include �string�h�

�� Searches a string table strtab���� of size n for a string key� ��

int srchstrtab
char strtab���SIZE�� int n� char key���

� int i�

for
i � �� i � n� i���

if
strcmp
strtab�i�� key� �� ��

return i�

return ���

�

Figure ����� Code for srchstrtab
�

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

�� File� strsort�c

Other Source Files� strtab�c

Header Files� strtab�h

This program sorts a set of strings in a two dimensional array�

It prints the unsorted and the sorted set of strings�

��

�include �stdio�h�

�define MAX ��

�include �strtab�h�

main
�

� int n�

char names�MAX��SIZE� � � �John Jones�� �Sheila Smith��

�John Smith�� �Helen Kent���

printf
����String Array � unsorted and sorted����n�n���

printf
�Unsorted ���

printstrtab
names� ���

sortstrtab
names� ���

printf
�Sorted ���

printstrtab
names� ���

�

Figure ����� Driver for Sorting Strings Program

���String Search for John Smith���

John Smith found at index 	

Our next task calls for sorting a set of strings�

SORTSTR� Sort a set of strings� Print strings in unsorted and in sorted order�

The algorithm is again very simple and we implement it in the program driver� The driver
simply calls on sortstrtab
� to sort the strings and prints the strings� �rst unsorted and then
sorted� A prototype for sortstrtab
� is included in �le strtab�h and the driver is shown in
Figure ����� An array of strings is initialized in the declaration and the unsorted array is printed�
Then� the array is sorted� and the sorted array is printed�

Sorting of an array of strings is equally straight forward� Let us assume� the array of strings is
to be sorted in increasing ASCII order� i�e� a is less than b� b is less than c� A is less than a� and so
on� We will use the selection sort algorithm from Chapter ��� Two nested loops are needed
 the
inner loop moves the largest string in an array of some e�ective size to the highest index in the
array� and the outer loop repeats the process with a decremented e�ective size until the e�ective
size is one� The function is included in �le strtab�c and shown in Figure ����� The function

���� ARRAYS OF STRINGS ���

�� File� strtab�c � continued ��

�� Sorts an array of strings� The number of strings in the

array is lim�

��

void sortstrtab
char strtab���SIZE�� int lim�

� int i� eff�size� maxpos � ��

char tmp�SIZE��

for
eff�size � lim� eff�size � �� eff�size��� �

for
i � �� i � eff�size� i���

if
strcmp
strtab�i�� strtab�maxpos�� � ��

maxpos � i�

strcpy
tmp� strtab�maxpos���

strcpy
strtab�maxpos�� strtab�eff�size�����

strcpy
strtab�eff�size � ��� tmp��

�

�

Figure ����� Code for sortstrtab
�

is similar to the numeric selection sort function� except that we now use strcmp
� to compare
strings and strcpy
� to swap strings� A sample session is shown below�

���String Array � unsorted and sorted���

Unsorted Names are�

John Jones

Sheila Smith

John Smith

Helen Kent

Sorted Names are�

Helen Kent

John Jones

John Smith

Sheila Smith

In our example program� the entire strings are compared� If we wish to sort by last name� we
could modify our function to �nd and compare only the last names�

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

��� Arrays of Pointers

As seen in the last example� sorting an array of strings requires swapping the strings which can
require copying a lot of data� For e�ciency� it is better to avoid actual swapping of data whenever
a data item is large� such as a string or an entire data base record� In addition� arrays may be
needed in more than one order
 for example� we may need an exam scores array sorted by Id
number and by weighted scores
 or� we may need strings in both an unsorted form and a sorted
form� In either of these cases� we must either keep two copies of the data� each sorted di�erently�
or �nd a more e�cient way to store the data structure� The solution is to use pointers to elements
of the array and swap pointers� Consider some examples�

int data�� data	� �ptr�� �ptr	� �save�

data� � ���� data	 � 	���

ptr� � �data�� ptr	 � �data	�

We could swap the values of the data and store the swapped values in data� and data	 or we
could simply swap the values of the pointers�

save � ptr��

ptr� � ptr	�

ptr	 � save�

We have not changed the values in data� and data	
 but ptr� now accesses data	 and ptr	

access data�� We have swapped the pointer values so they point to objects in a di�erent order�
We can apply the same idea to strings�

char name��� � �John��

char name	�� � �Dave��

char �p�� �p	� �save�

p� � name��

p	 � name	�

Pointers p� and p	 point to strings name� and name	� We can now swap the pointer values so p�
and p	 point to name	 and name�� respectively�
In general� an array of pointers can be used to point to an array of data items with each

element of the pointer array pointing to an element of the data array� Data items can be accessed
either directly in the data array� or indirectly by dereferencing the elements of the pointer array�
The advantage of a pointer array is that the pointers can be reordered in any manner without
moving the data items� For example� the pointer array can be reordered so that the successive
elements of the pointer array point to data items in sorted order without moving the data items�
Reordering pointers is relatively fast compared to reordering large data items such as data records
or strings� This approach saves a lot of time� with the additional advantage that the data items
remain available in the original order� Let us see how we might implement such a scheme�
STRPTRS� Given an array of strings� use pointers to order the strings in sorted form� leaving

the array unchanged�
We will use an array of character pointers to point to the strings declared as follows�

���� ARRAYS OF POINTERS ���

�

�

�

�

�

� � �

� � �

� � �

� � �

���

u e n�

y u r i n�

o h n n�

c a r o

d a v i

s

j

� � �

� � �

�

�

�

�

�

�

�

�

�

�

MAX��

l

d

n�

n�

captionUnsorted Pointers to Strings

char � nameptr�MAX��

The array� nameptr��� is an array of size MAX� and each element of the array is a character pointer�
It is then possible to assign character pointer values to the elements of the array
 for example�

nameptr�i� � �John Smith��

The string �John Smith� is placed somewhere in memory by the compiler and the pointer to the
string constant is then assigned to nameptr�i�� It is also possible to assign the value of any string
pointer to nameptr�i�
 for example� if s is a string� then it is possible to assign the pointer value
s to nameptr�i��

nameptr�i� � s�

In particular� we can read strings into a two dimensional array� names����� and assign each string
pointer� names�i� to the ith element of the pointer array� nameptr���

for
i � �� i � MAX �� gets
names�i��� i���

nameptr�i� � names�i��

The strings can then be accessed either by names�i� or by nameptr�i� as seen in Figure ���� We
can then reorder the pointers in nameptr�� so that they successively point to the strings in sorted
order as seen in Figure ���� We can then print the strings in the original order by accessing them
through names�i� and print the strings in sorted order by accessing them through nameptr�i��
Here is the algorithm�

while not end of file and array not exhausted�

read a string

store it in an array of strings and

assign the string to an element of a pointer array

access the array of strings and print them out

access the array of pointers and print strings that point to

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

�

�

�

�

�

�

�

�

�

�

MAX��

�

�

�

�

� � � �

� � �

� � �

� � �

���

u e n�

y u r i n�

o h n n�

c a r o

d a v i

s

j

� � �

� � �

l

d

n�

n�

captionSorted Pointers to Strings

The program driver� including a prototype for sortptrs
� is shown in Figure ����� It declares
a two dimensional array of strings� names����� and an array of character pointers� nameptr���
It then reads strings into names����� and assigns each string pointer names�i� to nameptr�i��
The function sortptrs
� is then called to reorder nameptr�� so the successive pointers of the
array point to the strings in sorted order� Finally� strings are printed in original unsorted order
by accessing them through names�i� and in sorted order by accessing them through nameptr�i��
The function sortptrs
� uses the selection sort algorithm modi�ed to access data items

through pointers� It repeatedly moves the pointer to the largest string to the highest index of an
e�ective array� The implementation of sorting using pointers to strings is shown in Figure �����
The algorithm determines maxpos� the index of the pointer to the largest string� The pointer at
maxpos is then moved to the highest index in the e�ective array� The array size is then reduced�
etc�
Sample Session�

���Arrays of Pointers � Sorting by Pointers���

Enter one name per line� EOF to terminate

john

yuri

sue

carol

david

D

The unsorted names are�

john

yuri

sue

carol

david

���� ARRAYS OF POINTERS ���

�� File� ptraray�c

This program uses an array of pointers� Elements of the array

point to strings� The pointers are reordered so that they

point to the strings in sorted order� Unsorted and sorted

strings are printed out�

��

�include �stdio�h�

�define TRUE �

�define FALSE �

�define MAX �� �� max number of names ��

�define SIZE
� �� size of names plus one for NULL ��

void sortptrs
char � nameptr��� int n��

main
�

� int i� �� counter ��

int n� �� number of names read ��

char names�MAX��SIZE�� �� 	�d array of names ��

char �nameptr�MAX�� �� array of ptrs � used to point to names ��

printf
����Arrays of Pointers � Sorting by Pointers����n�n���

�� read the names into the 	�d array ��

printf
�Enter one name per line� ���

printf
�EOF to terminate�n���

for
n � �� gets
names�n�� �� n � MAX� n���

nameptr�n� � names�n�� �� assign string pointer ��

�� to a char pointer in the ��

�� array of pointers� ��

if
n �� MAX�

printf
��n���Only �d names allowed����n�� MAX��

printf
�The unsorted names are��n���

�� print the names ��

for
i � �� i � n� i���

puts
names�i��� �� access names in stored array���

sortptrs
nameptr� n�� �� sort pointers ��

printf
�The sorted names are��n���

for
i � �� i � n� i��� �� print sorted names� ��

puts
nameptr�i��� �� accessed via array of pointers� ��

�

Figure ����� Driver for Sorting Pointer Array Program

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

�� File� ptraray�c � continued ��

�� The elements of the array of pointers nameptr�� point to

strings� The pointer array is reordered so the pointers

point to strings in sorted order� The function uses selection

sort algorithm�

��

void sortptrs
char � nameptr��� int n�

� int i� eff�size� maxpos � ��

char �tmpptr�

for
eff�size � n� eff�size � �� eff�size��� �

for
i � �� i � eff�size� i���

if
strcmp
nameptr�i��nameptr�maxpos�� � ��

maxpos � i�

tmpptr � nameptr�maxpos��

nameptr�maxpos� � nameptr�eff�size����

nameptr�eff�size��� � tmpptr�

�

�

Figure ����� Code for sortptrs
�

���� AN EXAMPLE� LINEAR ALGEBRAIC EQUATIONS ���

The sorted names are�

carol

david

john

sue

yuri

Reordering of pointers� so they point to data items in sorted order� is referred to as sorting by

pointers� When the data items are large� such as data records or strings� this is the preferred way
of sorting because it is far more e�cient to move pointers than it is to move entire data records�

��� An Example	 Linear Algebraic Equations

As our �nal example program using two dimensional arrays in this chapter� we develop a program
to solve systems of simultaneous linear equations� A set of linear algebraic equations� also called
simultaneous equations� occur in a variety of mathematical applications in science� engineering�
economics� and social sciences� Examples include� electronic circuit analysis� econometric analysis�
structural analysis� etc� In the most general case� the number of equations� n� may be di�erent
from the number of unknowns� m
 thus� it may not be possible to �nd a unique solution� However�
if n equals m� there is a good chance of �nding a unique solution for the unknowns�
Our next task is to solve a set of linear algebraic equations� assuming that the number of

equations equals the number of unknowns�
LINEQNS� Read the coe�cients and the right hand side values for a set of linear equations

solve the equations for the unknowns�
The solution of a set of linear equations is fairly complex� We will �rst review the process of

solution and then develop the algorithm in small parts� As we develop parts of the algorithm�
we will implement these parts as functions� The driver will just read the coe�cients� call on a
function to solve the equations� and call a function to print the solution�
Let us start with an example of a set of three simultaneous equations in three unknowns� x��

x�� and x��

� � x� � � x� � � x� " �

� � x� � � x� � � x� " �

� � x� � � x� � � x� " �

We can use arrays to represent such a set of equations
 a two dimensional array to store the
coe�cients� a one dimensional array to store the values of the unknowns when solved� and another
one dimensional array to store the values on the right hand side� Later� we will include the right
hand side values as an additional column in the two dimensional array of coe�cients� Each row
of the two dimensional array stores the coe�cients of one of the equations� Since the array index
in C starts at �� we will assume the unknowns are the elements x���� x���� and x�	�� Similarly�
the elements in row zero are the coe�cients in the equation number �� the elements in row one
are for equation number one� and so forth�
Then using arrays� a general set of n linear algebraic equations with m unknowns may be

expressed as shown below�

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

a������ � x��� � a�������x��� � ���� a����m � �� � x�m � �� � y���

a������ � x��� � a�������x��� � ���� a����m � �� � x�m � �� � y���

���

a�n�������x��� � ��� � a�n����m � ���x�m � �� � y�n���

The unknowns and the right hand side are assumed to be elements of one dimensional arrays�
x���� x����� � �� x�m � �� and y���� y����� � �� y�n � ��� respectively� The coe�cients are
assumed to be elements of a two dimensional array� a�i��j� for i " �� � � � � n � � and j "
�� � � � �m��� The coe�cients of each equation correspond to a row of the array� For our discussion
in this section� we assume that m equals n� With this assumption� it is possible to �nd a unique
solution of these equations unless the equations are linearly dependent� i�e� some equations are
linear combinations of others�
A common method for solving such equations is called the Gaussian elimination method�

The method eliminates �i�e� makes zero� all coe�cients below the main diagonal of the two
dimensional array� It does so by adding multiples of some equations to others in a systematic way�
The elimination makes the array of new coe�cients have an upper triangular form since the lower
triangular coe�cients are all zero�
The modi�ed equivalent set of n equations in m " n unknowns in the upper triangular form

have the appearance shown below�

a�������x���� a�������x��� � ��� � a����n��� �x�n��� � y���

a�������x��� � ��� � a����n��� �x�n��� � y���

a�	��	��x�	���� a�	��n��� �x�n��� � y�	�

a�n����n����x�n���� y�n���

The upper triangular equations can be solved by back substitution� Back substitution �rst solves
the last equation which has only one unknown� x�n���� It is easily solved for this value � x�n���

� y�n����a�n����n���� The next to the last equation may then be solved � since x�n��� has
been determined already� this value is substituted in the equation� and this equation has again only
one unknown� x�n�	�� The unknown� x�n�	�� is solved for� and the process continues backward
to the next higher equation� At each stage� the values of the unknowns solved for in the previous
equations are substituted in the new equation leaving only one unknown� In this manner� each
equation has only one unknown which is easily solved for�
Let us take a simple example to see how the process works� For the equations�

� � x��� � 	 � x��� �
 � x�	� � #

	 � x��� �
 � x��� � � � x�	� � #

� � x��� � � � x��� � 	 � x�	� �

We �rst reduce to zero the coe�cients in the �rst column below the main diagonal �i�e� array index
zero�� If the �rst equation is multiplied by
� and added to the second equation� the coe�cient in
the second row and �rst column will be zero�

� � x��� � 	 � x��� �
 � x�	� � #

� � x��� � � � x��� � � � x�	� � �#

� � x��� � � � x��� � 	 � x�	� �

Similarly� if the �rst equation is multiplied by
� and added to the third equation� the coe�cient
in the third row and �rst column will be zero�

���� AN EXAMPLE� LINEAR ALGEBRAIC EQUATIONS ���

� � x��� � 	 � x��� �
 � x�	� � #

� � x��� � � � x��� � � � x�	� � �#

� � x��� � 	 � x��� � � � x�	� � �

Coe�cients in the �rst column below the main diagonal are now all zero� so we do the same for
the second column� In this case� the second equation is multiplied by a multiplier and added to
equations below the second
 thus� multiplying the second equation by
� and adding to the third
makes the coe�cient in the second column zero�

� � x��� � 	 � x��� �
 � x�	� � #

� � x��� � � � x��� � � � x�	� � �#

� � x��� � � � x��� � � � x�	� � �

We now have equivalent equations with an upper triangular form for the non
zero coe�cients�
The equations can be solved backwards � the last equation gives us x�	� " �� Substituting the
value of x�	� in the next to the last equation and solving for x��� gives us x��� " �� Finally�
substituting x�	� and x��� in the �rst equation gives us x��� " ��
From the above discussion� we can see that a general algorithm involves two steps� modify

the coe�cients of the equations to an upper triangular form� and solve the equations by back
substitution�
Let us �rst consider the process of modifying the equations to an upper triangular form� Since

only the coe�cients and the right hand side values are involved in the computations that modify
the equations to upper triangular form� we can work with these items stored in an array with n

rows and n � columns �the extra column contains the right hand side values��

Let us assume the process has already reduced to zero the �rst k � � columns below the main
diagonal� storing the modi�ed new values of the elements in the same elements of the array� Now�
it is time to reduce the kth lower column to zero �by lower column� we mean the part of the column
below the main diagonal�� The situation is shown in below�

a������ a������ ��� a����k� ��� a����n�

� a������ ��� a����k� ��� a����n�

� � a�	��	���� a�	��k� ��� a�	��n�

��� ��� ��� ��� ��� ���

� � ���� a�k��k� a�k��k����� a�k��n�

� � ���� a�k����k� ��� a�k����n�

� � ���� a�k�	��k� ��� a�k�	��n�

��� ��� ��� ��� ��� ���

� � ���� a�n����k� ��� a�n����n�

The nth column represents the right hand side values with a�i��n� equal to y�i�� We multiply the
kth row by an appropriate multiplier and add it to each row with index greater than k� Assuming
that a�k��k� is non
zero� the kth row multiplier for addition to the ith row �i � k� is�

�a�i��k� � a�k��k�

The kth row multiplied by the above multiplier and added to the ith row will make the new a�i��k�

zero� The following loop will reduce to zero the lower kth column�

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

�� Algorithm� process�column

Reduces lower column k to zero�

��

for
i � k � �� i � n� i��� � �� process rows k�� to n�� ��

m � � a�i��k� � a�k��k� �� multiplier for ith row ��

for
j � k� j �� n� j��� �� � thru k�� cols� are zero ��

a�i��j� �� m � a�k��j�� �� add kth row times m ��

�� to ith row� ��

�

However� before we can use the above loop to reduce the lower kth column to zero� we must
make sure that a�k��k� is non
zero� If the current a�k��k� is zero� all we need to do is exchange
this kth row with any higher indexed row with a non
zero element in the kth column� After the
exchange of the two rows� the new a�k��k� will be non
zero� The above loop is then used to
reduce the lower kth column to zero� The non
zero element� a�k��k� used in the multiplier is
called a pivot�
So� there are two steps involved in modifying the equations to upper triangular form� for each

row �nd a pivot� and reduce the corresponding lower column to zero� If a non
zero pivot element is
not found� then one or more equations are linear combinations of others� the equations are called
linearly dependent� and they cannot be solved�
Figures ���� and ���� show the set of functions that convert the �rst n rows and columns of

an array to an upper triangular form� These and other functions use a user de�ned type� status�
with possible values ERROR returned if there is an error� and OK returned otherwise� The type
status is de�ned as follows�

typedef enum �ERROR� OK� status�

We also assume a maximum of MAX equations� so the two dimensional array must have MAX rows
and MAX�� columns� Figure ���� includes the header �le with the de�nes and function prototypes
used in the program� Since precision is important in these computations� we have used formal
parameters of type double� The two dimensional arrays can store coe�cients for a maximum of
MAX equations �rows� and have MAX � � columns to accommodate the right hand side values�
The function uptriangle
� transforms coe�cients of the equations to an upper triangular

form� For each k from � through n��� it calls findpivot
� to �nd the pivot in the kth column�
If no pivot is found� findpivot
� will return an ERROR �findpivot
� is called even for the
�n� ��st column even though there is no lower �n� ��st column to test if a�n����n��� is zero�� If
findpivot
� returns OK� then uptriangle
� calls process col
� to reduce the lower kth column
to zero� We have included debug statements in process col
� to help track the process� The
function pr	adbl
� prints the two dimensional array � we will soon write this function�
The function findpivot
� calls on function findnonzero
� to �nd a non
zero pivot in column

k if a�k��k� is zero� If a pivot is found� it swaps the appropriate rows and returns OK� Otherwise�
it reurns ERROR� The function findnonzero
� merely scans the lower column k for a non
zero
element� It either returns the row in which it �nds a non
zero element or it returns
� if no such
element is found� Rows of the array are swapped by the function swaprows
� which also includes
a debug statement to prints the row indices of the rows being swapped�
When uptriangle
� returns with OK status� the array will be in upper triangular form� The

next step in solving the equations is to employ back substitution to �nd the values of the unknowns�

���� AN EXAMPLE� LINEAR ALGEBRAIC EQUATIONS ���

�� File� gauss�h ��

typedef enum �ERROR� OK� status�

�define DEBUG

�define MAX �� �� maximum number of equations ��

status uptriangle
double a���MAX � ��� int n��

void process�col
double a���MAX � ��� int k� int n��

status findpivot
double a���MAX � ��� int k� int n��

int findnonzero
double a���MAX � ��� int k� int n��

void swaprows
double a���MAX � ��� int k� int j� int n��

status gauss
double a���MAX � ��� double x��� int n��

int getcoeffs
double a���MAX � ����

void pr	adbl
double a���MAX � ��� int n��

void pr�adbl
double x��� int n��

Figure ����� Header File for Gauss Functions

We now examine the back substitution process� As we saw earlier� we must solve equations
backwards starting at index n�� and proceeding to index �� The ith equation in upper triangular
form looks like this�

a�i��i��x�i� � a�i��i����x�i��� � ��� � a�i��n����x�n��� � a�i��n�

Recall� in our representation� the right hand side is the nth column of the two dimensional array�
For each index i� we must sum all contributions from those unknowns already solved for� i�e� those
x�i� with index greater than i� This is the following sum�

sum � a�i��i����x�i��� � ��� � a�i��n����x�n���

We then subtract this sum from the right hand side� a�i��n�� and divide the result by a�i��i�

to determine the solution for x�i�� The algorithm is shown below�

�� Algorithm� Back�Substitution ��

for
i � n � �� i �� �� i��� � �� go backwards ��

sum � ��

for
j � i � �� j �� n � �� j��� �� sum all contributions from ��

sum �� a�i��j� � x�j�� �� x�j� with j � i ��

x�i� �
a�i��n� � sum� � a�i��i�� �� solve for x�i� ��

�

We can now write the function gauss
� that solves a set of equations by the Gaussian elim

ination method which �rst calls on uptriangle
� to convert the coe�cients to upper triangular
form� If this succeeds� then back substitution is carried out to �nd the solutions� As with other
functions� gauss
� returns OK if successful� and ERROR otherwise� The code is shown in Figure
����� The code is straight forward� It incorporates the back substitution algorithm after the
function call to uptriangle
�� If the function call returns ERROR� the equations cannot be solved

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

�� File� gauss�c ��

�include �stdio�h�

�include �gauss�h�

�� Implements the Gauss method to transform equations to

an upper triangular form�

��

status uptriangle
double a���MAX � ��� int n�

� int i� j� k�

for
k � �� k � n� k��� �

if
findpivot
a� k� n� �� OK�

process�col
a� k� n��

else

return ERROR�

�

return OK�

�

�� Zeros out coefficients in column k below the main diagonal� ��

void process�col
double a���MAX � ��� int k� int n�

� int i� j�

double m�

for
i � k � �� i � n� i��� �

m � �a�i��k� � a�k��k��

for
j � k� j �� n� j���

a�i��j� �� m � a�k��j��

�ifdef DEBUG

printf
�Multiplier for row �d is �#�	f�n�� i� m��

pr	adbl
a� n��

�endif

�

�

Figure ����� Code for Functions to do Gaussian Elimination

���� AN EXAMPLE� LINEAR ALGEBRAIC EQUATIONS ���

�� Finds a non�zero pivot element in column k and row with

index �� k�

��

status findpivot
double a���MAX � ��� int k� int n�

� int j�

void swaprows
��

if
a�k��k� �� �� �

j � findnonzero
a� k� n��

if
j � ��

return ERROR�

else

swaprows
a� k� j� n��

�ifdef DEBUG

printf
�Rows �d and �d swapped�n�� k� j��

�endif

�

return OK�

�

�� Scans the rows with index �� k for the first non�zero element

in the kth column of the array !a! of size n�

��

int findnonzero
double a���MAX � ��� int k� int n�

� int i�

for
i � k� i � n� i���

if
a�i��k��

return
i��

return
����

�

�� Swaps the kth and the jth rows in the array !a! with n rows� ��

void swaprows
double a���MAX � ��� int k� int j� int n�

� int i�

double temp�

for
i � k� i �� n� i��� �

temp � a�k��i��

a�k��i� � a�j��i��

a�j��i� � temp�

�

�

Figure ����� Code for Functions to do Gaussian Elimination � continued

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

�� File� gauss�c � continued ��

�� Transforms equations to upper triangular form using Gauss

method� Then� solves equations� one at a time�

��

status gauss
double a���MAX � ��� double x��� int n�

� int i� j�

double sum�

if
uptriangle
a� n� �� ERROR� �

printf
�Dependent equations � cannot be solved�n���

return ERROR�

�

for
i � n � �� i �� �� i��� �

sum � ��

for
j � i � �� j �� n � �� j���

sum �� a�i��j� � x�j��

if
a�i��i��

x�i� �
a�i��n� � sum� � a�i��i��

else

return ERROR�

�

return OK�

�

Figure ����� Code for gauss
�

���� AN EXAMPLE� LINEAR ALGEBRAIC EQUATIONS ���

and gauss
� returns ERROR� Otherwise� gauss
� proceeds with back substitution and stores the
result in the array x��� Since all a�i��i� must be non
zero at this point� we do not really need
to test if a�i��i� is zero before using it as a divisor
 however� we do so as an added precaution�
We are almost ready to use the function gauss
� in a program� Before we can do so
 however�

we need some utility functions to read and print data� Here are the descriptions of these functions�

getcoeffs
�� reads the coe�cients and the right hand side values into an array
 it returns the
number of equations�

pr	adbl
�� prints an array with n rows and n � columns�

pr�adbl
�� prints a solution array�

All these functions use data of type double� The code is shown in Figure �����
Finally� we are ready to write a program driver as shown in Figure ����� The driver �rst reads

coe�cients and the right hand side values for a set of equations and then calls on gauss
� to
solve the equations� During the debug phase� both the original data and the transformed upper
triangular version are printed� Finally� if the equations are solved with success� the solution is
printed� Otherwise� an error message is printed� During debugging� the macro DEBUG is de�ned
in gauss�h so that we can track the process� The program loops as long as there are equations
to be solved� In each case� it gets coe�cients using getcoeffs
� and solves them using gauss
��
During debug� the program uses pr	adbl
� to print the original array and the array after gauss
transformation� If the solution is possible� the program prints the solution array using pr�adbl
��
Here are several example equation solutions�
Sample Session�

���Simultaneous Equations � Gauss Elimination Method���

Number of equations� zero to quit� �

Type coefficients and right side of each row

Row �� � � �
Row �� � � �

Original equations are�
����
��� 	���

��� ���� 	���

Multiplier for row � is �
���
����
��� 	���

���� ����� �����

Equations after Gauss Transformation are�
����
��� 	���

���� ����� �����

Solution is�

�����

����

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

�� File� gauss�c � continued ��

�� Function gets the coefficients and the right hand side of equations�

��

int getcoeffs
double a���MAX � ���

� int i� j� n�

printf
�Number of equations� zero to quit� ���

scanf
��d�� �n��

if
n�

printf
�Type coefficients and right side of each row�n���

for
i � �� i � n� i��� �

printf
�Row �d� �� i��

for
j � �� j �� n� j���

scanf
��lf�� �a�i��j���

�

return n�

�

�� Prints coefficients and right side of equations ��

void pr	adbl
double a���MAX � ��� int n�

� int i� j�

for
i � �� i � n� i��� �

for
j � �� j �� n� j���

printf
�����	f �� a�i��j���

printf
��n���

�

�

�� Prints the solution array ��

void pr�adbl
double x��� int n�

� int i�

for
i � �� i � n� i���

printf
�����	f�n�� x�i���

�

Figure ����� Code for Utility Functions for Gauss Program

���� AN EXAMPLE� LINEAR ALGEBRAIC EQUATIONS ���

�� File� gauss�c

Header Files� gauss�h

This program solves a number of simultaneous linear algebraic

equations using the Gauss elimination method� The process repeats

itself until number of equations is zero�

��

main
�

� double a�MAX��MAX � ��� �� coefficients and right hand side ��

double x�MAX�� �� solution ��

int n� �� number of equations ��

status soln� �� status of solution� OK or ERROR ��

printf
����Simultaneous Equations����n�n���

while
n � getcoeffs
a�� �

printf
��nOriginal equations are��n���

�ifdef DEBUG

pr	adbl
a� n��

�endif

soln � gauss
a� x� n��

�ifdef DEBUG

printf
��nEquations after Gauss Transformation are��n���

pr	adbl
a� n��

�endif

if
soln �� OK� �

printf
��nSolution is��n���

pr�adbl
x� n��

�

else printf
�Equations cannot be solved�n���

�

�

Figure ����� Driver Program for Gaussian Elimination

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

Number of equations� zero to quit� �

Type coefficients and right side of each row

Row �� � � � �
Row �� � � � �
Row 	� � � � �

Original equations are�
���� 	���
��� ����

����
��� 	��� ����

���� "��� 	��� ����

Multiplier for row � is �����
���� 	���
��� ����

���� ����� ������ ������

���� "��� 	��� ����

Multiplier for row 	 is �����
���� 	���
��� ����

���� ����� ������ ������

����� "��� 	��� ����

Multiplier for row 	 is ����
���� 	���
��� ����

���� ����� ������ ������

���� ���� ��	��� ��#���

Equations after Gauss Transformation are�
���� 	���
��� ����

���� ����� ������ ������

���� ���� ��	��� ��#���

Solution is�

���#"

��

��

Number of equations� zero to quit� �

Type coefficients and right side of each row

Row �� � � � �
Row �� � � � �
Row 	� � � � �

Original equations are�
���� 	���
��� ����

	��� ���� #��� $���

��� ���� "��� ����

Multiplier for row � is �	���

��
� COMMON ERRORS ���

���� 	���
��� ����

���� ���� ���� ����

��� ���� "��� ����

Multiplier for row 	 is �
���
���� 	���
��� ����

���� ���� ���� ����

���� ����� �	��� �
���
Rows � and 	 swapped

Multiplier for row 	 is ����
���� 	���
��� ����

���� ����� �	��� �
���

���� ����� ����� �����
Dependent equations � cannot be solved

Equations after Gauss Transformation are�
���� 	���
��� ����

���� ����� �	��� �
���

���� ����� ����� �����
Equations cannot be solved

Number of equations� zero to quit� �

The �rst two sets of equations are solvable
 the last set is not because the second equation
in the last set is a multiple of the �rst equation� Thus these equations are linearly dependent
and they cannot be solved uniquely� In this case� after the zeroth lower column is reduced to
zero� a������ is zero� A pivot is found in row �� rows � and � are swapped� and lower column
� is reduced to zero� However� a�	��	� is now zero� and there is no unique way to solve these
equations�
If the coe�cients are such that the equations are almost but not quite linearly dependent�

the solution can be quite imprecise� An improvement in precision may be obtained by using an
element with the largest absolute value as the pivot� Implementation of an improved version of
the method is left as an exercise�

��
 Common Errors

�� Failure to specify ranges of smaller dimensional arrays in declaration of formal parameters�
All but the range of the �rst dimension must be given in a formal parameter declaration�
Example�

init	
int aray	�����

�

���

�

Error# aray	 is a pointer to a two dimensional array� i�e� it points to an object that is a
one
dimensional array� aray	���� Without a knowledge of the size of the object� aray	����

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

it is not possible to access aray	���� aray	�	�� etc� Consequently� one must specify the
number of integer objects in aray	����

init	
int aray	���COLS��

� ���

�

Correct# aray	��� has COLS objects� It is possible to advance the pointer� aray	 correctly
to the next row� etc�

�� Failure to pass arguments correctly in function calls�

init	
aray	�MAX��COLS���

init	
aray	���COLS���

init	
aray	������

All of the above are errors� A two dimensional array name is passed in a function call�

init	
aray	��

�� Confusion between pointers to di�erent types of objects� For example� in the above� aray	
points to an array object� aray	���� whereas aray	��� points to an int object� The
expression aray	 � � points to aray	���� whereas aray	��� � � points to aray	�������
In the �rst case the pointer is increased by COLS integer objects� whereas in the second case
the pointer is increased by one integer object�

�� Confusion between arrays of character strings and arrays of character pointers�

char table�MAX��SIZE�� �ptraray�MAX��

The �rst declares table to be a two dimensional array that can be used to store an array of
strings� one each in table���� table���� table�i�� etc� The second declares ptraray to be
an array� each element of which is a char �� Read the declaration from the end� �MAX� says
it is an array with MAX elements
 ptraray is the name of the array
 char � says each element
of the array is a char �� Properly initialized with strings stored in table����� table�i� can
point to a string� Properly initialized with pointers to strings� ptraray�i� can also point
to a string� However� table�MAX��SIZE� provides memory space for the strings� whereas
ptraray�MAX� provides memory space only for pointers to strings� Both pointers may be
used in a like manner�

puts
table�i���

puts
ptraray�i���

They will both print the strings pointed to by the pointers�

���� SUMMARY ���

��� Summary

In this chapter we have seen that� in C� the concept of an array can be extended to arrays of
multi
dimensions� In particular� a two dimensional array is represented as a one dimensional
array� each of whose elements� themselves� are one dimensional arrays� i�e� and array or arrays�
Similarly� a three dimensional array is an array whose elements are each � dimensional arrays �an
array of arrays of arrays�� We have seen how such arrays are declared within programs and how
they are organized in memory �row major order�� We have seen how we can access the elements
of multi dimensional arrays using the subscripting notation and the correspondence between this
notation and pointer values� Because for higher dimensional arrays� the pointer expressions may
get complicated and confusing� in general� most programs use the subscripting notations for arrays
of two dimensions or more� We have also shown that when passing arrays to functions� the size of
all dimensions beyond the �rst must be speci�ed in the formal parameter list of the function so
that the location of all elements can be calculated by the compiler�
Throughout the chapter we have seen applications for which a two dimensional data structure

provides a convenient and compact way of organizing information� These have included data base
applications� such as our payroll and student test score examples� as well as using two dimensional
arrays to store an array of strings� We have seen how we can then use this later data structure to
search and sort arrays of strings� and have shown that for this data type� as well as other large
data types� it is often more e�cient to work with arrays of pointers when reordering such data
structures�
Finally� we have developed a rather large application using �D arrays � solutions to simulta

neous linear equations usinf Gaussian elimination� This is one algorithm for doing computations
in the realm of linear algebra
 several additional examples common in engineering problems are
presented in Chapter ���
One last point to remember about multi
dimensional arrays� this data structure is a very useful

way to organize a large collection of data into one common data structure
 however� all of the
data items in this structure must be of the same type� In the next chapter we will see another
compound data type provided in C which does not have such a restriction � the structure�

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

��� Exercises

Given the following declaration�

int x�����	���

Explain what each of the following represent�

�� x

�� x � i

�� �
x � i�

�� �
x � i� � j

�� �
�
x � i� � j�

�� x���

�� x�i�

�� x�i� � j

�� �
x�i� � j�

Find and correct errors if any� What does the program do in each case�

��� main
�
� int x��������

init
x������

�

void init
int a�����

� int i� j�

for
i � �� i � ��� i���

for
j � �� j � �� j���

a�i��j� � ��

�

��� main
�
� int x��������

init
x������

�

void init
int �a�

� int i� j�

���� EXERCISES ���

for
i � �� i � ��� i���

for
j � �� j � �� j��� �

�a � ��

a���

�

��� main
�
� char s���������

read�strings
s��

print�strings
s��

�

read�strings
char s��������

�

for
i � �� i � �� i��� �

gets
�s��

s���

�

�

print�strings
char s��������

�

while
�s� �

puts
s��

s���

�

�

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

��� Problems

�� Read id numbers� project scores� and exam scores in a two dimensional array from a �le�
Compute the averages of each project and exam scores
 compute and store the weighted
average of the scores for each id number�

�� Repeat �� but sort and print the two dimensional array by weighted average in decreasing
order� Sort and print the array by id numbers in increasing order� Use an array of pointers
to sort�

�� Repeat �� but plot the frequency of each weighted score�

�� Combine �
� into a menu
driven program with the following options� read names� id numbers�
and scores from a �le
 add scores for a new project or exam
 save scores in a �le
 change
existing scores for a project or an exam for speci�ed id numbers
 delete a data record
 add
a data record
 compute averages
 sort scores in ascending or descending order by a primary
key� e�g� id numbers� weighted scores� etc�
 compute weighted average
 plot frequency of
weighted scores
 help
 quit�

�� Write a function that uses binary search algorithm to search an array of strings�

�� Write a function that sorts strings by selection sort in either increasing or decreasing order�

�� Write a program that takes a string and breaks it up into individual words and stores them�

�� Repeat � and keep track of word lengths� Display the frequency of di�erent word lengths�

�� Repeat �� but store only new words that occur in a string� If the word has already been
stored� ignore it�

��� Write a function that checks if the set of words in a string� s� represents a subset of the set
of words in a second string� t� That is� the words of s are all contained in t� with t possibly
containing additional words�

��� Write a menu
driven spell check program with the following options� read a dictionary from
a �le
 spell check a text �le
 add to dictionary
 delete from dictionary
 display text bu�er

save text bu�er
 help
 quit�

The dictionary should be kept sorted at all times and searched using binary search� Use
an array of pointers to sort when new entries are inserted� In the spell check option� the
program reads in lines of text from a �le� Each word in a line is checked with the dictionary�
If the word is present in the dictionary� it is ignored� Otherwise� the user is asked to make
a decision� replace the word or add it to the dictionary� Either replace the word with a new
word in the line or add the word to dictionary� Each corrected line is appended to a text
bu�er� At the quit command� the user is alerted if the text bu�er has not been saved�

��� Write a simple macro processor� It reads lines from a source �le� Ignoring leading white
space� each line is examined to see if it is a control line starting with a symbol $ and followed
by a word 	de�ne	� If it is� store the de�ned identi�er and the replacement string� Each
line is examined for the possible occurrence of each and every de�ned identi�er
 if a de�ned

���� PROBLEMS ���

identi�er occurs in a line� replace it with the replacement string� The modi�ed line must be
examined again to see if a de�ned identi�er exists
 if so� replace the identi�er with a string�
etc�

��� Write a lexical scanner� scan
�� which calls nexttok
� of Problem �� to get the next token
from a string� Each new token or symbol of type identi�er� integer� or �oat that is found
is stored in a symbol table� The token is inserted in the table if and only if it was not
already present� A second array keeps track of the type of each token stored at an index�
The function scan
� uses srcharay
� to search the array of tokens� uses inserttok
� to
insert a token in an array� and uses inserttype
� to insert type of a token�

The function scan
� returns a token in a string� type of the token� and index where the
token is stored in the array� If the array is �lled� a message saying so must be displayed�

Write a program driver to read strings repeatedly� For each string� call scan
� to get a
token� As scan
� returns� print the token� its type� and index� Repeat until an end of string
token is reached� When the end of �le is encountered� print each of the tokens� its type� and
index�

��� Write routines for drawing lines and rectangles� Write a program that draws a speci�ed
composite �gure using a character !�!� Allow the user to specify additions to the �gure and
display the �gure when the user requests�

��� Modify �� to a menu
driven program that allows� draw horizontal and vertical lines� hori

zontally oriented rectangles� �lled rectangles� display �gure� help� and quit�

��� Write a program that plays a game of tic
tac
toe with the user� The game has three rows
and three columns� A player wins when he succeeds in �lling a row or a column or a diagonal
with his mark� !�!� The program uses !�!� Write and use the following functions�

init board
�� initialize the board

display board
�� dispays the board

enter move
�� for user to enter a move in row and col

state of game
�� test state� �nish or continue

��� Modify the Gauss Method so that a pivot with the largest magnitude is used in converting
the array of coe�cients to an upper triangular form�

��� Modify �� to a menu
driven program that allows the following commands� Get coe�cients�
display coe�cients� solve equations� display solution� verify solution� help� and quit� Write
and use functions get coeffs
�� display coeffs
�� solve eqns
�� display soln
�� verify soln
��
help
��

��� Modify �� so that the input data is in the form�

a�� x� � a�� x� � a�	 x	 � b�

��� Modify �� so that display coe�cients displays equations in the above form�

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

��� Write a simple menu driven editor which allows the following commands� text insert� display
text� delete text� delete lines� insert lines� �nd string� �nd word� replace string� replace word�
help� and quit� A window should display part of the text when requested�

PART II

���

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

Chapter ��

Sorting and Searching

One very common application for computers is storing and retrieving information� For example�
the telephone company stores information such as the names� addresses and phone numbers of its
customers� When you dial directory assistance to get the phone number for someone� the operator
must look up that particular piece of information from among all of data that has been stored�
Taken together� all of this information is one form of a data base which is organized as a collection
of records� Each record consists of several �elds� each containing one piece of information� such as
the name� address� phone number� id number� social security number or part number� etc��

As the amount of information to be stored and accessed becomes very large� the computer
proves to be a useful tool to assist in this task� Over the years� as computers have been applied to
these types of tasks� many techniques and algorithms have been developed to e�ciently maintain
and process information in data bases� In this chapter� we will develop and implement some of
the simpler instances of these algorithms� The processes of �looking up	 a particular data record
in the data base is called searching� We will look at two di�erent search algorithms
 one very
easy to implement� but ine�cient� the other much more e�cient� As we will see� in order to do
an e�cient search in a data base� the records must be maintained in some order� For example�
consider the task of �nding the phone number in the phone book of someone whose name you
know� as opposed to trying to �nd the name of someone whose phone number you know in the
same book�

The process of ordering the records in a data base is called sorting� We will discuss three sorting
algorithms and their implementation in this chapter� as well� Sorting and searching together
constitute a major area of study in computational methods� We present some of these methods
here to introduce this area of computing as well as to make use of some of the programming
techniques we have developed in previous chapters�

As we develop these algorithms� we use a very simple data base of records consisting of single
integers only� We conclude the chapter by applying the searching and sorting techniques to our
payroll data base with records consisting of multiple numeric �elds� In Chapter � we will see how
these same algorithms can be applied to string data types described in Chapter ���

�
�� Finding a Data Item � The Search Problem

Suppose we have a collection of data items of some speci�c type �e�g� integers�� and we wish to
determine if a particular data item is in the collection� The particular data item we want to �nd

���

��� CHAPTER ��� SORTING AND SEARCHING

� � � �

index

key �� �

� � � MAX

Figure ����� Sequential Search

is called the key and out task is to search the records in the data base to �nd one which �matches	
the key�
The �rst decision we must make is how to represent the collection of data items� In Chapter

� we saw a data structure which could hold a collection of data items all of the same type� the
array� So we can consider our data base of integer values to be stored in an array� Our task then
becomes�

Task�

SRCH�� Search an array for an index where the key is located
 if key is not present� print a
message� Repeat until an end of �le is entered for the key�
In this task� we choose to return the index where the key is located because this index will

allow us to retrieve the entire record in the case where our array is part of a database� The
simplest approach to determine if a key is present in an array is to make an exhaustive search of
the array� Start with the �rst element� if the key matches� we are done
 otherwise move on to the
next element and compare the key� and so on� We simply traverse the array in sequence from the
�rst element to the last as shown in Figure ����� Each element is compared to the key� If the
key is found in the array� the corresponding array index is returned� If the item is not found in
the array� an invalid index� say
�� is returned� This type of search is called Sequential Search or
Linear Search because we sequentially examine the elements of the array� In the worst case� the
number of elements that must be compared with the key is linearly proportional to the size of the
array�
Linear search is not the most e�cient way to search for an item in a collection of items
 however�

it is very simple to implement� Moreover� if the array elements are arranged in random order� it is
the only reasonable way to search� In addition� e�ciency becomes important only in large arrays

if the array is small� there aren�t many elements to search and the amount of time it takes is not
even noticed by the user� Thus� for many situations� linear search is a perfectly valid approach�
Here is a linear search algorithm which returns the index in the array where key is found or
� if
key is not found in the array�

initialize index i to �

traverse the array until exhausted

if array�i� matches key

return i�

return ���

����� FINDING A DATA ITEM � THE SEARCH PROBLEM ���

�� File� sortsrch�c ��

�include �stdio�h�

�include �sortsrch�h�

�define DEBUG

��

Linear or sequential search of an array x	
 of size lim for

an item key�

��

int seqsrch�int x	
� int lim� int key

� int i�

for �i � �� i � lim� i��

if �x	i
 �� key

return�i
�

return���
�

�

Figure ����� Code for the function seqsrch�

�� File� sortsrch�h

This file contains prototypes for sort and search functions�

��

int seqsrch�int x	
� int lim� int key
�

Figure ����� Initial contents of sortsrch�h

We will implement the algorithm for search as a function	 seqsrch�
 since searching an array
may be required in many programs	 and a function incorporating linear search can be used for
many applications� The function is passed the array of integers	 x	
	 the number of elements in
the array	 lim	 and the key to search for	 key� The function is shown in Figure �����

The loop compares each element of the array with key� If an element with the same value is
found at an index i	 i is returned� The loop terminates when the array limit is reached
 in which
case	 no element equal to key was found in the array	 and �� is returned� If there is more than
one element in the array with the same value as key	 the function terminates the search as soon
as the �rst element is found	 returning its index�

We have de�ned DEBUG in sortsrch�c so that debug statements we may add to the code will
be compiled� We have also included �le sortsrch�h in sortsrch�cwhich	 as shown in Figure ����
contains the prototypes for functions de�ned in sortsrch�c since some of the functions de�ned in
sortsrch�cmay be used by other functions to be written in the �le� We will continue to add more
functions to sortsrch�c and corresponding prototypes to sortsrch�h as we proceed through this
chapter
 however	 we will not always show the additions of prototypes to sortsrch�h�

Our task now requires us to write a simple driver to repeatedly call the function	 seqsrch�
�
For simplicity	 we will declare an initialized array� The driver uses a function	 pr aray line�
	 to

��
 CHAPTER ��� SORTING AND SEARCHING

print an array with ten elements per line to save space� Figure ���� shows the program driver�
The driver �rst prints an initialized array	 id	
	 and then searches for items entered by the

user� If an item is found in the array	 its index is printed� Otherwise	 a message is printed� The
function	 pr aray line�
 is included in sortsrch�c and its prototype in sortsrch�h� These
additions are shown in Figure �����

The function prints at successive elements on one line until the array index modulo �� is zero
when it prints a newline and continues� A sample session for the program srcharay�c is shown
below�

���Sequential Search���

The id array is�

�� �� �� �� �� ��

Type an integer� EOF to quit� ��

Item �� is not in the array

Type an integer� EOF to quit� ��

Item �� is found at index �

Type an integer� EOF to quit� ��

Item �� is found at index �

Type an integer� EOF to quit� 	D

���� Improving Search � Sorting the Data

As we mentioned above	 linear search may be useful when the number of elements is small
 however	
when there are many data items in the array	 linear search may require a long time to �nd the
element matching the key� In the case where such an element is not in the data base	 we must
search the entire collection to �nd that out� Consider the phone book again� When we want to
look up someone�s phone number	 we do not start at the beginning of the book and look line by
line until we �nd the name� Instead	 we make use of the fact that the data items are sorted by
name in the phone book� �Of course	 if we had a phone number and wanted to �nd the name	 we
would have to resort to linear search � we do not often do that��

Before we develop an algorithm to conduct a more e�cient search of sorted data	 we �rst
describe several algorithms which will sort an array of data� There are numerous ways to sort
data	 some more suitable than others for di�erent applications� In this section we will describe
three di�erent standard algorithms� selection sort	 bubble sort	 and insertion sort�

������ Selection Sort

The idea of selection sort is rather simple� we repeatedly �nd the next largest �or smallest� element
in the array and move it to its �nal position in the sorted array� Assume that we wish to sort the
array in increasing order	 i�e� the smallest element at the beginning of the array and the largest
element at the end� We begin by selecting the largest element and moving it to the highest index

����� IMPROVING SEARCH � SORTING THE DATA ���

�� File�srcharay�c

Other Source Files� sortsrch�c

Header Files� sortsrch�h

This program searches an array sequentially for items typed in

by the user� It prints out the array index where an item is found�

or else prints a message�

��

�include �stdio�h�

�include �sortsrch�h�

main�

� int id	
 � ���� ��� ��� ��� ��� ����

int n� i�

printf�����Sequential Search����n�n�
�

printf��The array is��n�
�

pr�aray�line�id� �
�

printf��Type an integer� EOF to quit� �
�

while �scanf���d�� n
 !� EOF
 �

i � seqsrch�id� �� n
�

if �i �� �

printf��Item �d is found at index �d�n�� n� i
�

else

printf��Item �d is not in the array�n�� n
�

printf��Type an integer� EOF to quit� �
�

�

�

Figure ����� Driver to test seqsrch�

��� CHAPTER ��� SORTING AND SEARCHING

�� File� sortsrch�c � continued ��

�� Prints an array horizontally� ��

void pr�aray�line�int x	
� int lim

� int i�

for �i � �� i � lim� i��
 �

if �i � �� �� �

printf���n�
�

printf���d �� x	i

�

�

printf���n�
�

�

�� File� sortsrch�h � continued ��

void pr�aray�line�int x	
� int lim
�

Figure ����� Adding the code for pr aray line�

position� We can do this by swapping the element at the highest index and the largest element�
We then reduce the e�ective size of the array by one element and repeat the process on the smaller
�sub�array� The process stops when the e�ective size of the array becomes � �an array of � element
is already sorted��

For example	 consider the following array	 shown with array elements in sequence separated
by commas�

�	 ��	 ��	 ��	 ��

The leftmost element is at index zero	 and the rightmost element is at the highest array index	
in our case	 � �the e�ective size of our array is ��� The largest element in this e�ective array �index
���� is at index �� We have shown the largest element and the one at the highest index in bold�
We then swap the element at index � with that at index �� The result is�

�	 ��	 ��	 ��	 ��
We reduce the e�ective size of the array to �	 making the highest index in the e�ective array

now �� The largest element in this e�ective array �index ���� is at index �	 so we swap elements
at index � and � �in bold��

��	 ��	 ��	 ��	 ��
The next two steps give us�
��	 ��	
�	 ��	 ��
��	 ��	
�	 ��	 ��
The last e�ective array has only one element and needs no sorting� The entire array is now

sorted� The algorithm for an array	 x	 with lim elements is easy to write down�

for �eff�size � lim� eff�size � �� eff�size��

find maxpos� the location of the largest element in the effective

array� index � to eff�size � �

swap elements of x at index maxpos and index eff�size � �

����� IMPROVING SEARCH � SORTING THE DATA ���

The implementation of the selection sort algorithm in C	 together with a driver program is shown
in Figure ���
�

Sample Session�

Original array�

�� �� �� �� ��

Sorted array�

�� �� �� �� ��

The driver prints the array	 calls selection sort�
 to sort the array	 and prints the sorted
array� The code for selection sort�
 follows the algorithm exactly
 it calls get maxpos�
 to get
the index of the largest element in an array of a speci�ed size� Once maxpos is found	 the element
at that index is swapped with the element at index eff size��	 using the temporary variable	
tmp�

We may be concerned about the e�ciency of our algorithm and its implementation as a pro�
gram� The e�ciency of an algorithm depends on the number of major computations involved in
performing the algorithm� The e�ciency of the program depends on that of the algorithm and
the e�ciency of the code implementing the algorithm� Notice we included the code for swapping
array elements within the loop in selection sort rather than calling a function to perform this
operation� A function call requires added processing time in order to store argument values	 trans�
fer program control	 and retrieve the returned value� When a function call is in a loop that may
be executed many times	 the extra processing time may become signi�cant� Thus	 if the array to
be sorted is quite large	 we can improve program e�ciency by eliminating a function call to swap
data elements� Similarly	 we may include the code for get maxpos�
 in selection sort�
�

void selection�sort�int x	
� int lim

� int i� eff�size� maxpos� tmp�

for �eff�size � lim� eff�size � �� eff�size��
 �

for �i � �� i � eff�size� i��

maxpos � x	i
 � x	maxpos
 " i � maxpos�

tmp � x	maxpos
�

x	maxpos
 � x	eff�size � �
�

x	eff�size � �
 � tmp�

�

�

������ Bubble Sort

An alternate way of putting the largest element at the highest index in the array uses an algorithm
called bubble sort� While this method is neither as e�cient	 nor as straightforward	 as selection
sort	 it is popularly used to illustrate sorting� We include it here as an alternate method�

Like selection sort	 the idea of bubble sort is to repeatedly move the largest element to the
highest index position of the array� As in selection sort	 each iteration reduces the e�ective size of
the array� The two algorithms di�er in how this is done� Rather than search the entire e�ective

��� CHAPTER ��� SORTING AND SEARCHING

�� File� select�c

This program implements selection sort�

��

�include �stdio�h�

�define MAX ��

void selection�sort�int x	
� int lim
�

int get�maxpos�int x	
� int lim
�

void print�aray�int x	
� int lim
�

main�

� int scores	MAX
 � ���� ��� ��� ��� ����

printf��Original array��n�
�

print�aray�scores� �
�

selection�sort�scores� �
�

printf��Sorted array��n�
�

print�aray�scores� �
�

�

�� Selection sort function for an array x	
 with lim elements� ��

void selection�sort�int x	
� int lim

� int eff�size� maxpos� tmp�

for �eff�size � lim� eff�size � �� eff�size��
 �

maxpos � get�maxpos�x� eff�size
�

tmp � x	maxpos
�

x	maxpos
 � x	eff�size � �
�

x	eff�size � �
 � tmp�

�

�

�� Function returns the index of the largest element in the array x	
� ��

int get�maxpos�int x	
� int eff�size

� int i� maxpos � ��

for �i � �� i � eff�size� i��

maxpos � x	i
 � x	maxpos
 " i � maxpos�

return maxpos�

�

�� Function prints an integer array of size lim� ��

void print�aray�int x	
� int lim

� int i�

for �i � �� i � lim� i��

printf���d �� x	i

�

�

Figure ���
� Sorting an array using Selection Sort

����� IMPROVING SEARCH � SORTING THE DATA ���

array to �nd the largest element	 bubble sort focuses on successive adjacent pairs of elements in
the array	 compares them	 and either swaps them or not� In either case	 after such a step	 the
larger of the two elements will be in the higher index position� The focus then moves to the next
higher position	 and the process is repeated� When the focus reaches the end of the e�ective array	
the largest element will have �bubbled� from whatever its original position to the highest index
position in the e�ective array�

For example	 consider the array�
	�	 ��	 ��	 ��	 ��	 ��
In the �rst step	 the focus is on the �rst two elements �in bold� which are compared and

swapped	 if necessary� In this case	 since the element at index � is larger than the one at index �	
no swap takes place�

��	 ��	 ��	 ��	 ��	 ��
Then the focus move to the elements at index � and � which are compared and swapped	 if

necessary� In our example	
� is larger than �� so the two elements are swapped� The result is
that the largest of the �rst three elements is now at index ��

��	 ��	 ��	 �		 ��	 ��
The process is repeated until the focus moves to the end of the array	 at which point the largest

of all the elements ends up at the highest possible index� The remaining steps and result are�
��	 ��	 ��	 ��	 ��	 ��
��	 ��	 ��	 ��	 ��	 ��

��	 ��	 ��	 ��	 ��	
�
The largest element has bubbled to the top index of the array� In general	 a bubble step is

performed by the loop�

for �k � �� k � eff�size � �� k��

if �x	k
 � x	k � �

swaparay�x� k� k � �
�

The loop compares all adjacent elements at index k and k � �� If they are not in the correct
order	 they are swapped� One complete bubble step moves the largest element to the last position	
which is the correct position for that element in the �nal sorted array� The e�ective size of the
array is reduced by one and the process repeated until the e�ective size becomes one� Each bubble
step moves the largest element in the e�ective array to the highest index of the e�ective array�

The code implementing this algorithm is the function	 bubblesort�
 shown in Figure �����
The function repeats bubble steps	 using the function bubblemax�
	 as many times as the size of
the array� This function is passed the array name and the size of the e�ective array� The size of
the e�ective array is the original size reduced by one after each step� Thus	 if the initial size of
the array to be sorted is lim	 the size of each successive e�ective array is lim	 lim ��	 lim � �	
etc� We have included a debug statement in bubblesort�
 to trace the bubble process after each
bubble step� The function	 bubblemax�
	 compares adjacent elements of an array of the speci�ed
size in sequence and swaps them if necessary� The function is shown in Figure ���� together with
the function	 swaparay�
 to swap elements in an array� All these functions are included in �le	
sortsrch�c	 and their prototypes are included in �le	sortsrch�h	 also shown in the Figure� It
should be clear that bubble sort is not as e�cient as selection sort� There is a great deal of
swapping required in bubble sort to �bubble� the largest element to the highest index
 where in
selection sort	 it is done by a single swap� On the other hand	 if the data is mostly sorted	 then
bubble sort can be made more e�cient�

��� CHAPTER ��� SORTING AND SEARCHING

�� File� sortsrch�c � continued ��

�� Sorts an array x of size lim using bubble sort� ��

void bubblesort�int x	
� int lim

� int i�

for �i � �� i � lim� i��

� bubblemax�x� lim � i
� �� effective array size is lim � i ��

�ifdef DEBUG �� debug statement ��

printf��Effective array of size �d� �n�� lim � i
�

pr�aray�line�x� lim � i
�

�endif

�

�

Figure ����� Code for bubble sort

�� File� sortsrch�c � continued ��

�� bubbles the next largest element through the array x ��

void bubblemax�int x	
� int eff�size

� int k�

for �k � �� k � eff�size � �� k��

if �x	k
 � x	k � �

swaparay�x� k� k � �
�

�

�� File� sortsrch�c � continued ��

�� swaps elements i and j of array x ��

void swaparay�int x	
� int i� int j

� int temp�

temp � x	i
�

x	i
 � x	j
�

x	j
 � temp�

�

�� File� sortsrch�h � continued ��

void bubblesort�int x	
� int lim
�

void bubblemax�int x	
� int eff�size
�

void swaparay�int x	
� int i� int j
�

Figure ����� Code for bubblemax�

����� IMPROVING SEARCH � SORTING THE DATA ���

�� File� bsrtaray�c

Other Source Files� sortsrch�c

Header Files� sortsrch�h

This program uses bubble sort to sort an array of

integers� It prints the unsorted and the sorted

arrays� It also prints a trace at each bubble step to

show the bubble process�

��

�include �stdio�h�

�define DEBUG

�include �sortsrch�h�

main�

� int id	
 � ���� ��� ��� ��� ��� ����

printf�����Bubble Sort����n�n�
�

printf��Unsorted array� �n�
�

pr�aray�line�id� �
�

bubblesort�id� �
�

printf��Sorted array� �n�
�

pr�aray�line�id� �
�

�

Figure ����� Driver to test bubble sort

To illustrate the operation of bubble sort	 we now write a program driver to exercise bubble sort
shown in Figure ����� It uses bubblesort�
 on the same array used in our search example above�
The initialized unsorted array is printed
 then the array is sorted and printed� Each bubble step is
explicitly shown by a debug statement� Note that DEBUG is de�ned during program development
and removed when the program is debugged�

Sample Session�

���Bubble Sort���

Unsorted array�

�� �� �� �� �� ��

Effective array of size ��

�� �� �� �� �� ��

Effective array of size ��

�� �� �� �� ��

��� CHAPTER ��� SORTING AND SEARCHING

�� File� sortsrch�c � continued ��

�� Bubble sort in a single function ��

void bsrtfnc�int x	
� int lim

� int i� k� temp�

for �i � �� i � lim� i��
 �

for �k � �� k � lim � i � �� k��

if �x	k
 � x	k � �

 �

temp � x	k
�

x	k
 � x	k��
�

x	k��
 � temp�

�

�ifdef DEBUG

printf��Effective array of size �d� �n�� lim � i
�

pr�aray�line�x� lim � i
�

�endif

�

�

�� File� sortsrch�h � continued ��

void bsrtfnc�int x	
� int lim
�

Figure ������ Code for one function bubble sort

Effective array of size ��

�� �� �� ��

Effective array of size ��

�� �� ��

Effective array of size ��

�� ��

Effective array of size ��

��

Sorted array�

�� �� �� �� �� ��

There are several ways to improve the bubble sort algorithm� First	 a single function should
incorporate the entire algorithm �Figure ������� The time overhead of a function call in a loop
can be quite large if the array is large�

Next	 a minor point� since an array of one element is already sorted	 at most n � � bubbling

����� IMPROVING SEARCH � SORTING THE DATA ���

�� File� sortsrch�c � continued ��

�� Bubble sort function which terminates if an array is sorted� ��

�include �tfdef�h� �� defines TRUE and FALSE ��

void bsort�int x	
� int lim

� int i� k� temp� swap � TRUE�

for �i � �� swap i � lim � �� i��

� swap � FALSE�

for �k � �� k � lim � i � �� k��

if �x	k
 � x	k � �

� temp � x	k
�

x	k
 � x	k��
�

x	k��
 � temp�

swap � TRUE�

�

�ifdef DEBUG

printf��Effective array of size �d� �n�� lim � i
�

pr�aray�line�x� lim � i
�

�endif

�

�

�� File� sortsrch�h � continued ��

void bsort�int x	
� int lim
�

Figure ������ An improved bubble sort

steps are needed for an array of size n� The �rst for loop need be executed no more than lim

� � times� More important	 if the entire array is sorted at some time in the process	 no further
processing is needed� An array is sorted if no elements are swapped in a bubble step� We will use
a �ag to keep track of any swapping� Figure ����� shows the revised code�

We include a �le	 tfdef�h	 that de�nes TRUE and FALSE� In the function	 we use a �ag	 swap	
to keep track of any swapping in the bubble step� For each bubble step	 we initially assume swap
is FALSE� If there is any swapping in the bubble step	 we set the �ag to TRUE� The sort process
repeats as long as swap is TRUE� To get the process started	 swap is initialized to TRUE�

These improvements may be important for large arrays� If an array is sorted after the �rst
few steps	 the process can be terminated with a saving in computation time� The program	
bsrtaray�c	 can be modi�ed to use the above bsort�
 function instead of bubblesort�
 function�
A sample output of such a modi�ed program is shown below�

Sample Session �Modi�ed bsrtaray�c��

���Bubble Sort���

��
 CHAPTER ��� SORTING AND SEARCHING

Unsorted array�

�� �� �� �� �� ��

Effective array of size ��

�� �� �� �� �� ��

Effective array of size ��

�� �� �� �� ��

Effective array of size ��

�� �� �� ��

Effective array of size ��

�� �� ��

Sorted array�

�� �� �� �� �� ��

Note that the process stops as soon as the e�ective array of size � is found to be sorted� If the
original data is almost sorted	 then bubble sort can be e�cient�

������ Insertion Sort

The two sorting algorithms we have looked at so far are useful when all of the data is already
present in an array	 and we wish to rearrange it into sorted order� However	 if we are reading the
data into an array one element at a time	 we can take another approach � insert each element
into its sorted position in the array as we read it� In this way	 we can keep the array in sorted
form at all times� This algorithm is called inertion sort�

With this idea in mind	 Let us see how the algorithm would work� If the array is empty	 the
�rst element read is placed at index zero	 and the array of one element is sorted� For example	 if
the �rst element read is ��	 then the array is�

��� "

We will use the symbol	 "	 to indicate that the rest of the array elements contain garbage� Once
the array is partially �lled	 each element is inserted in the correct sorted position� As each element
is read	 the array is traversed sequentially to �nd the correct index location where the new element
should be placed� If the position is at the end of the partially �lled array	 the element is merely
placed at the required location� Thus	 if the next element read is ��	 then the array becomes�

��� ��� "

However	 if the correct index for the element is somewhere other than at the end	 all elements
with equal or greater index must be moved over by one position to a higher index� Thus	 suppose
the next element read is ��� The correct index for this element in the current array is zero� Each
element with index zero or greater in the current partial array must be moved by one to the next
higher position� To shift the elements	 we must �rst move the last element to its �unused� higher
index position	 then	 the one next to the last	 and so on� Each time we move an element we

����� IMPROVING SEARCH � SORTING THE DATA ���

leave a �hole� so we can move of the adjoining element	 and so on� Thus	 the sequence of moving
elements for our example is�

��� ��� "� "

��� "� ��� "

"� ��� ��� "

The index zero is now vacant	 and the new element	 ��	 can be put in that position�

��� ��� ��� "

The process repeats with each element read in until the end of input� So	 if the next element
is ��	 we would traverse from the beginning of the array until we �nd larger than �� or until we
reach the end of the �lled part of the array� In this case	 we reach the end of the array	 and insert
���

��� ��� ��� ��� "

Let us develop the algorithm in more detail by observing how we insert a new item	 ��� The
correct position is found by traversing the partial array as long as the new item is greater than
the array element� In this case	 the array traversal stops at index �	 since the element at index
�	 namely ��	 is grater than the new element	 ��� In general	 the following loop �nds the correct
position in an array	 aray	 for the new item� Notice we compare the index	 i	 with the variable	
freepos	 whose value is now �	 to know when we have reached the next free position in the array�

for �i � �� i � freepos item � aray	i
� i��

�

When this loop terminates	 in our case	 the variable	 i	 will be �� Next	 elements from index	i���	
to index freepos��� are moved over one position� The highest indexed element must be moved
�rst	 then the next highest index	 and so on� The following loop moves all elements	 with index
greater than or equal to i	 in a correct order�

for �k � freepos� k � i� k��

aray	k
 � aray	k � �
�

When this loop terminates	 the loop counter	 k	 will be equal to i	 which is the index of the �hole�
created in the array�

��� ��� "� ��� ��

Finally	 the new item can be inserted at index	 i� Figure ����� shows the complete function for
inserting one new element in a sorted array	 given the array	 the new item	 and the next free
position �which	 incidentally	 is the current size of the array��

The function traverses the partial array until it �nds either that item is less than or equal to
the array element or that the array is exhausted� If the array is exhausted	 the second loop is not
executed since i �� freepos� In this case	 the item is merely inserted at the correct position�
Otherwise	 elements at and above index	 i	 are moved over one position	 and the new element is
inserted at the correct index�

We are now ready to implement insertion sort� The program logic is simple�

��� CHAPTER ��� SORTING AND SEARCHING

�� File� sortsrch�h � continued ��

void insert�sorted�int aray	
� int item� int freepos
�

�� File� sortsrch�c � continued ��

�� Function inserts item in sorted order in array aray� Freepos

is the next free pos� in the array�

��

void insert�sorted�int aray	
� int item� int freepos

� int i� k�

i � ��

�� find the correct pos� ��

for �i � �� i � freepos item � aray	i
� i��

�

for �k � freepos� k � i� k��
 �� move elements ��

aray	k
 � aray	k � �
�

aray	i
 � item� �� insert new item ��

�

Figure ������ Code for inserting and element

Repeat the following until end of input�

read a number�

insert the number read into the array in sorted order�

if the array is full� break out of loop�

The program terminates after a printing of the sorted array� The program uses the above func�
tion	 insert sorted�
	 to insert each number in sorted order into the array	 and a function	
pr aray line�
 of Figure ����	 to print the array� These functions are included in �le	 sortsrch�c�
The program driver is shown in Figure ������ Notice	 we increment the number of elements in the
array in each call to insert sorted�
	 since we have added a new element to the array� We have
included a debug statement to print out the partial array at each step� The input is terminated
either when an end of �le is reached or when the array becomes full�

Sample Session�

���Insertion Sort���

Type numbers to be sorted� EOF to quit

��

��

��

�� ��

����� IMPROVING SEARCH � SORTING THE DATA ���

�� File� insort�c

Other Source Files� sortsrch�c

Header Files� sortsrch�h

Program uses input to fill a float array in sorted order�

��

�include �stdio�h�

�define MAX ���

�define DEBUG

�include �sortsrch�h�

main�

� int x� y	MAX
�

k� �� no� of items in an array ��

printf�����Insertion Sort����n�n�
�

printf��Type numbers to be sorted� EOF to quit�n�
�

k � ��

while �scanf���d�� x
 !� EOF
 �

insert�sorted�y� x� k��
�

if �k �� MAX
 �

printf��Array full�n�
�

break�

�

�ifdef DEBUG

pr�aray�line�y� k
�

�endif

�

printf��SORTED ARRAY�n�
�

pr�aray�line�y� k
�

�

Figure ������ Driver for Insertion Sort

��� CHAPTER ��� SORTING AND SEARCHING

��

�� �� ��

��

�� �� �� ��

�

�� �� �� �� ��

��

�� �� �� �� �� ��

	D

SORTED ARRAY

�� �� �� �� �� ��

Insertion sort can be adapted to sorting an existing array� Each step works with a sub�array
whose e�ective size increases from two to the size of the array� The element at the highest index
in the sub�array is inserted into the current sub�array	 the e�ective size is increased	 etc� �see
Problem ���

���� Binary Search

As we saw earlier	 the linear search algorithm is simple and convenient for small problems	 but
if the array is large and�or requires many repeated searches	 it makes good sense to have a more
e�cient algorithm for searching an array� Now that we know how to sort the elements of an array	
we can make use of that ordering to make our search more e�cient� In this section	 we will present
and implement the binary search algorithm	 a relatively simple and e�cient algorithm�

The algorithm is easily explained in terms of searching a dictionary for a word� In a dictionary	
words are sorted alphabetically� For simplicity	 let us assume there is only one page for all words
starting with each letter� Let us assume we wish to search for a word starting with some particular
letter�

We open the dictionary at some midway page	 let us say a page on which words start with M�
If the value of our letter is M	 then we have found what we are looking for and the word is on the
current page� If the value of our letter is less than M	 we know that the word would be found in
the �rst half of the book	 i�e� we should search for the word in the pages preceding the current
page� If the value of our letter is greater than M	 we should search the pages following the current
page� In either case	 the e�ective size of the dictionary to be searched is reduced to about half the
original size� We repeat the process in the appropriate half	 opening to somewhere in the middle
of that and checking again� As the process is repeated	 the e�ective size of the dictionary to be
searched reduces by about half at each step until the word is found on a current page�

Binary search essentially follows this approach� For example	 given a sorted array of items	
say�

��� ��� ��� ��� ��� ��

����� BINARY SEARCH ���

�� File� sortsrch�c � continued ��

�� Function uses binary search to search for item in the array y	
� ��

int binsrch�int y	
� int lim� int key

� int low� mid� high � lim � ��

low � ��

while �low �� high
 � �� Is the array exhausted" ��

mid � �low � high
 � �� �� If not� find middle index ��

if �key �� y	mid

 �� Is the key here" ��

return�mid
� �� If so� return index� ��

else if �key � y	mid

 �� else if key is smaller� ��

high � mid � �� �� reduce the high end� ��

else

low � mid � �� �� otherwise� increase low ��

�

return���
� �� Not found� return �� ��

�

Figure ������ Code for Binary Search

suppose we wish to search for the position of an element equal to x� We will search the array
which begins at some low index and ends at some high index� In our case the low index of the
e�ective array to be searched is zero and the high index is �� We can �nd the approximate midway
index by integer division �low � high
 � �	 i�e� �� We compare our value	 x with the element
at index �� If they are equal	 we have found what we were looking for
 the index is �� Otherwise	
� x is greater then the item at this index	 our new e�ective search array has a low index value
of � and the high index remains unchanged at �� If x is less than the element	 the new e�ective
search array has a high index of � and the low index remains at zero� The process repeats until
the item is found	 or there are no elements in the e�ective search array� The terminating condition
is found when the low index exceeds the high index� The algorithm is implemented as a function
in Figure ������

We use the binsrch�
 function in an example program which repeatedly searches for numbers
input by the user� For each number	 it either gives the index where it is found or prints a message
if it is not found� An array in sorted form is initialized in the declaration� The code for this driver
is shown in Figure �����

Sample Session�

���Binary Search���

The array is�

�� �� �� �� �� ��

��� CHAPTER ��� SORTING AND SEARCHING

�� File� bsrcharay�c

Other Source Files� sortsrch�c

Header Files� sortsrch�h

Program uses binary search to search a sorted array of numbers�

��

�include �stdio�h�

�define MAX ���

�define DEBUG

�include �sortsrch�h�

main�

� int i� x� y	MAX
 � ���� ��� ��� ��� ��� ����

int k � �� �� no� of items in the array y	
 ��

printf�����Binary Search����n�n�
�

printf��The array is��n�
�

pr�aray�line�y� k
�

printf��Type a number� EOF to quit� �
�

while �scanf���d�� x
 !� EOF
 �

i � binsrch�y� k� x
�

if �i �� �

printf���d found at array index �d�n�� x� i
�

else

printf���d not found in array�n�� x
�

printf��Type a number� EOF to quit� �
�

�

�

Figure ������ Test Driver for Binary Search

����� AN EXAMPLE � PAYROLL DATA RECORDS ���

Type a number� EOF to quit� ��

�� found at array index �

Type a number� EOF to quit� ��

�� not found in array

Type a number� EOF to quit� ��

�� not found in array

Type a number� EOF to quit� ��

�� not found in array

Type a number� EOF to quit� ��

�� found at array index �

Type a number� EOF to quit� ��

�� found at array index �

Type a number� EOF to quit� 	D

���� An Example � Payroll Data Records

So far	 in the previous sections	 we have seen how to search and sort an array of integers� In this
section we apply the sort and search methods to our database of payroll records� The data items
in a payroll record are id number	 hours worked	 rate of pay	 regular and overtime pay� Our task
is to write an interactive program which displays the pay record for a given individual�

We saw how we could implement such a database in Chapter �� There	 the data record for a
speci�c id is stored at the same index in several di�erent arrays as shown in Figure ����
� In our
application	 we will search the database to �nd the payroll record given a speci�c id number as
the key� Therefore	 we will need to sort the database by the id number �eld� When we search for
the key	 we will get the index for the element	 if any	 which matches the sought after id� With
that index in id number array	 we can access the remaining information for that data record�

As we saw in the previous section	 when we sort an array	 we rearrange the positions of the
array elements� When we sort data records	 we must rearrange the positions of all �elds of the
data records
 i�e� if a data record is spread over several arrays	 we must rearrange the elements
of all of these arrays in an identical manner� In this way	 we will still be able to access a data
record using the index determined by a key� To sort the database	 we can use either selection sort
or bubble sort for our task� We will assume that the input data is mostly sorted	 requiring little
rearrangement	 and therefore will choose to use bubble sort� This is a reasonable assumption since
records are usually kept in a �le in sorted order� Only new records entered may be out of place�
We will modify bubblesort�
 of the last section to handle data records�

The input data record is spread over three arrays
 namely	 id	
	 hrs	
	 and rate	
� Since
we are sorting records by id numbers	 the decision whether to swap records is determined by the
elements of the id	
 array
 however	 if we swap elements of id	
	 we must also swap corresponding

��� CHAPTER ��� SORTING AND SEARCHING

hrs

����

rate

����

regular

�����

overtime

���

id
index �

index �

index i

index MAX��

�

Figure ����
� A Data Record Across Arrays

elements of the other two arrays�
The code for the modi�ed sort function	 called sortdata�
	 that sorts input payroll records

is shown in Figure ������ We write the code in the �le payutil�c and add its prototype in
payutil�h� These �les have other payroll functions and prototypes developed in Chapter �	 in�
cluding� getdata�
which reads the input data	 calcpay�
 which calculates regular and overtime
pay	 and printdata�
 which prints the pay records in a table� We also use the �le tfdef�h that
de�nes TRUE and FALSE�

We can now use the above function in a payroll program that sorts the input data before
processing it� The main purpose of this program is to test the operation of creating a sorted
database of records before later modi�cations to the program� The driver is very simple and
consists of functions that get data	 sort data	 calculate pay	 and print data as seen in Figure ������
Notice we have performed the calculate pay step after the database has been sorted	 as the arrays
containing this data are not rearranged by our sort function� The sample session is shown below�

Sample Session�

���Payroll Program � Sorted Data���

ID �zero to quit�� �

Hours Worked� ��

Rate of Pay� �

ID �zero to quit�� �

Hours Worked� ��

Rate of Pay� ��

ID �zero to quit�� ��

Hours Worked� ��

Rate of Pay� �����

����� AN EXAMPLE � PAYROLL DATA RECORDS ���

�� File� payutil�c � continued ��

�include �tfdef�h�

void sortdata�int id	
� float hrs	
� float rate	
� int lim

� int i� k� temp� swap � TRUE�

float ftmp�

for �i � �� swap i � lim � �� i��
 �

swap � FALSE�

for �k � �� k � lim � i � �� k��

if �id	k
 � id	k � �

 �

temp � id	k
�

id	k
 � id	k � �
�

id	k � �
 � temp�

ftmp � hrs	k
�

hrs	k
 � hrs	k � �
�

hrs	k � �
 � ftmp�

ftmp � rate	k
�

rate	k
 � rate	k � �
�

rate	k � �
 � ftmp�

swap � TRUE�

�

�

�

�� File� payutil�h � continued ��

void sortdata�int id	
� float hrs	
� float rate	
� int lim
�

Figure ������ Code for sortdata�
 and header �le entry

��
 CHAPTER ��� SORTING AND SEARCHING

�� File� paysrt�c

Other Source Files� payutil�c

Header Files� payutil�h

Program calculates payroll data for a number of id#s� It

gets data� sorts data� calculates pay� and prints data for

all id#s�

��

�include �stdio�h�

�include �payutil�h�

�define MAX ��

main�

� int i� n � �� key� id	MAX
�

float hrs	MAX
� rate	MAX
� regpay	MAX
� overpay	MAX
�

printf�����Payroll Program � Sorted Data����n�n�
�

n � getdata�id� hrs� rate� MAX
�

sortdata�id� hrs� rate� n
�

calcpay�hrs� rate� regpay� overpay� n
�

printdata�id� hrs� rate� regpay� overpay� n
�

�

Figure ������ Test driver for sortdata�

����� AN EXAMPLE � PAYROLL DATA RECORDS ���

ID �zero to quit�� �

Hours Worked� ��

Rate of Pay� ��

ID �zero to quit�� �

���PAYROLL� FINAL REPORT���
ID HRS RATE REG OVER TOT

� ����� ���� ������ ���� ������

� ����� ����� ������ ���� ������

$ ����� ����� ������ ������ ������

�� ����� ����� ������ ����� ������

The program �le	 paysrt�c	 containing the driver	 and the source �le	 payutil�c	 with the
new function	 sortdata�
 added	 must be compiled and linked� Observe that the input is almost
sorted by id number
 only the last record is out of place� Bubble sort can sort this data in one
pass�

Having observed that the database is correctly sorted	 we can now complete the task to search
for a speci�c record to display� We will use binary search on the data in sorted order� The search
for an id number in the array	 id	
	 returns an index if it is found	 and returns �� otherwise� If
the index is non�negative	 the same index is used to access the rest of the data record spread over
the other arrays� We modify the above test program to read the data records and calculate the
pay	 then repeatedly call binsrch�
 to return the index of a data record for a speci�ed id number�
If a data record exists	 it is printed by printrec�
� We have already implemented the function
binsrch�
 and included it in the �le	 sortsrch�c� We will soon write printrec�
� The program
that implements our task is shown in Figure ������

The �rst part of the program reads data	 sorts data	 and calculates pay� The second part of
the program reads an id number and calls binsrch�
 to locate its index in the array� If the index
is non�negative	 the program uses a function	 printrec�
	 to print a data record at that index� If
the index is negative	 the program prints an error message� The function	 printrec�
	 is shown
in Figure ����� and added to the �le	 payutil�c�

A sample session for the search part of the program is shown below� The input data is assumed
identical to that in the sample session for the previous program paysrt�c�

���Payroll Program � Search Data���

Type an id �zero to quit�� �

���PAYROLL RECORD FOR ID $���

ID HRS RATE REG OVER TOT

$ ����� ����� ������ ������ ������

Type an id �zero to quit�� ��

Error � no such id

Type an id �zero to quit�� �

���PAYROLL RECORD FOR ID ����

��� CHAPTER ��� SORTING AND SEARCHING

�� File� paysrch�c

Other Source Files� payutil�c� sortsrch�c

Header Files� payutil�h� sortsrch�h

Program sorts and calculates payroll data for a number of id#s� It

then uses sequential search to find and print data records for

specified id numbers�

��

�include �stdio�h�

�include �payutil�h�

�include �sortsrch�h�

�define MAX ��

main�

� int i� n � �� key� id	MAX
�

float hrs	MAX
� rate	MAX
� regpay	MAX
� overpay	MAX
�

printf�����Payroll Program � Search Data����n�n�
�

n � getdata�id� hrs� rate� MAX
�

sortdata�id� hrs� rate� n
�

calcpay�hrs� rate� regpay� overpay� n
�

printdata�id� hrs� rate� regpay� overpay� n
�

printf��Type an id �zero to quit�� �
�

while �scanf���d�� key
 !� EOF key !� �
 �

i � binsrch�id� n� key
�

if �i �� �

printrec�id� hrs� rate� regpay� overpay� i
�

else printf��Error � no such id�n�
�

printf��Type an id �zero to quit�� �
�

�

�

Figure ������ Code for searching the database

����� POLYMORPHIC DATA TYPE ���

�� File� payutil�c � continued ��

�� Function prints a single data record at a specified index� ��

void printrec�int id	
� float hrs	
� float rate	
�

float reg	
� float over	
� int i

�

printf�����PAYROLL RECORD FOR ID �d����n�n�� id	i

�

printf�����s���s���s���s���s���s�n�� �ID�� �HRS��

�RATE�� �REG�� �OVER�� �TOT�
�

printf�����d�����f�����f�����f�����f�����f�n��

id	i
� hrs	i
� rate	i
� reg	i
� over	i
�

reg	i
 � over	i

�

�

�� File� payutil�h � continued ��

void printrec�int id	
� float hrs	
� float rate	
�

float reg	
� float over	
� int i
�

Figure ������ Code for printrec�
 and header �le entry

ID HRS RATE REG OVER TOT

� ����� ���� ������ ���� ������
Type an id �zero to quit�� �

���� Polymorphic Data Type

Very often in programs	 a generic operation must be performed on data of di�erent types� For
example	 in our bubble sort algorithm for the payroll records	 when elements were found out of
order in the id	
 array	 we needed to swap the integer elements in that array as well as the �oat
elements in the hrs	
 and rate	
 arrays� If we decided to implement this swapping operation
as a function	 we would need to write two functions� one to swap integers	 and another to swap
�oating point values
 even though the algorithm for swapping is the same in both cases� �We
wrote a swap function for integers using pointers in Chapter
��

The C language provides a mechanism which allows us to write a single swapping function
which can be used on any data type� This mechanism is called a polymorphic data type	 i�e� a data
type which can be transformed to any distinct data type as required� An item of polymorphic
data type is created by the use of a generic pointer� A generic pointer is simply a byte address
without an associated type� In other words	 a generic pointer does not point to an object of a
speci�c type
 it just points to some location in the memory of the computer� In ANSI C	 a generic
pointer is declared as a void pointer �in old C	 a generic pointer is a char pointer�� It is only when
the actual operations must be performed on the data that generic pointers are cast to pointers to
speci�c types and dereferenced�

Using the concept of a generic pointer	 we can assume the following prototype for a function

��� CHAPTER ��� SORTING AND SEARCHING

�� File� payutil�c � modified ��

�include �tfdef�h�

void sortdata�int id	
� float hrs	
� float rate	
� int lim

� int i� k� temp� swap � TRUE�

float ftmp�

for �i � �� swap i � lim � �� i��
 �

swap � FALSE�

for �k � �� k � lim � i � �� k��

if �id	k
 � id	k � �

 �

gen�swap��void �
�id � k
� �void �
�id � k � �
� #d#
�

gen�swap��void �
�hrs � k
� �void �
�hrs � k � �
� #f#
�

gen�swap��void �
�rate � k
� �void �
�rate � k � �
� #f#
�

swap � TRUE�

�

�

�

Figure ������ Modi�ed code for sortdata�
 using generic swap

to swap two data items of any type�

void gen�swap�void � x� void � y� char type
�

Here	 x and y are generic pointers to two data items	 and type speci�es the type of the data
using a single character� With this information	 we can now rewrite the function	 sortdata�
	 in
the �le	 payutil�c using gen swap to swap all data items� The code is shown in Figure ������
Notice in the calls to gen swap�
 we cast the pointers to the integer array elements �id � k and
id � k � �� to void pointers� Similarly	 the pointers to the �oat data items in the hrs	
 and
rate	
 arrays are cast to void pointers� We pass the character constants #d# for integer	 or #f#
for �oat to tell gen swap�
 the type of the data it is to swap�

We can now write the code for gen swap�
 as seen in Figure ������ We have declared two
temporary variables	 temp and ftmp to hold an integer or �oat value	 respectively when we do the
swapping� The variable	 type is used to switch to the appropriate code sequence to swap the two
data items�

If we made these modi�cations to payutil�c and recompiled our program	 it would behave
exactly as it did in the last section� Of course	 as we stated earlier	 we may not want to use
a function to perform the swap in bubble sort because of the overhead in calling and returning
from a function� As another example of the use of the polymorphic data type	 consider writing a
function that will print an array	 regardless of type	 with �ve elements per line� We may have an
array of integers and an array of �oats to be printed and wish to use the same function to format
the lines of output� Figure ����� shows a driver program and the function	 praray�
�

The function calls to praray�
 pass the array pointers after �rst casting them to generic
pointer types� In the function	 praray�
	 we use the array index to determine when a new line is

����� POLYMORPHIC DATA TYPE ���

�� File� payutil�c � continued ��

void gen�swap�void � x� void � y� char type

� int temp�

float ftmp�

switch�type

� case #d# � temp � ��int �
x�

��int �
x � ��int �
y�

��int �
y � temp�

return�

case #f# � ftmp � ��float �
x�

��float �
x � ��float �
y�

��float �
y � ftmp�

return�

default � printf��Error in gen�swap� �c not a legal type�n��type
�

�

�

Figure ������ Code for gen swap

needed� Since we wish to print �ve elements to a line	 a newline is printed every time the index	
i	 is a multiple of
	 i�e� i � � is zero� When the index i is zero	 no newline is needed�

The void pointer	 y	 points to the array and the type value is a character	 #d# for integers	
and #f# for �oat	 as before� Each element of the array is printed by means of a switch statement�
The switch cases are selected by the type of the array passed� If the type is #d#	 a decimal integer
is printed
 if the type is #f#	 a �oat is printed� If desired	 the function can be extended to handle
other types as well� Let us examine the printing of an i

th element of an integer array� For a type
#d#	 the argument expression in printf�� is�

���int �
 y � i

The void pointer	 y	 is �rst cast to the desired type	 i�e� int �
 then	 the int � is increased
by i so as to point to the i

th element of an integer array� This pointer is �nally dereferenced to
access the ith element of the array� Thus	 printf�
 prints the value of the ith element of an integer
array� Similarly	 a �oat array element is printed out by �rst casting the generic pointer to a �oat
pointer� A sample output is shown below�

���Generic Pointers and Polymorphic Data Types���

Integer array is�

�� �� �� �� ��

Float array is�

��������� ��������� ��������� $��������

Use of polymorphic data types makes for compact programs
 however	 their use is not recom�
mended for beginning programmers� For the most part	 we will not use them in this text�

��� CHAPTER ��� SORTING AND SEARCHING

�� File� genptr�c

Program shows the use of generic pointers to implement a

polymorphic data type� An integer and a float array are printed

out by the same primitive function praray�
�

��

�include �stdio�h�

void praray�void � y� int lim� char type
�

main�

� int x	
 � ���� ��� �� ���� ����

float y	
 � ������� ������ ������ $������

printf�����Generic Pointers and Polymorphic Data Types����n�n�
�

printf��Integer array is��n�
�

praray��void �
 x� �� #d#
�

printf��Float array is��n�
�

praray��void �
 y� �� #f#
�

�

�� Function prints an array of any type� int or float� ��

void praray�void � y� int lim� char type

� int i�

for �i � �� i � lim� i��
 �

if �i !� � i � � �� �
 �� add a newline every �th item ��

printf���n�
�

switch�type
 �

case #d#� printf���d �� ���int �
 y � i

�

break�

case #f#� printf���f �� ���float �
 y � i

�

break�

default� printf��Error in printing array�n�
�

�

�

printf���n�
�

�

Figure ������ Code for printing arbitrary arrays

���
� COMMON ERRORS ���

���	 Common Errors

�� In insertion sort	 the elements are shifted incorrectly� Shift the highest index element �rst	
then the next highest	 and so forth�

�� The argument in binary search that speci�es the high index is incorrect� If the size of the
array is passed as the highest index	 there is a problem� If the size of the array is n	 the
index n is outside the array� The argument should be n � ��

�� Generic pointers should be used with care� In traditional C	 use char pointer instead of void
pointer�

���
 Summary

In this chapter we have developed algorithms for searching a collection of data for a speci�c
element	 called the key� We saw a simple algorithm	 linear search which started at the beginning
of the data	 and compared each element against the key until it was found	 or the data was
exhausted� However	 linear search is not very e�cient if the number of elements to search is large�
In order to develop more e�cient algorithms	 we need to take advantage of the order of the data�
Therefore	 we next discussed how we can arrange the elements in an array in a speci�ed order �
a process called sorting� We developed three sorting algorithms� selection sort	 bubble sort	 and
insertion sort� The �rst two of these are useful when all of the data is already stored in an array	
and insertion sort can be used to sort the data as it is being read into the array�

Once we have the data sorted	 we developed a more e�cient searching algorithm � binary

search� This algorithm worked by dividing the data in half	 and deciding in which half the key
would occur� With each step	 then	 we can eliminate half of the data from further consideration�

These searching and sorting techniques are general and may be applied to any type of data�
We used them in our payroll task to �nd individual payroll records in a database given an id as
the key�

Finally	 we discussed the use of the polymorphic data type	 or generic pointers to implement
a common operation that may be applied to data of di�erent types�

��� CHAPTER ��� SORTING AND SEARCHING

���� Exercises

Find and correct errors if any�

�� main�

� int x	��
�

x	��
 � ���� ��� ����

�

�� main�

� int x	��
�

x � ���� ��� ����

�

�� main�

� int i� x	��
�

for �i � �� i � ��� i��

x � ��

�

�� Should you use a function or a macro to swap values in bubble sort� Explain your reasons�

�� Bubble sort moves the largest value to the highest index� Modify the bubble sort code to
move the smallest element to the lowest index�

� Insertion sort inserts a new element into the array� Modify the insertion sort method to
apply it to an unsorted array with n elements� Do not use another array�

�� Modify the bubble sort to apply it to an array of characters housing a string� The number
of elements in the string are unknown	 but terminated by a NULL�

����� PROBLEMS ���

���� Problems

�� Write a function that sorts an array of integers in decreasing order�

�� Write a function that sorts an array of integers in either increasing or in decreasing order as
speci�ed by an argument�

�� Write a binary search function that searches an array of integers sorted in decreasing order�

�� Write a binary search function that searches an array of integers sorted in either increasing
or in decreasing order as speci�ed by an argument�

�� Write a function that uses insertion sort to sort an array of input numbers	 either in increasing
or in decreasing order�

� Write a function that uses insertion sort to sort an existing array of integers�

�� Write a program to read an array of integers from a �le� Write a function that takes two
arguments� low and high� Low and high specify the low and high indices of an e�ective
array� Function �nds indices for the maximum and the minimum elements in the speci�ed
e�ective array� Use the function with zero for low and the highest valid index for high� Print
the values of maximum and minimum�

�� Repeat the last problem	 but this time swap the largest element in the e�ective array with
the one at the high index	 say index n
 swap the smallest element with the one at the low
index�

�� Repeat the last problem	 but this time after the swap of the elements change the e�ective
array so low is � and high is n � �� Repeat the process so the largest and smallest elements
are found in the array from index � through n � �� Swap the next largest element with the
one at index n � �	 and swap the next smallest with the one at index �� The next swap
considers the array from index � through n � �	 etc until all elements of the array are in
increasing order� This is another way of sorting an array�

��� Compare the operations involved in the above sorting with that for bubble sort� What are
the approximate comparisons required to sort an array of n items by the two methods�

��� Write a menu driven program that allows the following commands� get data from a �le	 add
data	 delete data	 sort data	 search data	 save data to a �le	 help	 quit� Assume that data
records consist of id numbers and exam scores� Sorting must be done either by id numbers
or by exam scores and it must be either in ascending or descending order�

��� Repeat the last problem	 but get data uses insertion sort to read data in sorted form by id
numbers�

��� Write a program that reads integers into an array A� Use another array P of the same size
to store each index of the array A in the following way� The index in A with the smallest
element is stored at index � of P	 the index of the next smallest element in A is stored at
index � of P	 and so on� Print the array A	 and print the elements of A ordered in the
sequence given by each succeeding index stored in P�

��
 CHAPTER ��� SORTING AND SEARCHING

��� Repeat Problem ��	 but use the approach of Problem �� to sort the data�

��� Repeat Problem ��	 but use insertion sort to read data in sorted form by id numbers� The
sort command then uses approach of Problem �� to sort the data by exam scores�

�
� Compare the operations required for sorting in Problems �� and ���

��� Write a program to merge two sorted arrays A and B into a third array S as follows� Start
with initial index	 ia	 of the element to be merged from A and also the index	 ib	 of the
element from B� If the element from A is smaller than the element from B	 append that
element of A to the array S and increment ia
 if the element of B is smaller than that of
A	 add the element from B to S and increment ib� If they are equal	 add both elements to
S and increment both ia	 ib� If either array is exhausted	 copy the elments from the other
array into S� Repeat until both arrays are exhausted� Print A	 B	 and S�

��� Develop a sort method using the merging of two arrays as in the last problem� Given an
array with � elements	 assume it is split into as many arrays as there are elements� Merge
each adjacent pair into � arrays of two elements each� Merge each pair again into � arrays of
� elements each� Finally	 merge the two into a sorted array� The method can be applied to
any array and is called merge sort method� Write a program that sorts an array by merge
sort�

��� Write a program that sorts the characters in a string�

��� Write a program that reads strings
 for each string compute the frequency of occurrence of
each character�

��� Write a program that reads text from a �le and computes cumulative frequency of occurrence
of each character�

��� Write a program that searches a string for a speci�ed character and returns the index of its
�rst occurrence�

��� Write a program that returns the �rst occurrence of a character in a string starting at some
speci�ed index�

��� Write a program to �nd all occurrences of a character in a string�

��� Write a program that replaces all the occurrences of a character in a string by another
character�

�
� Write a program that sorts characters in a string according to a di�erent order than that
of the ASCII values� Use a function to compare two characters and return whether one
is greater than	 equal to	 or less than the other� The function �rst converts all lower case
letters to upper case and then compares their ASCII values� The program sorts characters
ignoring case�

��� Write a sort program similar to the above problem for integers� Use a function that compares
the absolute values of two integers� The program sorts by absolute values�

����� PROBLEMS ���

��� Write a character sort program that uses a function	 cmpchrs�
	 to compare two characters
by an arbitrary criteria� Assume that an array stores all ASCII printable characters in an
assumed increasing order� vowels �rst	 consonants next	 digits next	 all others next� The
function	 cmpchrs�
	 looks up the corresponding indices of characters to compare characters�
The result of comparing the indices is returned by the function� The program sorts characters
in an order speci�ed by cmpchrs�
�

��� CHAPTER ��� SORTING AND SEARCHING

Chapter ��

String Processing

These days	 computers are not used only for processing numbers	 but	 as we have seen in previous
chapters	 they are also used for processing textual data� As we saw in Chapter �	 in C	 textual
data is represented using arrays of characters called a string� If we are to manipulate strings in
any reasonable way we must have several basic operations available to us� Since string is not a
basic type in C	 string operations must be developed as functions� A library of such functions
can then be used as a part of the language� In other words	 we can e�ectively treat string as
an abstract data type � once we have string operations written in function form� The Standard
Library provides a rich set of functions for performing operations on strings such as copying and
comparing them	 breaking strings up into parts	 joining them	 �nding substrings	 substituting one
string for another	 and so forth� In this chapter	 we will discuss such string processing using the
built�in library functions as well as look at how some of these functions can be written�

We begin the chapter by de�ning a user de�ned data type for strings and then use this new
type throughout� We then describe the library functions available for performing string operations	
including reading and writing strings	 copying a string and �nding its length	 comparing and joining
strings and converting the information in a string to other data types� We conclude the chapter
with several example programs using these string operations�

���� The Data Type STRING

Because a string is such a common data structure in programs	 it may be convenient to de�ne
it as its own data type� We can then de�ne functions to perform operations on operands of the
de�ned data type
 e�ectively treating the de�ned type as a new data type �an abstract data type��
As we have seen previously	 a string is implemented as an array of characters	 and an array is
implemented as a contiguous collection of cells and a pointer pointing to the beginning of the
block� The name of the array is associated with this pointer cell	 rather than with the data cells
themselves� When we pass an array to a function	 we pass this pointer to the array� So when
we are processing strings	 passing them to functions	 returning them as values	 we are handling
pointer values� Therefore	 we can de�ne a data type	 STRING	 as a pointer to a character as follows�

typedef char � STRING�

�To de�ne an abstract data type� we must de�ne a way to declare variables of that type together with operations

that can be performed on such data items� A full description of the concept of abstract data types is beyond the

scope of this text� however� the basic idea is presented here�

���

��� CHAPTER ��� STRING PROCESSING

We can then de�ne string variables in terms of the data type	 STRING�

STRING s� t�

The variables	 s and t	 are character pointers� We can access the characters in the string by
dereferencing the pointer or using array type indexing� But remember	 declaring a pointer type
only allocates space for the pointer
 it does not allocate cells for an array
 it does not initialize the
pointer� We cannot use a STRING variable to store a string of characters	 but merely to point to
a pre�allocated string� We must always declare a character array to store a string of characters	
and can then initialize a STRING variable to point to this array� STRING does not serve to allocate
memory for a string� As such	 the concept of abstract data type is not totally satis�ed by the
above type de�nition
 however	 with the above caveat	 we can otherwise treat it as such�

We illustrate the use of the STRING type by writing a rogram to read and print a string as
shown in Figure ����� Note	 in main�
	 a character array	 s	 is declared� The name of the array	 s	
is an �initialized� character pointer � the same as our type	 STRING	 and may therefore be passed
to the function our strprint�
 which expects a STRING argument� Notice	 we have placed the
typedef for STRING in a header �le	 strtype�h since it will be useful for other programs we will
write�

���� Library String Functions

With a data type de�ned	 we may now proceed to de�ne functions to implement the operations
on data of this type� As mentioned above	 the C built�in library provides a rich set of string
processing functions� We describe some of the more common ones here
 others are described in
Appendix C�

������ String I�O� gets�� and puts��

One of the �rst operations we may need for strings is the ability to read or write strings from the
standard input or to the standard output� For example	 if we had a task�

STR�� Read strings until end of �le	 convert each string to upper case	 and print the modi�ed
string�

we could easily write an algorithm for the task�

while not EOF� read a string

convert string to upper case

print string

To implement this algorithm	 we need three functions� read a string from standard input
stream	 write a string to standard output	 and convert a string to upper case� We have shown
crude versions of these �rst two functions in the previous	 section
 however	 the standard library
provides these operations as well� Library function	 gets�s
 reads a string from the standard
input into an array pointed to by s
 and	 puts�s
 writes a string pointed to by s to the standard
output� The prototypes for these functions	 declared in stdio�h	 are� �

STRING gets�STRING string
�

int puts�STRING string
�

����� LIBRARY STRING FUNCTIONS ���

�� File� strtype�c

This program illustrates the use of a type definition for strings�

��

�include �stdio�h�

�include �strtype�h�

�define SIZE 	

void our�strprint�STRING s
�

void our�strread�STRING s
�

main�

� char s�SIZE�� �� allocate space for a string ��

our�strread�s
� �� read a string ��

our�strprint�s
� �� print a string ��

�

�� Function reads a string from standard input���

void our�strread�STRING s
 �� declare a STRING type ��

�

while ���s � getchar�

 �� ��n�

s���

�s � NULL�

�

�� Function writes a string to standard output���

void our�strprint�STRING s
 �� declare a STRING type ��

�

while ��s
 �

printf���c�� �s
�

s���

�

printf���n�
�

�

�� File� strtype�h

This file contains the definition of type STRING

��

typedef char � STRING�

Figure ����� Program illustrating the STRING data type

��� CHAPTER ��� STRING PROCESSING

If reading is successful� gets�
 returns the pointer to the string� otherwise� it returns a NULL

pointer� i�e� a pointer whose value is zero� A returned value of NULL usually implies an end of
	le� When gets�
 reads a string� it reads the input characters until a newline is read� discards the
newline� appends a NULL character to the string� and stores the string where s points� Similarly�
puts�
 outputs the string� s� after stripping the NULL and appending a newline� It returns the
last character value output if successful� otherwise it returns EOF� Note� the arguments to these
functions and the return value from gets�
 are character pointers� i�e� equivalent to our STRING
data type� and we can consider them as such� The argument of gets�
 MUST be a string�
otherwise� the function attempts to store characters wherever the argument points� which can
create a possibly fatal error when the program executes�

We will write and use a function� ucstr�
� which converts a string to upper case� The whole
program is simple� it reads a string� converts it to upper case� and prints it� and is shown in
Figure ���� In the driver� the loop expression reads a line into s� if successful� the returned value
is a non
zero pointer� s� and the loop is executed� In the loop body� the string� s� is converted
to upper case� and printed� The function� ucstr�
� converts a string to upper case by traversing
the string and converting each character to upper case using library routine� toupper�
� which
returns the upper case version of its argument if it is a lower case letter� otherwise it returns the
argument unchanged�

Sample Session�

���String to Upper Case���

Type strings� EOF to terminate

Hello

HELLO

Pad ��A

PAD 	�A

good morning

GOOD MORNING

�D

The above program reads lines until end of 	le� As a slight variation on this task� sometimes
it is desirable to loop until a blank line is entered� Here is a loop that copies lines until a blank
line is entered�

while ��gets�s

puts�s
�

Assuming that a line is read successfully� gets�
 returns s� The expression� �gets�
� is the
same as �s� which is the 	rst character in the string� s� As long as the 	rst character of s has a
non
zero value� the loop continues� When the 	rst character is a NULL� the loop terminates� If a
blank line is entered by typing a RETURN� gets�
 reads an empty string and the loop terminates�

We can also use gets�
 in a menu driven program which requires the user to enter either
a single character or a command line� In our previous menu driven programs in Chapter �� we
saw that reading a single command character required that the keyboard bu�er be �ushed of the
newline character before reading the next command� If only one character is to be read� or if the
	rst character of a command line is su
cient to identify a command� then it is simpler to read the

����� LIBRARY STRING FUNCTIONS ���

�� FIle� ucstr�c

This program reads strings� converts them to upper case� and

prints them out�

��

�include �stdio�h�

�include �ctype�h� �� includes toupper�
 ��

�include �strtype�h�

�define SIZE 	

void ucstr�STRING t
�

main�

�

char s�SIZE�� �� allocate a string ��

printf�����String to Upper Case����n�n�
�

printf��Type strings� EOF to terminate�n�
�

while �gets�s

 �

ucstr�s
�

puts�s
�

�

�

�� Converts t to upper case string ��

void ucstr�STRING t

�

while ��t
 � �� loop until char is null ��

�t � toupper��t
� �� convert char �t to upper case ��

t��� �� point to next char ��

�

�

Figure ����� Program to read and print strings using gets�
 and puts�

��� CHAPTER ��� STRING PROCESSING

entire line using gets�
� which strips the newline character from the input line� and then examine
only the 	rst character of the input string� Here is a loop for a menu driven program driver�

printf��H�elp� Q�uit� D�isplay�n�
�

while �gets�s

 �

switch �toupper��s

 �

case �H�� help�
�

break�

case �Q�� exit�

�

case �D�� display�
�

break�

default� �

�

printf��H�elp� Q�uit� D�isplay�n�
�

�

The loop reads an input string� s� and passes the 	rst character of s� �s to toupper�
 which
converts it to upper case� One of the cases in the switch is selected and an appropriate function
is executed� The loop repeats until gets�
 returns end of 	le�

We may now use library functions� gets�
 and puts�
� in place of functions we have previously
written ourselves to read and write strings� Remember� gets�
 reads an entire line of input text
into a string� replacing the newline with a NULL� Likewise� puts�
 prints an entire NULL terminated
string� adding a newline at the end�

������ String Manipulation� strlen�� and strcpy��

As our next task� let us consider reading lines of text and 	nding the longest line in the input�
STRSAVE� Read text lines until end of 	le� save the longest line and print it�
Our approach is similar to the algorithm for 	nding the largest integer in a list of integers� We

save the current �guess� at the longest line in a string� and� as each new line is read� we compare
the length of the new line with that of the current longest line� If the length of the new line is
greater than that of the current longest� we will save the new line into the longest and proceed�
To begin� we initialize the longest line to an empty string� the shortest of all strings� Here is the
algorithm�

initialize longest to an empty string

while not EOF� read a line

if length of new line � length of current longest

save new line into longest

print longest

����� LIBRARY STRING FUNCTIONS ���

To implement this algorithm� we must consider how we can perform the required operations
on the strings holding the new line and the current longest line� We already know how to read
and write strings� we also need the operations of 	nding the length of a string and saving a string�
For the former task� the standard library provides a function�

int strlen�STRING s
�

which returns the length of a string�s� i�e� the number of characters in s excluding the termi

nating NULL�

For the second operation� we can consider the implementation of the maximum integer algo

rithm and how we saved the new maximum value � we used an assignment operator� However�
this will not work for strings� Remember� the string is implemented as a character pointer� If we
simply assigned one string variable to another� we would only be saving the pointer to the 	rst
string� not the string characters themselves� Then� when we read the next input line� we would
overwrite the current string as well� Instead we need to copy the new line string into the current
longest string� The standard library provides a function for this operation�

STRING strcpy�STRING dest� STRING source
�

which copies a string pointed to by source into a location pointed to by dest� The function
returns the destination pointer� dest� This is the equivalent of an assignment operation for data
type� STRING�

The prototypes for these and other standard library string functions are in a header 	le�
string�h� We can now write the program implementing our algorithm as shown in Figure �����
Notice� we initialize the current longest string by using strcpy�
 to copy an empty string into
longest� It is also possible to initialize it as follows�

�longest � ��
��

or�

longest�
� � ��
��

Use of strcpy�
 makes it clear that an empty string is copied into longest� It has the �avor of
assigning a string constant to another string� the same way longest is updated to the new string�
s� within the loop body� Thus� we are sticking with our concept of an abstract data type by only
using the de	ned functions to perform operations on data of the type� STRING� A sample session
is shown below�

���Longest Line���

Type text lines� empty line to quit

hello

good morning

Longest line is�

good morning

Remember that assignments cannot be used to store strings into arrays� When a string is to
be stored into a speci	ed character array� use strcpy�
 to copy one string to another� do NOT

use an assignment operator�

��� CHAPTER ��� STRING PROCESSING

�� File� long�c

This program reads lines of text and saves the longest line�

��

�include �stdio�h�

�include �string�h�

�define SIZE 	

�define DEBUG

main�

� char s�SIZE�� longest�SIZE��

printf�����Longest Line����n�n�
�

strcpy�longest� ��
� �� length of empty string is zero ��

printf��Type text lines� empty line to quit�n�
�

while ��gets�s

if �strlen�s
 � strlen�longest

strcpy�longest� s
�

printf��Longest line is� �n�
�

puts�longest
�

�

Figure ����� Program to 	nd the longest string

����� LIBRARY STRING FUNCTIONS ���

Implementing strcpy�

The standard library provides the function srtcpy�
 for us to use� however� it is instructive to
look at how such a function can be written� Let us write our version of strcpy�
 to copy string�
t� into string� s�

�� File� str�c ��

�� Function copies t into s ��

�include �strtype�h�

STRING our�strcpy�STRING s� STRING t

�

while ��t �� ��
�
 �

�s � �t�

s���

t���

�

�s � ��
��

return s�

�

The arguments passed to formal parameters� s and t� are of type STRING� i�e� character
pointers� The loop is executed as long as �t is not NULL� In each iteration� a character is copied
into �the string pointed to by� s from �the string pointed to by� t by the assignment of �t to �s�
The pointers s and t are then incremented so they point to the next character positions in the
two arrays� If t does not point to a NULL� the loop repeats and copies the next character� etc� If t
points to a NULL� the loop terminates� After the loop terminates� a terminating NULL is appended
to s� The function returns the pointer� s�

Notice� there is a problem with this implementation� The function returns the value of s�
however� this is no longer a pointer to the destination string � s has been incremented as the
string was copied and now points to the end of the destination string� We leave the repair of this
function as an exercise �see Problem ����

Several alternate versions of our strcpy�
 can be written as follows �Note� these versions
return void rather than a STRING��

�� File� str�c � continued ��

void our�strcpy��STRING s� STRING t

�

while ���s � �t
 �� ��
�
 �

s���

t���

�

�

In the above� the while condition uses the assignment expression whose value is the character
assigned to check against NULL� If the value is NULL� the loop is terminated� however� the assignment
places the terminating NULL character before the loop is terminated� Here is another variation�

��� CHAPTER ��� STRING PROCESSING

�� File� str�c � continued ��

void our�strcpy��STRING s� STRING t

�

while ��s � �t
 �

s���

t���

�

�

In the while loop� when the assigned character is �n��� the value of the expression is zero� and
therefore false� Otherwise� the character assigned is not NULL� and the value of the expression is
true� The loop terminates correctly when it should� It is also possible to include increments in
the while expression�

while ��s�� � �t��

�

Here� �t is assigned to �s� and then s and t are incremented� The next version uses array indexing�
otherwise� it is identical to the last version�

�� File� str�c � continued ��

void our�strcpy��STRING s� STRING t

� int i�

i �
�

while �s�i� � t�i�
 �

i���

�

�

Memory Allocation for Strings

When a function is used to put values into an array� it is important that memory for the array be
allocated by the calling function� Consider the following possible error�

�� COMMON BUG ��

char �s� �� should be� char s�SIZE�� ��

strcpy�s� �Hello� good morning to all�
�

The pointer variable� s� can store only a pointer value� no memory is allocated for a string of
characters� Nor is the pointer variable s initialized� The function� strcpy�
� assumes that s

points to memory where a string can be stored� No such memory has been allocated� nor does s
point to any valid location � the program will crash�

A second type of error can occur if the calling function does not allocate memory for a string�
but instead depends on the called function to do so� Let us consider an example in which a string
copy function allocates memory for the copied string and returns a pointer to it� and see where
the error leads us� Here is the function�

����� LIBRARY STRING FUNCTIONS ���

�� File� allocerr�c ��

�include �stdio�h�

�include �strtype�h�

�� COMMON ERROR ��

STRING scopy�STRING t

� char s�	

��

int i �
�

while �s�i� � t�i�

i���

return s�

�

The function copies a string into an �automatic� array variable de	ned in the function� and returns
a pointer to the array� When the function returns to the calling function� the memory for the
array� s� is freed automatically� The value of s is returned� but s now points to garbage� Of
course� the compiler does not �ag an error� since the value of s can be legitimately returned� The
fact that it now points to garbage is a program logic error�

Let us see what happens when we use this function in a program� We declare a STRING
variable� p� which is assigned the value of the pointer returned by the above function� scopy�
�

�� File� allocerr�c � continued ��

�� PROGRAM BUG ��

main�

� STRING p� scopy�STRING t
�

p � scopy��hello�
�

puts�p
�

�

The function� scopy�
� returns a pointer to an array which has already been freed for other
uses� The now freed memory� previously holding the array� must be assumed to have garbage
value� The pointer to this garbage is assigned to p� The function� puts�
� assumes p is a valid
string and will print whatever garbage p points to� not the original meaningful string� Without
a clear understanding� the above type of error is hard to pinpoint� The freed memory holding
the array may or may not be immediately used for other purposes� thus� sometimes� puts�
 in
the above example may print a �partly� meaningful string� At other times� it will print out all
garbage�

The only solution is to declare all the needed arrays in the calling function� main�
 and pass
them as arguments to called functions� The called functions can then put strings in these arrays
and the calling function� main�
� can later use these strings without any problem� The correct
structure is as follows�

���

void scopy �STRING s� STRING t
�

��� CHAPTER ��� STRING PROCESSING

main�

� char s�SIZE�� t�SIZE��

scopy�s� t
�

���

�

Using String Functions with Substrings

The function� strcpy�
� is given two character pointers� one to the destination array and one
to the source string� These pointers may point to any character position within an array which
corresponds to a substring beginning at that position� continuing to the next NULL in the array�
We can call our string functions with arguments that are substrings of other strings� For example�
we can copy a substring of t into any location in s�

�� File� partstr�c

Program shows overwriting part of a string with part of another�

��

�include �stdio�h�

�include �string�h�

�define SIZE 	

main�

� char s�SIZE�� t�SIZE��

printf�����Partial Strings����n�
�

strcpy�s� �This can be trouble�
�

strcpy�t� �Insert string�
�

printf��Old s� �
� puts�s
�

printf��Old t� �
� puts�t
�

strcpy�s � �� t � �
�

printf��New s� �
� puts�s
�

�

Sample Session�

���Partial Strings���

Old s� This can be trouble

Old t� Insert string

New s� Thit string

The program copies a substring starting at t � � into a location pointed to by s � �� String copy
terminates with a NULL� any remaining characters in string s after the 	rst NULL are not part of
the string�

We can even use strcpy�
 to copy part of a string to a di�erent location in the string itself� As
always� we must be sure that we are dealing with NULL terminated strings and must also take care

����� LIBRARY STRING FUNCTIONS ���

that the copy process does not overwrite useful data� For example� here is a loop that eliminates
leading white space from a string� s�

strcpy�s� � Aloha�
�

while �isspace��s

strcpy�s� s � 	
�

The function� isspace�
� is a library routine that returns True if the argument is a white space�
�We have indicated white space explicitly by a ��� The loop is executed as long as �s� the 	rst
character of s� is a space� In the loop� the string starting at s � 	 is copied into s� character by
character� Each time the loop is executed� one leading white space is removed from s� Here are
the successive strings starting with the original �again we use white space indicator ���

����Aloha

���Aloha

��Aloha

�Aloha

Aloha

When a string is copied into itself by strcpy�
� as long as destination index is less than the
source index� we overwrite only the desired characters� If the destination index is greater than the
source index� destination characters will be overwritten� For example�

strcpy�s� �abcdef�
�

strcpy�s�	� s
�

The second strcpy�
 copies s�
�� i�e� �a� into s�	�� then copies s�	� into s���� then copies
s��� into s���� etc� All elements of s are overwritten with �a�� even the NULL� resulting in a
non
valid string � a logic error�

Next� let us consider moving the NULL position� Since the 	rst NULL terminates a string� we
can move the NULL to squeeze out unneeded trailing characters� Here is a loop that eliminates
trailing white space�

while �isspace�s�strlen�s
 � 	�

s�strlen�s
 � 	� � NULL�

Starting with the original� successive strings are shown below with an explicit terminating NULL

�again� we use a � as a white space indicator��

Aloha�����

Aloha����

Aloha���

Aloha��

Aloha�

��� CHAPTER ��� STRING PROCESSING

������ String Operations� strcmp�� and strcat��

In the last section we saw how a string can be copied and how to determine the length of a string�
Two other common operations on strings are to compare them and to join strings� i�e� concatenate
them�

Our next task is to read lines of text� until a blank line is entered� and examine each line to
see if it is the same as a �control string�� If a line equals the control string� the line is ignored�
otherwise� it is appended to a bu�er� When a blank line is encountered in the input� the bu�er is
printed� The control string is assumed to be entered as the 	rst line� Here is the task�

JOIN� Read a 	rst line as the control string� Read other lines until a blank line is entered�
either adding each line to a bu�er or discarding it� A line is discarded if it equals the control
string� When a line is added to the bu�er� separate it from the previous text by a space� Print
the bu�er at the end of input�

The algorithm will require several functions� one to compare strings� another to append �i�e�
concatenate� one string to another� Here is the algorithm�

initialize the buffer to an empty string

read the first line into the control string

while not a blank line� read a line

if the new line is not equal to the control line

then if the buffer is not empty� append a space to the buffer

append the new line to the buffer

print the buffer

The two new string operations we will need are provided by the standard library� We will use
them to implement our algorithm� The 	rst function compares two strings�

int strcmp�STRING s	� STRING s�
�

The function� strcmp�
� compares the strings� s	 and s�� and returns an integer indicating the
result of the comparison� If the two strings are equal� it returns a zero value� If the two strings are
not equal� the function returns the di�erence between the 	rst two unequal characters in the two
strings� The returned value will be positive if s	 is lexicographically greater than s�� and negative
if s	 is less than s�� Thus� the strcmp�
 function is the equivalent of a relational operator for
strings�

The second function we need is to join two strings� Again� the standard library provides a
function�

STRING strcat�STRING s	� STRING s�
�

which concatenates �i�e� joins� the two strings� s	 and s�� and stores the result in s	� It
returns s	� i�e� the pointer to the combined string� This is the equivalent of the addition operator
for strings� The prototypes for these and other standard library string functions are in a header
	le� string�h�

We can now use these functions to implement our program as shown in Figure ����� We 	rst

����� LIBRARY STRING FUNCTIONS ���

�� File� text�c

Program reads strings until a blank line is entered� The first string

read is used as a control� If the other strings are not equal to the

control string� they are concatenated to the buffer but separated by a

space� It prints out the buffer at the end� A debug statement prints the

accumulated string at each step and its length�

��

�include �stdio�h�

�include �string�h�

�define SIZE 	

�define DEBUG

main�

� char s�SIZE�� control�SIZE�� text�SIZE��

printf�����Build Text� Exclude Control String����n�n�
�

printf��Type control string� �
�

gets�control
�

strcpy�text� ��
� �� length of empty string is zero ��

printf��Type text lines� RETURN to quit�n�
�

while ��gets�s

 �

if �strcmp�s� control
 ��

 �

if �strlen�text

strcat�text� � �
�

strcat�text� s
�

�

�ifdef DEBUG

printf��debug�length of buffer is �d� �s�n��

strlen�text
� text
�

�endif

�

printf��Final buffer is� �
�

puts�text
�

�

Figure ����� Code using strcmp�
 and strcat�

��� CHAPTER ��� STRING PROCESSING

read a string into the variable� control� and initialize the bu�er� text� to an empty string� The
while loop then reads strings until a blank line is entered� Since the expression gets�s
 reads a
line of text and returns the destination pointer� s� �gets�s
 is the 	rst character of the string
read into s� The expression is True if any non
empty string is entered� It is False when the 	rst
character of s is a NULL which occurs when an empty line �just a RETURN� is entered�

For each string read into s� we compare it with control� If they are not equal� we concatenate
text and s� A space is concatenated to text if it is not empty� so that the concatenated strings
are separated by a space� We have included a debug statement to print the accumulated bu�er
and its length� When the input terminates� the accumulated string� text� is printed� Here is a
sample session�

���Build Text� Exclude Control String���

Type control string� Hello

Type text lines� RETURN to quit

Hello

debug�length of buffer is
�

earth

debug�length of buffer is �� earth

calling

debug�length of buffer is 	�� earth calling

moonbase�

debug�length of buffer is ��� earth calling moonbase�

hello

debug�length of buffer is ��� earth calling moonbase� hello

Final buffer is� earth calling moonbase� hello

Observe that string comparisons are case distinct� e�g� hello is not the same as Hello� so the
	rst Hello in the input is discarded� while the second� hello� is not�

The function� strcmp�
� can be used when we wish to search for a particular string or when
we wish to order strings in lexicographic or dictionary order� Unfortunately� upper case and lower
case values of a letter are not equal as shown above� therefore� we must change all strings to the
same case �e�g� by using tolower�
� for a case independent comparison�

To understand how these library functions work� let us write our own versions of functions
strcmp�
 and strcat�
� beginning with our strcmp�
� First� let us look in a little more detail
of �what� strcmp�
 does� Given two strings� the comparison proceeds character by character
until two unequal characters are encountered� or both the strings are exhausted� When two
unequal characters are encountered� their di�erence is returned� If no unequal characters have
been encountered when both strings have reached NULL� the two strings are identical� and zero is
returned� Here are some examples of results using strcmp�string	� string�
�

����� LIBRARY STRING FUNCTIONS ���

�� File� str�c � continued

Compares strings s and t� returns difference of first

unequal characters or returns zero�

��

int our�strcmp�STRING s� STRING t

�

while � �s
 � �� terminate when s is exhausted ��

if ��s �� �t
 �� if unequal� break loop ��

break�

s��� �� traverse the two strings ��

t���

�

return �s � �t� �� return the difference of characters ��

�

Figure ����� Code for our strcmp

string� string� returned value comment

hawaii hawaiian �
 �a� negative
hilo hawaii �i�
 �a� positive

hawaii hawaii � zero
hawhaw hawaii �h�
 �a� positive
Hawaii hawaii �H�
 �h� negative
haw��� hawaii ���
 �a� negative

We can model our algorithm on this behavior of strcmp�
� We traverse both strings until
we arrive at a terminating NULL in either one� During traversal� we examine the corresponding
characters in the strings to see if they are unequal� If so� we terminate the traversal loop� Other

wise� we continue the process� When the loop is terminated� we return the di�erence between the
characters where we left o� in the two strings�

Figure ���� shows the code implementing this algorithm� The while loop traverses strings s and
t terminating when s points to a NULL character� Within the loop� the corresponding characters
of the two strings are compared� If unequal characters are encountered� the loop is terminated�
and the di�erence between the characters is returned� If the loop terminates because �s is zero�
then no unequal characters have been encountered so far� but the string t may or may not be
exhausted� In either case� �s � �t� i�e
 � �t is returned� In particular� if t points to NULL �the
string t is also exhausted�� then the two strings are equal and zero is returned� Otherwise� the
di�erence between the 	rst unequal characters is returned� Note� we do not need to test for the
end of the string t in the while condition� If t terminates before s� then the NULL at the end of
string t will not compare equal to �s� and the loop will terminate anyway�

��� CHAPTER ��� STRING PROCESSING

�� File� str�c � continued

Concatenates s and t by appending t to s� Returns

pointer to s� s must point to a large enough array to accommodate the

concatenated string�

��

STRING our�strcat�STRING s� STRING t

� STRING p�

p � s� �� save pointer s ��

while ��s
 �� increment s until it points to NULL ��

s���

strcpy�s� t
� �� copy t into s ��

return p� �� return saved pointer ��

�

Figure ����� Code for our strcat�

To write our strcat�
� we must append the second string to the end of the 	rst string� so we
must traverse the 	rst string until we 	nd the NULL� We can then copy the second string at this
point in the 	rst using strcpy�
� The function returns the pointer to the destination string� i�e�
the beginning of the 	rst string� Since the function must return a pointer to the original string� s�
we save the original pointer in a variable� p� We then increment s until it points to the terminating
NULL� We then copy t into s starting at the NULL character position using strcpy�
� and return
the saved pointer� p� This function performs the same task as does strcat�
�

������ String Conversion Functions

Besides the functions for manipulating strings discussed in the previous sections �and others not
discussed� but presented in Appendix C�� the standard library provides several functions for con

verting the character �ascii� information in a string to other data types such as integers or �oats�

We will illustrate the use of one such function� atoi�
� by modifying our function getint�

that we wrote in Chapter �� Recall� this function reads the next valid integer from the standard
input character by character� skipping over any leading white space� converts the character se

quence to an integer representation� and returns the integer value� The prototype for this function
is�

int getint�void
�

In our previous version of this function� we made it robust enough to detect when EOF or invalid
�non
digit� characters are present in the input� Here we will extend the utility of getint�
 to read
the next white space delimited item in the input� and convert it to integer form� this time allowing
a leading � or � sign� and give the user the opportunity to re
enter data for illegal character errors�

����� LIBRARY STRING FUNCTIONS ���

GETINT� Write a program that reads only a valid integer� If there is an error in entering an
integer� it detects the error and allows the user to re
enter the data�

The program driver is quite simple� it calls the function getint�
 that returns a valid integer
read from the standard input� The driver then prints the integer returned by the function� Here
is the algorithm for getint���

initialize valid to False

while not a valid string

read a string s

set valid to True if s represents a valid integer

if valid

return an integer represented by the string s

else

print an error message

The function reads in the input as a string� and checks if it is a valid digit string for an integer�
To check if a string s is a valid integer string� we examine whether it consists of only digits with�
perhaps� a leading unary sign �� or ��� The following algorithm sets valid to True if s represents
a valid integer�

if �s is ��� or ���

valid � digitstr�s � 	
�

else

valid � digitstr�s
�

If the 	rst character of s is a unary sign� check the rest of the string �starting as s � 	� for all
digits� otherwise check the entire string s for all digits�

If s is a valid digit string� the function returns an equivalent integer using the standard library
function� atoi�
� The call atoi�s
 returns the integer represented by the string s� The function
atoi�� has the prototype �included in stdlib�h��

int atoi�STRING s
�

If s is not a valid string� the user is prompted to type the input again�
To check if all characters in a string are digits� getint�
 uses the function digitstr�
� The

algorithm modules are combined and implemented in a program shown in Figure �����
The driver gets an integer and prints it� The function getint�
 reads the next white space

delimited string in the input using scanf�
� If the 	rst character is a unary operator� we check
for digits string starting at the pointer s � 	� otherwise� we check starting at the pointer s� The
�ag� valid� stores the value returned by digitstr�
� If valid is True� we use atoi�
 to return
the integer represented by s� otherwise� we print a message prompting the user to re
enter the
integer� �ush any remaining characters on the input line� and read the new input� The �ag valid

is initialized to False� and the loop continues as long as valid remains False� i�e� as long as a valid
integer is not entered�

The function digitstr�
 traverses the string until a NULL appears� If a non
digit is encountered
anytime during traversal� it returns False� otherwise� at the end of traversal� it returns True� It
uses the library function� isdigit�
 to check if a character is a digit�

A sample session is shown below�

��� CHAPTER ��� STRING PROCESSING

�� File� intchk�c

This program reads and prints an integer� It detects errors in

input and asks the user to retype�

��

�include �stdio�h�

�include �tfdef�h� �� defines TRUE� FALSE ��

�include �stdlib�h� �� prototype for atoi�
 ��

�include �ctype�h�

�define SIZE 	

main�

� int n�

printf�����Valid Integer Input����n�n�
�

printf��Type an integer� �
�

n � getint�
�

printf��Integer is �d�n�� n
�

�

�� Function gets a valid integer� ��

int getint�void

� char s�SIZE��

int valid � FALSE� �� flag for valid string ��

while��valid
 �

scanf���s��s
� �� read a string delim by ws ��

if ��s �� ��� �s �� ���
 �� if first char is � or �� ��

valid � digitstr�s � 	
� �� check rest of string� ��

else �� otherwise� ��

valid � digitstr�s
� �� check the entire string ��

if �valid
 �� if a valid string ��

return�atoi�s

� �� return its equivalent integer ��

�� otherwise� ��

printf�����Error in input�n�
��� print an error mesg ��

printf��Re�enter your integer� �
�

while�getchar�
 �� ��n�
� �� flush remainder of input ��

�

�

�� File� str�c � continued ��

�� Checks if a string t is all digits ��

int digitstr�STRING t

�

while ��t

if ��isdigit��t

 �� if any character in t is ��

return FALSE� �� NOT a digit� return FALSE ��

else t��� �� else point to next char� ��

return TRUE� �� if all chars are digits� return TRUE ��

�

Figure ����� Code for getint�

����� LIBRARY STRING FUNCTIONS ���

���Valid Integer Input���

Type an integer� ��	e

���Error in input

Re�enter your integer�
��	

���Error in input

Re�enter your integer� ����	

���Error in input

Re�enter your integer� ���	

Integer is �	��

������ File I�O with Strings

Earlier in this chapter� we described library functions to do string I�O with the standard input
and output� The library also provides functions to do I�O with 	les� Here we will illustrate the
use of these functions with our next task� to search for the presence of a string in the lines of a
text 	le�

GETLNS� Search for a control string in the lines of a 	le� Each line that contains the control
string is to be written to an output 	le and to the standard output�

The algorithm is written easily if we write a function� srchstr�
� that searches for the presence
of one string in another� Here is the algorithm�

get the control string control

open files

while not EOF� read a line s from the input file

if srchstr�s� control
 is True

then write the line to output file and stdout

We could use character I�O to read from an input 	le� but it is easier to use library string I�O
functions� fgets�
 and fputs�
�

int fgets�STRING s� int n� FILE �fp
�

int fputs�STRING s� FILE �fp
�

These functions are similar to gets�
 and puts�
 with minor di�erences� The function
fgets�
 reads a string from a stream� fp� into a bu�er� s� The maximum size� n� of the string
bu�er must be speci	ed to fgets�
 and must allow for a terminating NULL character� The function
reads a string until a newline character is encountered or the speci	ed maximum size of bu�er
is reached� It adds the terminating NULL� but it does NOT strip the newline character as does
gets�
� The NULL is added after the nn character and fgets�
 returns the bu�er pointer if
successful� or NULL otherwise�

The function fputs�
 outputs a string to a stream fp� It strips the terminating NULL from
the string� but does NOT add a newline character as does puts�
� The function returns the last
character output if successful� EOF otherwise� The prototypes for these functions are included in
stdio�h�

��� CHAPTER ��� STRING PROCESSING

�� File� srchstr�c

This program searches for a string in an input file� Every line

that contains the string is printed out�

��

�include �stdio�h�

�include �tfdef�h�

�include �strtype�h�

�define SIZE 	

main�

� FILE �input� �output�

char infile�	��� outfile�	���

char s�SIZE�� control�SIZE��

printf�����String Search����n�n�
�

printf��Type a string to be searched for� �
�

gets�control
�

printf��Input file � �
�

gets�infile
�

printf��Output file � �
�

gets�outfile
�

input � fopen�infile� �r�
�

if �input �� NULL
 �

puts����� Can�t open input file ����
�

exit�

�

�

output � fopen�outfile� �w�
�

if �output �� NULL
 �

puts����� Can�t open output file ����
�

exit�

�

�

while �fgets�s� SIZE � 	� input

if �srchstr�s� control

 �

puts�s
�

fputs�s� output
�

�

fclose�input
�

fclose�output
�

�

Figure ����� Driver for Text Searching Program

����� LIBRARY STRING FUNCTIONS ���

�� File� srchstr�c � continued ��

�� Function tests if str is in s ��

int srchstr�STRING s� STRING str

�

while ��s

if �compare�s� str

 �� if str is at the start of s ��

return TRUE� �� return True ��

else s��� �� otherwise� go to the next pos� ��

return FALSE� �� string exhausted� return False ��

�

Figure ����� Code for srchstr�

The program driver for our task is easy to write as shown in Figure ����� The program driver
	rst reads the control string to search for� It then opens the input and output 	les� The while
loop reads lines from the input 	le until end of 	le� Each line read is tested by srchstr�
 for
the presence of the control string� If the control string is present in the line� it is written to both
stdout and the output 	le� We will need TRUE and FALSE de	nitions for srchstr�
� so we have
included the header 	le� tfdef�h�

The function� srchstr�
 traverses the string� s� and tests if the control string is present at
each position in s� If it is present� it returns TRUE� otherwise� it goes to the next position� The
function� srchstr�
� uses a function� compare�
� to see if a string is present at the start of another
string� This is di�erent than strcmp�
 since the string we are searching in may not terminate at
the end of the control string� The code for srchstr�
 is shown in Figure ����� Given a string� s�
and a control string� str� it starts at the 	rst character of s� and calls compare�
 to see if str is
present in s starting at the 	rst character� If it is� it returns TRUE� otherwise� it increments s to
point to the next character� If the string is exhausted� it returns FALSE�

The code for compare�
 is shown in Figure ������ It traverses str and s until str is exhausted�
If it encounters corresponding characters that are not the same in the two strings� it returns FALSE�
When str is exhausted� it returns TRUE� Here is a sample session�

���String Search���

Type a string to be searched for� while

Input file � ucstr�c

Output file � xyz

while �gets�s

 f

The 	le ucstr�c contains only one line with the string while in it� That line is written to the
	le xyz and to stdout�

For this task� we have written our own function to compare str with the 	rst several characters
in string s because we do not expect s to terminate at the end of the control string� str� If n is

��� CHAPTER ��� STRING PROCESSING

�� File� srchstr�c � continued ��

�� Function tests if str is at the start of s ��

compare�STRING s� STRING str

�

while ��str

if ��str�� �� �s��

return FALSE�

return TRUE�

�

Figure ������ Code for compare�

the length of str� then we require a comparison of the 	rst n characters in the two strings� There
is a standard library function� strncmp�
� which does just that�

int strncmp�STRING s� STRING t� unsigned n
�

It compares the 	rst n characters of s and t� and returns the di�erence of the 	rst unequal
characters� or it returns zero if they are all equal� just like strcmp�
� So� instead of compare�s�
str
� we could have used�

strncmp�s� str� strlen�str

A similar library function� strncpy�
� is also available�

STRING strncpy�STRING s� STRING t� unsigned n
�

which copies n characters from the source string� t� into the destination string� s� without adding
a terminating NULL� It returns s�

We close this section by emphasizing the di�erence between gets�s
 and fgets�s� n� fp
�
Let us assume an input string �Hawaiinn� is in the standard input� and that the string s is large
enough to accommodate the example string with n selected appropriately� The string� s is shown
below after the use of each function�

gets�s
� Hawaii�
 �� newline stripped� NULL appended ��

fgets�s� n� stdin
� Hawaii�n�
 �� newline present� NULL appended ��

Similarly� the output of the functions puts�s
 and fputs�s� fp
 is shown below�

puts�s
� Hawaii�n �� NULL stripped� newline appended ��

fputs�s� stdout
� Hawaii�n �� NULL stripped ��

���	� MORE EXAMPLE PROGRAMS ���

���� More Example Programs

In the previous section we have discussed some of the string utility functions provided by the C
standard library and illustrated their use with examples� Additional string functions can be found
in Appendix C� We close this chapter with a few additional example programs making use of
these string processing functions�

������ Palindromes

Our next task is�
PALI� Read strings and check if each is a palindrome�
A palindrome is a string that reads the same forwards and backwards� for example�

able was i ere i saw elba

The algorithm is simple� compare the reverse of the string with the original string� If they are the
same� the string is a palindrome�

while not EOF� read a string s

copy reverse of s into t

if s and t are equal�

s is a palindrome

else

s is not a palindrome

The driver follows the algorithm closely� as seen in Figure ������ We will use a function�
revcpy�
� to copy the reverse of the string�

We must write the function revcpy�
 to copy one string into another in reverse order� To see
how the algorithm for this function should proceed� we will work with the indices in the source
and destination strings as shown below�

src� hellon�
sind� ���

dest� ollehn�
dind� ���

The string� src� is shown with the terminating NULL and the source index� sind� must start at
the last character of src and decrease as each character is copied� In the destination string� dest�
the index� dind� must start at � and increase as each character is copied� When the source index
becomes negative� all characters have been copied in reverse order from the source� After all the
characters are copied� a terminating NULL must be added to the destination string� Here is the
algorithm�

initialize sind to the last index of src and dind to

while sind is ��

copy from src to dest

increment dind and decrement sind

add a NULL to dest

��� CHAPTER ��� STRING PROCESSING

�� File� pali�c

Program reads a string and tests whether it is a palindrome�

It repeats the process until EOF�

��

�include �stdio�h�

�include �string�h�

�include �strtype�h�

�define SIZE 	

main�

� char s�SIZE�� t�SIZE��

printf�����Palindrome Test����n�n�
�

printf��Type strings� EOF to quit�n�
�

while �gets�s

 �

revcpy�t� s
� �� copy reverse of s into t ��

if �strcmp�s� t
 ��

printf���s� a palindrome�n�� s
�

else

printf���s� not a palindrome�n�� s
�

�

�

Figure ������ Driver for Palindrome

���	� MORE EXAMPLE PROGRAMS ���

�� File� pali�c � continued

Function copies string src in reverse order into string dest�

��

void revcpy�STRING dest� STRING src

� int sind� dind �
� �� dest index is
 ��

sind � strlen�src
 � 	� �� source index at last character ��

while �sind ��

 �� loop while source index is non�neg� ��

dest�dind��� � src�sind���� �� copy character� and update ��

dest�dind� � NULL� �� append a NULL ��

�

Figure ������ Code for revcpy�

The function is shown in Figure ������
Here is a sample session�

���Palindrome Test���

Type strings� EOF to quit

this is it

this is it� not a palindrome

able was i ere i saw elba

able was i ere i saw elba� a palindrome

�D

Our function� revcpy�
� will work 	ne as long as the source and destination strings are di�erent
strings� We could write a function to reverse a string in place� We can follow the same procedure of
copying from the source index to the destination index� however� since the source and destination
strings are the same string� characters at source index as well as at destination index must be
swapped rather than simply assigned� Otherwise� copying a character from the source index to
the destination index will overwrite a character�

s� hellon�
sind� ���

dind� ���

new s� ollehn�

Furthermore� the characters need only be swapped as long as source index is greater than desti

nation index� When the source index is less than the destination index� all characters have been
swapped� If the two indices are equal� the corresponding characters are the same and need no
swapping� Finally� a terminating NULL need not be added since it is already present in the correct
position� Figure ����� shows the code for the function revself�
�

��� CHAPTER ��� STRING PROCESSING

�� File� str�c � continued

Function reverses string s in place�

��

void revself�STRING s

� int c� sind� dind �
� �� c used as temp� storage during a swap ��

�� dest index at
 ��

sind � strlen�s
 � 	� �� src index at last char� ��

while �dind � sind
 � �� loop while chars need swapping ��

c � s�dind�� �� swap characters� ��

s�dind��� � s�sind�� �� and update indices ��

s�sind��� � c�

�

�

Figure ������ Code for revself�

������ Words

Our next task is to break up a string into words delimited by white space�
WDS� Read strings� break up each string into its constituent words�
The algorithm starts by skipping over leading white space� If the string is not exhausted� a

word starts at that position and continues until the next white space� Here is the algorithm�

while not EOF� read a string s

initialize string index to

while not NULL

skip over leading white space

initialize word index to

copy the next word into wd

terminate word with a NULL

print the word

In our algorithm� a word is any sequence of characters delimited by white space� Figure �����
shows the program� It reads lines until EOF scanning each line until a NULL is reached� Each scan
	rst skips over white space� then copies a word into a string� wd� while characters are non
white
space and non
NULL� A terminating NULL is added to the word and it is printed� Here is sample
session�

���Words in Strings���

���	� MORE EXAMPLE PROGRAMS ���

�� File� strwds�c

This program reads strings until EOF� For each string read� it copies each

of the words into another string and prints it�

��

�include �stdio�h�

�include �string�h�

�include �ctype�h�

�define SIZE !

�define WDSIZE �

main�

� char s�SIZE�� wd�WDSIZE��

int i� j�

printf�����Words in Strings����n�n�
�

printf��Type strings� EOF to quit�n�
�

while �gets�s

 � �� read lines until EOF ��

i �
�

while �s�i�
 � �� repeat while s�i� is not NULL ��

while �isspace�s�i�

 �� skip leading white space ��

i���

j �
� �� initialize for a new word ��

while �s�i� "" �isspace�s�i�

 �� while non�NULL AND non�white ��

wd�j��� � s�i���� �� copy word ��

wd�j� � NULL� �� terminate string ��

puts�wd
� �� print word ��

�

�

�

Figure ������ Code for separating words from a string

��� CHAPTER ��� STRING PROCESSING

Type strings� EOF to quit

This is a test

This

is

a

test

�D

������ Substrings

In string manipulations� it is frequently necessary to 	nd a substring of a string� A substring is
a string that is part of another string� It can be parameterized by specifying where the substring
starts and how long it is� Our next task is to write a program that 	nds a substring of a string at
a given position and of a speci	ed size�

SUBSTR� Read substring parameters� For each line of input� 	nd the appropriate substring�
For example� consider the string�

Source string� This is a test stringn�

�The terminating NULL is shown explicitly�� A substring of this string starting at index position �
and containing � characters is�

Destination string� is isn�

We will write a function to extract such a substring� The function must be passed several argu

ments� the source string �pointer�� a destination string where the speci	ed substring is to be copied
�pointer�� the starting position of the substring in the source string �integer�� and the number of
characters for the substring �integer��

It may or may not be possible for the function to extract the string� For example� if the
starting position is outside the string� no substring can be extracted� We will assume that the
function returns the destination string �pointer� if successful in extracting a string� otherwise� it
returns a NULL pointer to indicate failure� We will also assume that the function will extract as
many characters as possible upto the speci	ed number� The function prototype should be�

STRING substr�STRING src� STRING dest� int startpos� int nchrs
�

The parameter� src� points to the source string� and dest points to an array where the
substring of src is to be copied� The next two arguments provide the starting position and the
number of characters� The calling function must allocate memory for the destination string� The
starting position� startpos is an index into the array � it must be � or greater� The parameter�
nchrs is the maximum number of characters to copy into the substring�

Since the program depends primarily on substr�
� let us 	rst develop an algorithm for it�
The function must start copying characters from the starting position startpos� If we use an array
index� src�startpos� accesses the character at the start position if startpos is in the source
string� If startpos is not in the source string� we will return a NULL to indicate failure to extract
a substring�

Next� we must copy up to a maximum of nchrs characters into dest� When the source string
is exhausted or nchrs characters are copied� we stop the copy process and append a NULL to the

����� COMMON ERRORS ���

substring� If even one character is copied into the substring� we will return the destination pointer�
Here is the algorithm�

if startpos �� strlen�src

return NULL

j �
�

while j is less than nchrs and src is not exhausted

copy a character� dest�j� � src�startpos � j�

increment j

terminate dest with NULL

return dest

The program driver reads the start position and the number of characters� It then reads strings
until end of 	le and 	nds the substring for each string if possible� The code for the driver and
substr�
 is shown in Figure ������ The program prints the substring if it can be extracted�
otherwise� it prints a message� Here is a sample session�

���Substring Extraction���

Type start position and number of characters� � �

Type text lines� EOF to quit

this is a test string

is is

hello

llo

well

ll

he

Substring cannot be extracted

then

en

�D

���� Common Errors

�� Failure to include library header 	les� e�g� string�h� Prototypes for library string routines
are not included resulting in default assumptions and consequent problems�

�� We have already discussed common string related errors in Chapter � and in this chapter�
Always allocate space for an array where a string is to be stored� Once space is allocated
for a string� pointer variables can be used to access strings�

�� Array names must not be used as Lvalues�

��� CHAPTER ��� STRING PROCESSING

�� File� substr�c

Program extracts a substring and prints it�

��

�include �stdio�h�

�include �strtype�h�

�define SIZE !

STRING substr�char src��� char dest��� int startpos� int nchrs
�

main�

� char s�SIZE�� sub�SIZE��

int start� n�

printf�����Substring Extraction����n�n�
�

printf��Type start position and number of characters� �
�

scanf���d �d��c�� "start� "n
� �� suppresses newline ��

printf��Type text lines� EOF to quit�n�
�

while �gets�s

 �

if �substr�s� sub� start� n

 �� if substring� ��

puts�sub
� �� print it ��

else

printf��Substring cannot be extracted�n�
�

�

�

�� Function copies a substring of src� starting at i and n characters

long� into dest� It returns dest if success� NULL otherwise�

��

STRING substr�STRING src� STRING dest� int startpos� int nchrs

� int j�

if �startpos �� strlen�src

return NULL�

for �j �
� j � nchrs "" src�startpos � j�� j��
 �

dest�j� � src�startpos � j��

�

dest�j� � NULL�

return dest�

�

Figure ������ Code for the substring program

����� SUMMARY ���

���� Summary

This chapter has discussed a very common data type in C programs� the string� We have brie�y
introduced the concept of an abstract data type as consisting of a data declaration and a set of
operations on data items of that type� We have de	ned a user de	ned type� STRING� for string
data and used it throughout the chapter� �While our string data type does not completely satisfy
the de	nition of an abstract data type� the basic concept is seen��

Many common operations on string data are provided through the standard library� We have
described a few of these� in particular functions for I�O� gets�
 and puts�
� and 	le I�O� fgets�

and fputs�
 whose prototypes are de	ned in stdio�h� In addition the functions for string ma

nipulation� strlen�
 and strcpy�
 as well as string operation� strcmp�
 and strcat�
� have
been described� Other functions described include atoi�
� strncmp�
� and strncpy�
�

Throughout the chapter we have shown numerous examples of programs for string processing�

��� CHAPTER ��� STRING PROCESSING

���� Exercises

�� If the characters in an array� s are� stringn� of charactersn�

What does each of the following print� Show each character�

printf���s�� s
�

puts�s
�

fputs�s� stdout
�

�� If the input of characters is�

string of characters�n

What does each of the following read� Show each character� including NULL�

scanf���s�� s
�

gets�s
�

fgets�s� sizeof�s
 � 	� stdin
�

�� Assume s is a string array� Under what condition is each of the following True�

s

�s

��s

gets�s

�gets�s

��gets�s

Find and correct any errors in the following and determine the outputs where feasible� The
input is shown when appropriate�

�� main�

� char s�!
�� t�!
��

s � �this is a message��

if �s �� t

printf��Equal�n�
�

else

printf��Not equal�n�
�

puts�s
�

�

���
� EXERCISES ���

�� main�

� char s�!
�� t�!
��

scanf���s�� s
�

printf���s�� s
�

�

Input� This is a message

�� main�

� char �s�

s � �this is a message��

printf���d �s�n�� s� s
�

puts�s
�

�

�� main�

� char �s�

gets�s
�

puts�s
�

�

�� main�

� char s�!
��

while ��s
 �

putchar��s
�

s���

�

�

�� main�

� char �s�

strcpy�s� �hello�
�

puts�s
�

�

��� main�

� char name�!
��

name � get�str�name
�

puts�s
�

�

char �get�str�char �s

��� CHAPTER ��� STRING PROCESSING

�

gets�s
�

return s�

�

��� int cmpstr�char �s� char �t

�

if �s �� t

return TRUE�

else

return FALSE�

�

����� PROBLEMS ���

���� Problems

Write program drivers for each of the following� The driver should read appropriate data until
end of 	le� call the functions described below� and print the results�

�� Write a function that returns the index where a character� c� occurs in a string� s� The
function returns
� if c is not present in s� Use array indexing�

�� Repeat � using pointers�

�� Write a function that returns the index where a character� c� occurs in a string s� the search
for c starting at a speci	ed index� i in s� The function returns
� if c is not present in s

starting at the index� i� Use array indexing�

�� Repeat � using pointers�

�� Write a function� how many�
� that returns the number of times a character� ch� occurs in a
string� s� Use array indexing�

�� Repeat � using pointers�

�� Write a function that substitutes a new character� newc� for the 	rst occurrence of a char

acter� c� in a string� s� Use array indexing�

�� Repeat � using pointers�

�� Write a function that substitutes a new character� newc� for every occurrence of a character�
c� in a string� s� Use array indexing�

��� Repeat � using pointers�

��� Rewrite the function� our strcpy�
 in Section ������ so that it properly returns the pointer
to the destination string�

��� Write a function that takes two strings� s and t� as arguments� Copy string s into t� but
remove all white space and punctuation� Use array indexing�

��� Repeat ��� but use pointers�

��� Write a function that takes a string of characters and removes all white space and punctuation
in that same string� Use array indexing�

��� Repeat �� using pointers�

��� Write a function� xwslead�
� that removes all leading white space from a string� Use array
indexing�

��� Repeat �� using pointers�

��� Write a function� xwstrail�
� that removes all trailing white space from a string� Use array
indexing�

��� CHAPTER ��� STRING PROCESSING

��� Repeat �� using pointers�

��� Write a function� xws�
� that removes all leading and trailing white space from a string� Use
array indexing�

��� Repeat �� using pointers�

��� Write a function� squeeze�
� that removes all white space from a string� Use array indexing�

��� Repeat �� using pointers�

��� Write a function� compare�
� that takes two strings as arguments and compares them for
equality after leading and trailing blanks are removed� If the strings are equal after the
leading and trailing blanks are removed� the function returns True� Otherwise� it returns
False�

��� Write a function� �compstrip��� that takes two strings as arguments and compares stripped
versions of them� A stripped string is one from which all white space and punctuation are
removed� Function returns True if the strings are equal after they are stripped�

��� Write a function� palindrome�
 that checks if a given string is the same forwards and
backwards� Use pointers�

��� Write a function that checks if a string is a palindrome ignoring all white space� Example�

i ia wah hawaii

��� Write a function that takes two string arguments� s and t� Copy s into t in reverse order�
except that a sequence of white space is squeezed to a single space�

��� Write a function that takes a single string argument� and reverses the string itself� except
that white space is squeezed to a single space�

��� Write a function that removes the 	rst word from a string� Write a program that uses the
function to remove a speci	ed number of leading words from a string�

��� Write a function that removes the last word in a string� Write a program that uses the
function to remove a speci	ed number of trailing words from a string�

��� Write a function that takes two strings� s	 and s� as arguments� It returns the index where
s� occurs in s	� or it returns
� if s� is not in s	�

��� Write a function that substitutes a new string� repl str� for the 	rst occurrence of a string�
str in a string� src�

��� Write a function that replaces a new string� repl str� for every occurrence of a string� str�
in src�

��� Write a function that detects the presence of a whole word� wd� in a string� s�

����� PROBLEMS ���

��� Write a function that converts a string into an integer� The conversion is terminated when
a non
digit is encountered�

��� Write a function that converts a string into a �oat� The conversion is terminated when a
character that does not belong in a decimal number is encountered�

��� Write a function that converts an integer to a string�

��� Write a function that converts a �oat to a string�

��� Write a function that converts a string of binary digits to an integer�

��� Write a function that converts an unsigned integer into a string of binary digits�

��� Write a function� nexttok�
� that gets the next token from a string� starting at a speci	ed
array index� called cursor� The function returns the new value of cursor� the token itself�
and the type of the token� Leading white space is skipped� A longest valid token is built as
long as the characters belong to a token type� The token is complete when a character that
does not belong to a token type being built is encountered�

A valid token type is either an identi	er� an integer� a �oat� an invalid� or an EOS� end of
string� An identi	er starts with a letter� and may be followed by letters and�or digits� An
integer starts with a digit� and may be followed by digits� A �oat must start with a digit�
may be followed by digits� may be followed by a decimal point� and may be followed by a
sequence of digits� A character other than white space� letters� and digits is an invalid type
token containing that one character� EOS type of token is returned when the NULL character
is reached�

Write a program that reads in lines of input from a 	le� and use the above function to print
out the tokens in each line until EOF�

��� CHAPTER ��� STRING PROCESSING

Chapter ��

Structures and Unions

So far� we have seen one kind of compound �user de	ned� data type � the array and in Chapters
� and � have seen how we can group information into one common data structure� However� the
use of arrays is limited to cases where all of the information to be grouped together is of the same
type� In this chapter we present the other compound data type provided in C � the structure�
which removes the above limitation� We will discuss structures� pointers to structures� and arrays
of structures� As with our previous data types� we will see how such structures can be declared�
how information in them can be accessed� and how we can pass and return structures in functions�
We will also see how arrays of structures are sorted and searched� We illustrate these points with
several example programs�

Finally� we will introduce unions which are similar to structures� however� the elements in the
union share the same memory cells� In a union� di�erent types of data may be stored in a variable
but at di�erent times�

���� Structures

In C� a structure is a derived data type consisting of a collection of member elements and their
data types� Thus� a variable of a structure type is the name of a group of one or more members

which may or may not be of the same data type� In programming terminology� a structure data
type is referred to as a record data type and the members are called fields� �We will use these
two terms interchangebly��

������ Declaring and Accessing Structure Data

As with any data type� we need to be able to declare variables of that type� In particular for
structures� we must specify the names and types of each of the 	elds of the structure� So� to
declare a structure� we need to describe the number and types of 	elds in the form of a template�
as well as declare variables of that type� We illustrate with an example� a program that maintains
temperatures in both celsius and fahrenheit degrees� A variable� temp� is to be used to maintain
the equivalent temperatures in both celsius and fahrenheit� and thus requires two 	elds� both of
them integers� We will call one 	eld ftemp for fahrenheit temperature and the other ctemp for
celsius� The program� shown in Figure ����� reads a temperature to the ftemp 	eld of the variable�
temp� and uses a function� f to c�
� to convert the temperature from fahrenheit to celsius and
store it in the ctemp 	eld� In looking at this program� we see that the variable temp is declared

���

��� CHAPTER ��� STRUCTURES AND UNIONS

�� File� fctemp�c

Program reads temperature in fahrenheit� converts to celsius� and

maintains the equivalent values in a variable of structure type�

��

�include �stdio�h�

main�

� struct trecd �

float ftemp�

float ctemp�

� temp�

double f�to�c�double f
�

char c�

printf�����Temperatures � Degrees F and C����n�n�
�

printf��Enter temperature in degrees F � �
�

scanf���f��"temp�ftemp
�

temp�ctemp � f�to�c�temp�ftemp
�

printf��Temp in degrees F � ���	f�n�� temp�ftemp
�

printf��Temp in degrees C � ���	f�n�� temp�ctemp
�

�

�� This routine converts degrees F to degrees C ��

double f�to�c�double f

�

return��f � ���

 � ��
 � ��

�

�

Figure ����� Code for Simple Structure Program

����� STRUCTURES ���

temp

ftemp ctemp

Figure ����� Structure Variable temp in Memory

to be of structure type with the declaration statement�

struct trecd �

float ftemp�

float ctemp�

� temp�

This statement consists of the keyword� struct� followed by the description of the template for
the structure and then the variable name� The description of the template� in our example�
consists of a tag �or name	� trecd which names the template� followed by a bracketed list of
eld
declarations� The tag is optional� Within its scope� the tag can be used to refer to this structure
template without specifying the
elds again� explicitly� The bracketed list declares the
elds of
the structure giving a type followed by an identi
er� Our example shows that this structure has
two
elds� ftemp and ctemp� both of type float�

Figure ���� shows the memory cells allocated to the variable temp� Two float cells have been
allocated� one referred to as the ftemp
eld and the other as ctemp� The entire block of memory
is referred to by the variable name� temp� Otherwise� structure declarations are the same as any
other variable declaration and have the same scope as would an int declaration� for example�

To access the information in a structure� the variable name �in our case� temp	 is quali�ed using
the �dot� operator ��	 followed by the
eld name�

temp�ftemp

temp�ctemp

In general� the syntax for accessing a member of a structure is�

�variable identi�er���member identi�er�

In a program� members of a structure variable may be used just like other variables� In the
function main�� above� the argument to scanf�� is �temp�ftemp which is the address of the
oat
cell� temp�ftemp� �Precedence of the dot operator is higher than that of the address operator
so no parentheses are needed in this case	� The numeric value read by scanf�� will be stored
where the argument points � it will be stored in the cell temp�ftemp� The rest of the program is
straight forward� We have passed a double value to the function f to c and get a double result
which we assign to temp�ctemp and print the results�

Sample Session�

			Temperatures
 Degrees F and C			

��� CHAPTER ��� STRUCTURES AND UNIONS

Enter temperature in degrees F � ��

Temp in degrees F �
���

Temp is degrees C � ����

As we have said� the members of a structure variable can be of di�erent types� For example�

struct �

char name�����

int id�number�

� student�

which de
nes a structure variable� student� with two
elds� a string of characters called name�
and an integer called id number� Enough contiguous memory is allocated for the variable student
to accommodate both
elds� We can
nd the amount of storage allocated for a structure by using
the sizeof operator� �Be aware that the total size of a structure variable may not be equal to
the sum of the sizes for the
elds because of rules about memory alignment which may vary from
computer to computer� For example� memory allocation for an integer may have to start at a
machine word boundary such as an even byte address� Such alignment requirements may make
the size of a structure variable somewhat greater than the sum of the
eld sizes	�

The identi
ers used for the
eld names apply only to variables of that structure type� Di�erent
structure types may have
elds speci
ed by the same identi
er� but these are distinct cells� uniquely
accessed by an appropriate structure variable name quali
ed by a
eld names� In addition� only

eld names declared in the structure template can be used to qualify a variable name� And
nally�
a
eld name may not be used by itself � it must always qualify an appropriate structure variable�
Consider the following examples of structure variable declarations�

struct �

char f�name�����

char m�inits����

char l�name�����

int id�no�

int b�month�

int b�day�

int b�year�

� person� manager�

struct �

int id�no�

float cost�

float price�

� part�

Here we have declared two variables� person and manager� to be structures with seven
elds�
some integers� some strings� In this case� two separate instances of the template are allocated� so
person�id no and manager�id no are distinct storage cells� We have also de
ned a variable� part�
whose template also has a id no
eld name� But this is also a distinct storage location accessed by
part�id no� However� with these declarations� it is NOT legal to refer to the cost
eld of person
�person�cost	 or the

�
day of a part �part�b day	� Similarly� referring to f name or price is

����� STRUCTURES ���

not legal without a variable name of the appropriate type to be quali
ed� Here are some legal
examples of structure usage�

part�id�no � ���

part�cost � ������

if �strcmp�person�f�name� �Helen�� �� ��

printf��Last name is �s�n�� person�l�name��

printf��This is the cost �d�n��part�cost��

part�price � part�cost 	 ����

The only legal operations allowed on a structure variable are
nding the address of the memory
block using �� accessing its members� and copying or assigning it as a unit as long as the variables
are of an identical structure type� for example�

manager � person�

������ Using Structure Tags

As we said above� declaring a structure variable requires two things � describing the template for
the structure� and declaring variables of that structure type� It is also possible to perform these
two steps in separate statements in a program� That is declare just a structure template with a
tag without any variables declared� and later� declare variables of the structure type identi
ed by
the tag� For example� this declaration�

struct stdtype �

char name�����

int id�number�

��

speci
es a template with a tag for a structure type� stdtype� �Observe the semicolon after the
declaration for the declaration	� Such a declaration does NOT allocate memory� since no variables
are declared� it merely de
nes a template for variables declared later� Within the scope of the tag
declaration� we can then declare stdtype structure variables like�

struct stdtype x� y� z�

This declaration allocates memory for three variables� x� y and z� of type structure stdtype�
i�e�
tting the template de
ned earlier� Some additional examples of structure tag and variable
declarations are�

�	 named structure template� no variables declared 	�

struct date �

int month�

int day�

int year�

��

�	 named structure template and a variable declared 	�

��� CHAPTER ��� STRUCTURES AND UNIONS

struct stu�rec �

char name�����

char class�id����

int test����

int project�

int grade�

� student�

struct stu�rec ee�stu� me�stu�

struct date today� birth�day�

The main advantage of splitting the template de
nition from variable declaration is that the
template need be de
ned only once and may then be used to declare variables in many places� We
will see the utility of this below when we pass structures to function�

In general� then� a structure declaration has the following syntax�

struct ��tag identi�er�� f
�type speci�er� �identi�er��
�type speci�er� �identi�er��
� � �
g ��identi�er��� �identi�er�� � � ���

where the �tag identi�er� and variable identi
ers are optional� Once a template has been de
ned�
additional variables of the structure type may be declared by�

struct �tag identi�er� �identi�er��� �identi�er�� � � ��

The types of the
elds of the structure may be any valid C type� a scalar data type �int� float�
etc�	� an array� or even a structure� This means that nested structure types can also be declared�

struct inventory �

int item�no�

float cost�

float price�

struct date buy�date�

��

struct car�type�

struct inventory part�

struct date ship�date�

int shipment�

� car�

Here� the ship date
eld of the car type structure is itself a date structure �from above	 and
the part
eld is an inventory structure� with item no� cost� etc�
elds� including yet another
date structure within� The members for nested structures may be accessed with dot operators
applied successively from left to right �the grouping for the dot operator is from left to right	�
Thus�

����� STRUCTURES ���

car�ship�date�month � �� �	 Lvalue is �car�ship�date��month 	�

car�part�buy�date�month � ���

these assignments refer to the month
eld of the ship date
eld of the variable car and the month

eld of the buy date
eld of the part
eld of the variable� car� respectively�

Both the variables of structure type and the structure tags are frequently referred to as struc�
tures� Thus� we may refer to date as a structure� and we may say that the variable� today is a
structure� It is usually clear from the context whether a structure tag or a variable of structure
type is meant� However� for the most part� we will use the term structure for the templates them�
selves� i�e� tags� and� we will specify variables to be of structure type� Thus� date is a structure�
and today is a structure variable or a variable of structure type� i�e� of type� struct date�

As with other data types� structures can be initialized in declarations by specifying constant
values for the structure members within braces� The initializers for structure members are sepa�
rated by commas as for an array� For example� a struct inventory item can be declared�

struct inventory part � � ���� ������ ����� ��

which initializes member� part no to ���� member cost to ������ and member price to ������
As another example� a label item can be declared as�

struct name �

char f�name�����

char m�inits����

char l�name�����

��

struct address �

char street�����

char city�����

char state�����

int zip��

��

struct label �

struct name name�

struct address address�

��

struct label person � � ��Jones�� �John�� �Paul���

���� Dole Street�� �Honolulu�� �Hawaii�� ������ ��

The structure� label has two members� each of which is a structure� The
rst member� name�
has three members� and the second member� address� has four members� Initialization for each
member structure is nested appropriately�

������ Structures and Functions

Structure variables may be passed as arguments and returned from functions just like scalar
variables� Let us consider an example that reads and prints a data record for a part� The record

��� CHAPTER ��� STRUCTURES AND UNIONS

consists of the part number� its cost and retail price� �In a later section� we will see how an
inventory for a list of parts can be maintained	� The code to read and print a single part structure
is shown in Figure ����� Notice we have declared the structure template� inventory� at the head
of the source
le� This is called an external declaration and the scope is the entire
le after the
declaration� Since all the functions in the
le use this structure tag� the template must be visible
to each of them� The driver calls read part�� to read data into a structure and return it to be
assigned to the variable� item� Next� it calls print part�� passing item which merely prints the
values of the structure
elds� one at a time� The program is straightforward� A sample session is
shown below�

			Part Inventory Data			

Part Number� ����

Cost� ����

Price� ��

Part no� � ����� Cost � ������ Retailprice ������

External declarations of structure templates and prototypes facilitate consistent usage of tags
and functions� As a general practice� we will declare structure templates externally� usually at the
head of the source
le� Sometimes� external structure tag declarations will be placed in a separate
header
le� which is then made part of the source
le by an include directive�

From this example� we can see that using structures with functions is no di�erent than using
any scalar data type like int� However� let us consider what really happens when the program
runs� When the function read part�� is called� memory is allocated for all of its local variables�
including the struct inventory variable� part� As each data item is read� it is placed in the
corresponding
eld of part� accessed with the dot operator� The value of part is then returned
to main�� where it is assigned to the variable item� As would be the case for a scalar data type�
the value of the return expression is copied back to the calling function� Since this is a structure�
the entire structure �each of the
elds	 is copied� For our inventory structure� this isn�t too bad
� only two
oats and an integer� If the structure where much larger� maybe including nested
structures and arrays� many values would need to be copied�

Likewise with the call to print part��� Here� an inventory structure is passed to the function�
Recall that in C� all parameters are passed by value � the value of each argument expression is
copied from the calling function into the cell allocated for the parameter of the called function�
Again� for large structures� this may not be a very e�cient way to pass data to functions� In the
next section we see a way to remedy this problem�

������ Pointers to Structures

As we saw in the last section� passing and returning structures to functions may not be e�cient�
particularly if the structure is large� We can eliminate this excessive data movement by passing
pointers to the structures to the function� and access them indirectly through the pointers� Figure
���� shows a modi
ed version of our previous program which uses pointers instead of passing entire
structures�

The code is very similar to Figure ����� but we have changed the prototypes and functions to
work with pointers� The argument of read part�� is a pointer to the inventory structure� item

����� STRUCTURES ���

�	 File� part�c

This program reads and prints inventory data for a part�

	�

�include stdio�h!

struct inventory �

int part�no�

float cost�

float price�

��

struct inventory read�part�void��

void print�part�struct inventory part��

main��

� struct inventory item�

printf��			Part Inventory Data			�n�n���

item � read�part���

print�part�item��

�

�	 Prints data for a single part� 	�

void print�part�struct inventory part�

�

printf��Part no� � �d� Cost � ����f� Retail price � ����f�n��

part�part�no� part�cost� part�price��

�

�	 Reads data for a single part structure and returns the

structure�

	�

struct inventory read�part�void�

� int n�

float x�

struct inventory part�

printf��Part Number� ���

scanf���d�� �n��

part�part�no � n�

printf��Cost� ���

scanf���f�� �x��

part�cost � x�

printf��Price� ���

scanf���f�� �x��

part�price � x�

return part�

�

Figure ����� Code for Reading and Printing a Single Part

��� CHAPTER ��� STRUCTURES AND UNIONS

�	 File� part�c

This program reads and prints inventory data for a part�

	�

�include stdio�h!

struct inventory �

int part�no�

float cost�

float price�

��

void read�part�struct inventory 	 partptr��

void print�part�struct inventory 	 partptr��

main��

� struct inventory item�

printf��			Part Inventory Data			�n�n���

read�part��item��

print�part��item��

�

�	 Prints data for a single part pointed to by partptr� 	�

void print�part�struct inventory 	 partptr�

�

printf��Part no� � �d� Cost � ����f� Retail price � ����f�n��

�	 partptr��part�no� �	 partptr��cost� �	 partptr��price��

�

�	 Reads data for a single part into an object pointed to

by partptr�

	�

void read�part�struct inventory 	 partptr�

� int n�

float x�

struct inventory part�

printf��Part Number� ���

scanf���d�� �n��

�	 partptr��part�no � n�

printf��Cost� ���

scanf���f�� �x��

�	 partptr��cost � x�

printf��Price� ���

scanf���f�� �x��

�	 partptr��price � x�

�

Figure ����� Code for Reading and Printing a Part Using Pointers

����� STRUCTURES ���

declared in main��� The function accesses the object pointed to by partptr� and uses the dot
operator to access a member of that object� Since partptr points to an object of type struct

inventory� we dereference the pointer to access the members of the object�

�	partptr��part�no

�	partptr��cost

�	partptr��price

Similar changes have been made to print part��� Note� the parentheses are necessary here
because the � operator has higher precedence than the indirection operator� 	� We must
rst
dereference the pointer� and then select its appropriate member�

Since� for e�ciency� pointers to structures are often passed to functions� and� within those
functions� the members of the structures are accessed� the operation of dereferencing a structure
pointer and a selecting a member is very common in programs� Therefore� C provides a special
pointer operator� � �� �called arrow	 to access a member of a structure pointed to by a pointer
variable� The operator is a minus symbol�
� followed by a greater�than symbol� �� This operator
is exactly equivalent to a dereference operation followed by the � operator as shown below�

partptr��part no �� �	partptr��part no

partptr��cost �� �	partptr��cost

partptr��retail �� �	partptr��price

The left hand expressions are equivalent ways of writing expressions on the right hand side� e�g�
prtptr� �member accesses the member of an object pointed to by partptr� Our code for
read part�� could use the following alternative expressions�

partptr
!part�no � n�

partptr
!cost � x�

partptr
!price � x�

The general syntax for using the arrow operator is�

�variable identi�er� � ��member identi�er�

which is equivalent to�

�	 �variable identi�er�
��member identi�er�

We now consider an example using nested structures� The program reads and prints data for a
single label consisting of members that are themselves structures� The
rst member is a structure
for a name� the second is a structure for an address� This program is organized in several source
and header
les as shown in Figure ����� �We intend to use the functions in these
les for other
programs as well	�

The driver calls the function readlabel�� to read in the label data� and the function printlabel��
to print the label data� Like the previous example� in both function calls� we assume that a pointer
to a struct label variable is passed as an argument� In the functions� we will use the pointer
operator� � �� to access the members of the object pointed to by the pointer� The function
prototypes are shown in the header
le lblutil�h� The functions are shown in Figure ����

The formal parameter in the functions readlabel�� and printlabel�� are both a pointer�
called pptr� which points to an object of type struct label� Each function accesses the first

eld of the name
eld of the object pointed to by pptr as follows�

��� CHAPTER ��� STRUCTURES AND UNIONS

�	 File� lbl�h

This file contains structure tags for labels� Label has two members�

name and address� each of which is a structure type�

	�

struct name�recd �

char last�����

char first�����

char middle�����

��

struct addr�recd �

char street�����

char city�����

char state�����

long zip�

��

struct label �

struct name�recd name�

struct addr�recd address�

��

�	 File� lblutil�h 	�

void printlabel�struct label 	 personptr��

int readlabel�struct label 	 personptr��

�	 File� lbl�c

Other Source Files� lblutil�c

Header Files� lbl�h� lblutil�h

This program reads and prints data for one label�

	�

�include stdio�h!

�include �lbl�h�

�include �lblutil�h�

main��

� struct label person�

printf��			Label Data for a Person			�n�n���

readlabel��person��

printf���nLabel Data��n���

printlabel��person��

�

Figure ����� Driver and Header Files for Label Program

����� STRUCTURES ���

�	 File� lblutil�c 	�

�include stdio�h!

�include �lbl�h�

�include �lblutil�h�

�define FALSE �

�define TRUE �

�	 This routine prints the label data� 	�

void printlabel�struct label 	 pptr�

�

printf���n�s �s �s�n�s�n�s �s �ld�n��

pptr
!name�first�

pptr
!name�middle�

pptr
!name�last�

pptr
!address�street�

pptr
!address�city�

pptr
!address�state�

pptr
!address�zip��

�

�	 This routine reads the label data� 	�

int readlabel�struct label 	 pptr�

� int x�

printf��Enter Name First Middle Last!� EOF to quit� ���

x � scanf���s �s �s�	c��pptr
!name�first�

pptr
!name�middle�

pptr
!name�last��

if �x �� EOF�

return FALSE�

printf��Enter Street Address� ���

gets�pptr
!address�street��

printf��Enter City State Zip� ���

scanf���s �s �ld�	c��pptr
!address�city�

pptr
!address�state�

��pptr
!address�zip���

return TRUE�

�

Figure ����� Code for Label Utility Functions

��� CHAPTER ��� STRUCTURES AND UNIONS

pptr
!name�first

Remember� this is the same as�

�	pptr��name�first

which means pptr is
rst dereferenced� the name
eld of the dereferenced object is accessed next�
and
nally the first
eld of name is accessed �the dot operator groups from left to right	� Similarly�
other members of the object pointed to by pptr are accessed by�

pptr
!name�middle

pptr
!name�last

pptr
!address�street

pptr
!address�city

pptr
!address�state

pptr
!address�zip

All the above members� except zip� are strings� In readlabel��� scanf�� expects to be passed
pointers to objects to store the data read� Since all the string members are already pointers� we
need to use the address operator only when we pass the pointer to pptr
!address�zip� Notice�
we use the suppression conversion� �	c� to discard the newline character at the end of each line�
Thus� after the name is read� gets�� reads the street address correctly� The function returns
TRUE if a label is read successfully� and FALSE otherwise� i�e� when an EOF is entered by the
user for the name� indicating that no label data is available� The function printlabel�� could
have been passed the structure variable itself since it merely needs to print the values of the
members� however� as we discussed above� passing a pointer avoids the expense of copying the
entire structure� Here is a sample session�

			Label Data for a Person			

Enter Name First Middle Last!� EOF to quit� John Paul Jones

Enter Street Address� �� Dole Street

Enter City State Zip� Honolulu Hawaii 	
���

Label Data�

John Paul Jones

�� Dole Street

Honolulu Hawaii �����

���� Arrays of Structures

The inventory and the label program examples of the last section handle only a single record�
More realistically� a useful program may need to handle many such records� As in previous cases
where we needed to store a list of items� we can use an array as our data structure� In this case�
the elements of the array are structures of a speci
ed type� For example�

����� ARRAYS OF STRUCTURES ���

part no cost price

table����� ��� ����� �����
table����� � � �
table����� � � �
table����� � � �

Figure ����� A Table of Part Records

struct inventory �

int part�no�

float cost�

float price�

��

struct inventory table����

which de
nes an array with four elements� each of which is of type struct inventory� i�e� each
is an inventory structure�

We can think of such a data structure as a tabular representation of our data base of parts
inventory with each row representing a part� and each column representing information about that
part� i�e� the part no� cost� and price� as shown in Figure ����� This is very similar to a two
dimensional array� except that in an array� all data items must be of the same type� where an
array of structures consists of columns� each of which may be of a distinct data type� As with any
array� the array name used by itself in an expression is a pointer to the entire array of structures�
Therefore� the following are equivalent ways of accessing the elements of the array�

��table	 table���
�table � �	 table���
�table � �	 table���
�table � �	 table���

With this in mind� let us extend out address label program from Section ������ to read and
print a list of labels� The code is shown in Figure ���� and uses the same structures and functions
used in program lbl�c included in
les lbl�h and lblutil�c�

In the program� the reading of labels is still performed by readlabel��only now in a while loop�
The loop terminates when either MAX number of labels have been read or readlabel�� returns
FALSE at end of
le� In this case� a new label is not read� but the value of n is incremented anyway
by the "" operator� Thus� if the loop is terminated because of an end of
le� the incremented
value of n must be decremented to correctly indicate the number of entries in the array� Finally�
labels are printed using printlabel�� in a loop�

Sample Session�

			Labels
 Input�Output			

��� CHAPTER ��� STRUCTURES AND UNIONS

�	 File� labels�c

Other Source Files� lblutil�c

Header Files� lbl�h� lblutil�h

This program reads in a set of labels� and prints them out�

	�

�define MAX ���

�include stdio�h!

�include �lbl�h� �	 declarations for the structures 	�

�include �lblutil�h� �	 prototypes for routines in file lblutil�c 	�

main��

� struct label person�MAX��

int i� n�

printf��			Labels
 Input�Output			�n�n���

n � ��

�	 read the labels 	�

while �n MAX �� readlabel��person�n""���

�

if �n �� MAX�

printf��Labels full
 printing labels�n���

else

n� �	 EOF encountered for last value of n 	�

�	 print out the labels 	�

printf���nLabel Data��n���

for �i � �� i n� i""�

printlabel��person�i���

�

Figure ����� Driver for Address Label Program

����� ARRAYS OF STRUCTURES ���

Enter Name First Middle Last!� EOF to quit� John Paul Jones

Enter Street Address� �� Dole Street

Enter City State Zip� Honolulu Hawaii 	
���

Enter Name First Middle Last!� EOF to quit� David Charles Smith

Enter Street Address� �� University Ave

Enter City State Zip� Honolulu Hawaii 	
��

Enter Name First Middle Last!� EOF to quit� �D

Label Data�

John Paul Jones

�� Dole Street

Honolulu Hawaii �����

David Charles Smith

�� University Ave

Honolulu Hawaii �����

Next� let us revise the payroll program so that a payroll data record is stored in a structure
called payrecord� Let us also de
ne a type called payrecord for the structure data type that
houses a payroll data record�

typedef struct payrecord payrecord�

We may� thus� declare variables of type payrecord rather than struct payrecord� The name for
the structure tag and the de
ned data type can be the same as shown� The structure de
nitions
and typedef are placed in the
le payrec�h and shown in Figure �����

The program logic is simple enough � it reads input data� calculates payroll data� and prints
payroll data as before� In this implementation� we will also include calculation of tax withheld�
The result is that we have gross pay� net pay� and tax withheld as additional items in payroll data
records as seen in the structure de
nitions� The program also keeps track of totals for gross and
net pay disbursed as well as for taxes withheld� The totals are printed as a summary statement
for the payroll� Figure ����� shows the main driver�

The function readrecords�� reads the input data records into an array and returns the number
of records read� printrecords�� prints all payroll data records� and printsummary�� prints the
totals of gross pay and taxes withheld� Finally� we need calcrecords�� to calculate pay for each
of the records� These functions are shown in Figures ����� and ������

In the code� we use functions readname�� and printname�� to read and print an individual
name for each record� Finally� we must write calcrecords�� which calculates the pay for each
data record and the totals of gross pay and tax withheld� The tax is calculated on the following
basis�

If the total pay is ��� or less� the tax is ��!�

If the total is ���� or less� the tax is ��!�

If the total is over ����� the tax is ��!�

��� CHAPTER ��� STRUCTURES AND UNIONS

�	 File� payrec�h 	�

�	 This file contains structures and data type definitions needed for

the program in file payrec�c�

	�

struct namerecd �

char last�����

char first�����

char middle�����

��

struct payrecord �

int id�

struct namerecd name�

float hours�

float rate�

float regular�

float overtime�

float gross�

float tax�withheld�

float net�

��

typedef struct payrecord payrecord�

Figure ����� Data Structure De
nitions for Payroll Program

����� ARRAYS OF STRUCTURES ���

�	 File� payrec�c

Header Files� payrec�h

This program computes payroll and prints it� Each data record is

a structure� and the payroll is an array of structures� Tax is

withheld ��� if weekly pay is below ���� ��� if pay is below �����

and ��� otherwise� A summary report prints out the total gross

pay and tax withheld�

	�

�include stdio�h!

�include �payrec�h�

�define MAX ��

void printsummary�double gross� double tax��

int readrecords�payrecord payroll��� int lim��

void printrecords�payrecord payroll��� int n��

double calcrecords�payrecord payroll��� int n� double 	 taxptr��

main��

� int i� n � ��

payrecord payroll�MAX��

double gross� tax � ��

printf��			Payroll Program			�n�n���

n � readrecords�payroll� MAX��

gross � calcrecords�payroll� n� �tax��

printrecords�payroll� n��

printsummary�gross� tax��

�

Figure ������ Driver for Payroll Program

��� CHAPTER ��� STRUCTURES AND UNIONS

�	 File� payrec�c
 continued 	�

�	 Function prints total gross pay and total tax withheld� 	�

void printsummary�double gross� double tax�

�

printf���n			SUMMARY			�n�n���

printf��TOTAL GROSS PAY � #����f� TOTAL TAX WITHHELD � #����f�n��

gross� tax��

�

�	 Function reads payroll input data records until EOF or until lim

records have been read�

	�

int readrecords�payrecord payroll��� int lim�

� int i� n� x�

float z�

void readname�payrecord payroll��� int i��

for �i � �� i lim� i""� �

printf��Id Number�EOF� ���

x � scanf���d�	c�� �n��

if �x �� EOF� return i�

payroll�i��id � n�

readname�payroll� i��

printf��Hours Worked� ���

x � scanf���f�	c�� �z��

payroll�i��hours � z�

printf��Rate of Pay� ���

x � scanf���f�	c�� �z��

payroll�i��rate � z�

�

return i�

�

�	 Function reads a single name� 	�

void readname�payrecord payroll��� int i�

�

printf��Last Name� ���

gets�payroll�i��name�last��

printf��First Name� ���

gets�payroll�i��name�first��

printf��Middle Name� ���

gets�payroll�i��name�middle��

�

Figure ������ Code for Payroll Program Functions

����� ARRAYS OF STRUCTURES ���

�	 Prints a single name� 	�

void printname�payrecord payroll��� int i�

�

printf��Name� �s �s �s�n�� payroll�i��name�first�

payroll�i��name�middle�

payroll�i��name�last��

�

�	 Function prints n payroll records� 	�

void printrecords�payrecord payroll��� int n�

� int i� x�

float z�

void printname�payrecord payroll��� int i��

printf���n			PAYROLL REPORT			�n�n���

for �i � �� i n� i""� �

printf���nId Number� �d�n�� payroll�i��id��

printname�payroll� i��

printf��Hours Worked� ����f �� payroll�i��hours��

printf��Rate of Pay� ����f�n�� payroll�i��rate��

printf��PAY�n���

printf��Regular� ����f� Overtime � ����f� ��

payroll�i��regular� payroll�i��overtime��

printf��Gross � ����f� Net � ����f�n��

payroll�i��gross� payroll�i��net��

printf��TAX Withheld � ����f�n�� payroll�i��tax�withheld��

�

�

Figure ������ Code for Payroll Program Functions � continued

��� CHAPTER ��� STRUCTURES AND UNIONS

The function also keeps a cumulative sum of total gross pay and total tax withheld� Finally� it
returns total gross pay and indirectly returns the total tax withheld� The code is shown in Figure
������ Here is a sample interaction with the program�

			Payroll Program			

Id Number�EOF� ��

Last Name� Young

First Name� Cyrus

Middle Name� Lee

Hours Worked� ��

Rate of Pay� ��

Id Number�EOF� ��

Last Name� Jones

First Name� John

Middle Name� Paul

Hours Worked� ��

Rate of Pay� �
��

Id Number�EOF� �D

			PAYROLL REPORT			

Id Number� �

Name� Cyrus Lee Young

Hours Worked� ����� Rate of Pay� �����

PAY

Regular� ������� Overtime � ����� Gross � ������� Net � ��
���

TAX Withheld � �����

Id Number� ��

Name� John Paul Jones

Hours Worked� ����� Rate of Pay� �����

PAY

Regular� ������� Overtime � ��
���� Gross � ��
���� Net � ������

TAX Withheld � ������

			SUMMARY			

TOTAL GROSS PAY � # �������� TOTAL TAX WITHHELD � # ������

���� Sorting Arrays of Structures

We can make one more small improvement to our address label program� Often when we want
to print labels� we would like to print them in some sorted order� In this section we will write
a function to sort the array of label structures� As we saw in Chapter ��� an array is sorted
by some key� that is� for an array of structures� by a speci
c member of the structure� A list of

����� SORTING ARRAYS OF STRUCTURES ���

�	 File� payrec�c
 continued 	�

�	 This function computes regular and overtime pay� and the tax to be

withheld� Tax withheld is ��� of gross pay if not over #���� ��� of

gross if not over #����� and ��� of gross otherwise� The function also

cumulatively sums total gross pay and total tax withheld�

	�

double calcrecords�payrecord payroll��� int n� double 	 taxptr�

� int i�

double gross � ��

	taxptr � ��

for �i � �� i n� i""� �

if �payroll�i��hours � ��� �

payroll�i��regular � payroll�i��gross �

payroll�i��hours 	 payroll�i��rate�

payroll�i��overtime � ��

�

else �

payroll�i��regular � �� 	 payroll�i��rate�

payroll�i��overtime � �payroll�i��hours
 ��� 	 ��� 	

payroll�i��rate�

�

payroll�i��gross � payroll�i��regular " payroll�i��overtime�

if �payroll�i��gross � ����

payroll�i��tax�withheld � ���� 	 payroll�i��gross�

else if �payroll�i��gross � �����

payroll�i��tax�withheld � ���� 	 payroll�i��gross�

else

payroll�i��tax�withheld � ���� 	 payroll�i��gross�

gross "� payroll�i��gross�

	taxptr "� payroll�i��tax�withheld�

payroll�i��net � payroll�i��gross
 payroll�i��tax�withheld�

�

return gross�

�

Figure ������ Code for calcrecords��

��� CHAPTER ��� STRUCTURES AND UNIONS

�	 File� lblutil�c
 continued 	�

�	 Sorts an array of labels person��� of size n� by last name

using an array of pointers plabel��� 	�

void sortlabels�struct label person��� struct label 	plabel��� int n�

� int i�

for �i � �� i n� i""�

plabel�i� � person " i�

sortptrs�plabel� n��

�

�	 Sorts pointers to labels by last name 	�

void sortptrs�struct label 	plabel��� int n�

� int j� maxpos� eff�size�

struct label 	ptemp�

for �eff�size � n� eff�size ! �� eff�size

� �

maxpos � ��

for �j � �� j eff�size� j""�

if �strcmp�plabel�j�
!name�last�

plabel�maxpos�
!name�last� ! ��

maxpos � j�

ptemp � plabel�maxpos��

plabel�maxpos� � plabel�eff�size
���

plabel�eff�size
�� � ptemp�

�

�

Figure ������ Utility Functions to Sort label Structures

labels may be sorted either by last name� or by zip code� or by street address� and so forth� Again�
considering the sorting algorithms in Chapter ��� we saw that sorting involves swapping data items
to place them in the correct order� However� like passing structures to functions� swapping entire
structures can be ine�cient if the structures are large� In addition� it is common that an array
of structures needs to be sorted by di�erent keys for di�erent purposes� To solve these problems�
we can use a technique we used in Chapter � for sorting two dimensional arrays � sorting the
data using an array of pointers� In this way� the swapping operations while sorting involve only
pointers� not entire records� and we can maintain several such pointer arrays� each sorted by a
di�erent key�

Figure ����� shows the code for the function sortlabels�� added to the
le lblutil�c which
sorts labels by last name using pointers� �The function assumes the label structure de
ned in
lbl�h� Section ������	� The function sortlabels�� is passed the array of labels� person�� and
an array of pointers to label structures� plabel��� This array should be declared in main�� as�

struct label 	plabel�MAX��

����� UNIONS ���

and passed to sortlabels�� in the call�

sortlabels�person�plabel�n��

after the person�� array is read� The function begins by initializing the elements of plabel��
to point to successive elements of the array of structures� person��� It then calls sortptrs�� to
sort the array by last name using these pointers using a selection sort algorithm� The only thing
to note is that for the comparison step of the sort� a structure element is accessed by�

plabel�j�
!name�last

which accesses the last
eld of the name
eld of the object pointed to by plabel�j�� In the swap
step of the sort algorithm� only the pointers are swapped�

We can now write a function� printsortedlabels��� to print the labels in sorted order using
the plabel�� array� modifying main�� appropriately� We leave this as an exercise�

The utility functions in the
le lblutil�c provide most of the tools needed to write a useful�
interactive address label data base program� In the next chapter� we discuss the remaining piece
�
le storage for the data base� and write the entire application�

���� Unions

In some applications� we might want to maintain information of one of two alternate forms� For
example� suppose� we wish to store information about a person� and the person may be identi
ed
either by name or by an identi
cation number� but never both at the same time� We could de
ne
a structure which has both an integer
eld and a string
eld� however� it seems wasteful to allocate
memory for both
elds� �This is particularly important if we are maintaining a very large list of
persons� such as payroll information for a large company	� In addition� we wish to use the same
member name to access identity the information for a person�

C provides a data structure which
ts our needs in this case called a union data type� A union
type variable can store objects of di�erent types at di�erent times� however� at any given moment
it stores an object of only one of the speci
ed types� The declaration of a union type must specify
all the possible di�erent types that may be stored in the variable� The form of such a declaration
is similar to declaring a structure template� For example� we can declare a union variable� person�
with two members� a string and an integer� If the name is entered� we will use person to store the
string� if an identi
cation number is entered� we will use person to store an integer� Here is the
union declaration�

union �

int id�

char name�����

� person�

This declaration di�ers from a structure in that� when memory is allocated for the variable person�
only enough memory is allocated to accommodate the largest of the speci
ed types� The memory
allocated for person will be large enough to store the larger of an integer or an �� character array�
Like structures� we can de
ne a tag for the union� so the union template may be later referenced
by name�

��� CHAPTER ��� STRUCTURES AND UNIONS

union human �

int id�

char name�����

� person�

Likewise� it is possible to declare just a tag� and later� use the tag to declare variables�

union human �

int id�

char name�����

��

union human person� 	ppers�

The syntax for declaring a union type is basically the same as for a structure�

union ��tag identi�er�� f
�type speci�er� �identi�er��
�type speci�er� �identi�er��
� � �
g ��identi�er��� �identi�er�� � � ���

The members of a union variable may be accessed in the same manner as are members of a
structure variable�

�union var���member�
�ptr to union var� � ��member�

Examples include�

ppers � �person�

person�id � ���

if �ppers
!id �� ���

���

printf��Id � �d�n�� person�id��

The type of data accessed is determined by the member name used to qualify the variable name� In
our example� person�idwill access an integer� while person�namewill access a string �a character
pointer	�

Since at any given time� the contents of the union variable may be one of several types �int
or string for person	� we must keep track what type of data is stored in order to access the
information correctly� Each time an object is stored in a union variable� it is the programmer�s
responsibility to keep track of the type stored� If an attempt is made to retrieve a type di�erent
from the type last stored� the result is sure to be strange and incorrect� The speci
c behavior is
implementation dependent�

To remember the type of object last stored in a union variable� it is common to store that

information in a variable� The best way is to declare a structure containing both the union variable
as a
eld and another
eld that indicates the type of data stored in the union� For example� we
can declare such a structure type and a structure array as follows�

����� UNIONS ���

�	 File� uniutil�c 	�

�include stdio�h!

�include ctype�h!

�include string�h!

�include �unidef�h�

�include �uniutil�h�

�	 Reads a list of items� Each item is either a string

or an integer�

	�

int readlist�struct record list��� int lim�

� int i�

char s�SIZE��

printf��Type Identifications For Persons on the List�n���

printf��Either a Name or an Id Number� EOF to quit�n���

for �i � �� i lim �� gets�s�� i""� �

if �isdigit�	s�� � �	 Is it a number$ 	�

list�i��ptype � INT� �	 If so� store type� 	�

list�i��person�id � atoi�s�� �	 and the ID number� 	�

�

else � �	 Otherwise� 	�

list�i��ptype � NAME� �	 Store string type� 	�

strcpy�list�i��person�name� s�� �	 and the NAME� 	�

�

�

return i� �	 Return no� of items� 	�

�

Figure ������ Reading Data into a Union Variable

�define NAME �

�define ID �

struct record �

int ptype�

union human person�

��

struct record list�MAX��

Now� as we read information about each element of list� if the information is numeric� we store it
as id� otherwise� we store it as name� We also store the type� ID or NAME in the member� ptype�

Figure ����� shows a function that reads identifying information about each person and stores
it in the union type member� Depending on the type of information read� it uses the appropriate
union
eld name� and stores the type in the ptype
eld of the structure� The loop body in the
function looks at the
rst character of the input string� s� If it is a digit� then the data is an id
number so INT is stored in ptype� and the string is converted to an integer �using atoi��	 and

��� CHAPTER ��� STRUCTURES AND UNIONS

�	 File� uniutil�c
 continued 	�

�	 Prints out the list of items� Each item is either a string

or an integer�

	�

void printlist�struct record list��� int n�

� int i�

printf��Identifications of People on the List�n���

printf��Either a Name or an ID Number�n���

for �i � �� i n� i""� �

if �list�i��ptype �� INT�

printf��Id number� �d�n�� list�i��person�id��

else

printf��Name� �s�n�� list�i��person�name��

�

�

Figure ������ Printing Information from a Union Variable

stored in the union id
eld� If the
rst character of s is not a digit� NAME is stored in ptype� and
the string is copied into the union name
eld�

It is now easy to write a function that prints the identifying information stored in the list� Since
each record includes the type of information stored in the union variable� it is easy to retrieve the
information correctly as shown in Figure ������

We now write a simple program that
rst reads a list of identifying information about a group
of people� and later prints the list� The identifying information may be either a name or an id
number� The structure and union declarations as well as constant de
nitions are included in the

le unidef�h shown together with the code in Figure ������

Sample Session�

			Union Variables
 Lists			

Type Identifications For Persons on the List

Either a Name or an Id Number� EOF to quit

John Kent

���

Jane Ching

���

Mary Smith

�D

Identifications of People on the List

Either a Name or an ID Number

Name� John Kent

Id number� ���

Name� Jane Ching

����� UNIONS ���

�	 File� unidef�h 	�

�define INT �

�define NAME �

�define MAX ��

�define SIZE ��

union human �

int id�

char name�SIZE��

��

struct record �

int ptype�

union human person�

��

�	 File� uniutil�h 	�

int readlist�struct record list��� int lim��

void printlist�struct record list��� int n��

�	 File� union�c

Other Source Files� uniutil�c

Header Files� unidef�h� uniutil�h

This program illustrates the use of union variables� It reads

a list of items identifying people either by name or by id

number� It then prints out the list� Each item is stored in

a union variable either as a name or as an integer� The list

is kept in an array of structure record� The structure record

has two members� the union variable and a variable that stores

the type of object stored in the union�

	�

�include stdio�h!

�include ctype�h!

�include string�h!

�include �unidef�h�

�include �uniutil�h�

main��

� struct record list�MAX��

int n�

printf��			Union Variables
 Lists			�n�n���

n � readlist�list� MAX��

printlist�list� n��

�

Figure ������ Header File and Driver Program for Union Example

��� CHAPTER ��� STRUCTURES AND UNIONS

Id number� ���

Name� Mary Smith

The above program can be written in many alternate ways� We have written the program to
illustrate the use of union variables�

���� Common Errors

Common errors occur when pointers are used to reference structures and their members� It is best
to use parentheses around dereferenced pointers� �	p��member� or to use the operator�
�� e�g�
p
�member� when referencing a member of a structure pointed to by a pointer�

���� Summary

In this chapter� we have described the last remaining data types provided by the C language�
structures and unions� A structure allows the grouping of various pieces of related information of
di�erent types into one variable� It is declared by de
ning a template specifying the type of each
data item stored in the structure and giving each member or �eld a name�

struct ��tag identi�er�� f
�type speci�er� �identi�er��
�type speci�er� �identi�er��
� � �
g ��identi�er��� �identi�er�� � � ���

Variables may be declared when the template is de
ned or� if a tag is used to name the template�
may be declared later using the tag�

struct �tag identi�er� �identi�er��� �identi�er�� � � ��

which allocates storage for all members� Fields of a structure variable may be accessed using the
�dot� ��	 operator�

�variable identi�er���member identi�er�

called qualifying the variable name� Such quali
ed structure variable expressions may be used like
the corresponding
eld type in a program� Structure variables may be passed to and returned
from functions� but it is more common to use pointers to structures to avoid excessive copying�
Members of a structure can be accessed with a pointer using the � � operator�

�variable identi�er� � ��member identi�er�

which is equivalent to�

�	 �variable identi�er�
��member identi�er�

���
� SUMMARY ���

We have illustrated the use of structures with various programming examples�
Finally� we have described the union data type� which is de
ned similar to structures� however�

has the semantics of only one of the member types being resident in such a variable at one time�
That is� a union allows several di�erent types of information to be stored in the same physical
space at di�erent times� For a union variable� storage is allocated only for the largest of the data
types which may reside in the variable�

Structures are a valuable tool for developing complex programs and data structures in an
e�cient and top down manner�

��� CHAPTER ��� STRUCTURES AND UNIONS

���� Exercises

�� Find and correct errors if any� What will be the output"

struct node �

int id�

int score�

�

�include stdio�h!

main��

� struct node 	px� x� y�

px � �x�

while �scanf���d �d�� px�id� px�score� %� EOF�

printf���d �d�n�� 	px�id� 	px�score��

�

�� De
ne a data structure� intflt� that will allow one to store either an integer or a
oat�
Read strings and convert them to either integers or
oats depending on whether there is a
fractional part present� Store the resulting values in an intflt type array� When the input
is terminated� print the stored values�

����� PROBLEMS ���

���	 Problems

�� Write the function printsortedlabels�� described in Section ���� and make the modi
�
cations to main�� to read a list of address labels and print them in sorted order by last
name�

�� De
ne a structure with the following members�

social security number

id number

name �last� first� middle�

exam score

Use the above structure for the data record of one student in a class of �� students maximum�
Write a menu�driven program that allows the commands� read data from an input
le into
an array of the above structure� print data on screen� save data into an output
le� sort the
data by a speci
ed primary key using pointers to the array� quit�

�� Modify Problem � to allow more than one exam up to a maximum of � exams� Use an array
of exam scores in the structure� Assume that the
rst three lines of the input
le include
course title and headings� The actual data starts with the fourth line�

�� Modify Problem � to compute and store a weighted average of the exam scores for each
student� Weighted average should be a member of the structure� Also allow for computation
of an average of any one or all the exams�

�� Modify Problem � to allow deleting one or more records� changing one or more records�
adding one or more records�

�� Modify Problem � so that it can read an input
le which may or may not contain a column
for the weighted average� Allow the user to output the data but specify which data
elds
are not to be output to a new
le�

�� Modify the above program to include scores for a number of projects up to a maximum of
��� Weighted average must now include exam as well as project scores� Allow a structure
member for a letter grade�

�� Modify the above program so it allows the user to perform the following functions� form
a class grade list for a new class� enter grades for a project or an exam� change grades for
a project or an exam� add or delete a student from a class list� calculate the average for a
project or an exam� calculate the weighted average for each student over the projects and
the exams� sort the data by a primary key� e�g� weighted average� exam�� proj�� etc�� sort
the data by a primary key and a secondary key� i�e� if two records have the same primary
key� then sort those records by a secondary key� plot a distribution of the weighted average
grades�

�� Write a program that keeps a membership list for a private club� The data
elds required
are�

��� CHAPTER ��� STRUCTURES AND UNIONS

name

spouse name if any

address� business� residence

telephone� business� residence

hobby interests

membership date

dues outstanding

other charges outstanding

The club has a limit of ��� members� Write a program that allows the club manager to�
maintain the club list and update it� send out a mailing list to all members with all data
about the club members� except for
nancial data� send out reminders to members about
the charges outstanding� post new charges and dues at regular intervals� post paid amounts
upon receipt�

��� Assume that the above club maintains a library of at most ��� books� Data for each book
consists of�

book number

title

author

co
authors

publisher

date published

subject

keywords

check out data�

name� address� phone

date checked out

data returned

charges� if any

Write a program to maintain the library including� search the library by book number�
author� title� subject� keywords� add new books� remove outdated books �all books older
than � years	� check out books� late charges at ���� per day if a book is out by more than
a month� write data to a
le for books overdue and charges�

��� Write a macro processor assuming that the macros do not have arguments� Use a structure
to keep a macro identi
er and its replacement string� Read an input
le which may have
macros� and create an output
le with macros replaced by replacement strings�

��� Write a macro processor� Assume that macros may have arguments� Use structures to keep
data about a macro�

��� Use a structure to represent a rational number� Write functions for rational number arith�
metic� Write a simple calculator program for rational numbers�

Chapter ��

Files and the Operating System

So far� our interaction with the Operating System of the computer has been limited to using
the compiler and shell to create executable
les from our programs and execute them� as well
as limited interaction with the File System to provide input data to our programs and store the
output of results� All of our
le I#O� either redirected standard input and output or direct using
library functions such as fscanf�� and fprintf��� has been with ASCII
les using the formatted
I#O utilities provided in C� In this chapter we look at an alternate method of doing I#O � block
I#O� where a binary image of a data structure can be stored or retrieved� We discuss the library
routines for performing block I#O and managing access to such
les� We then provide an example
program� a small data base system� which makes use of this facility�

Finally� we discuss other facilities provided by the C library for interacting with the shell
from within a program� such as executing a shell command and command line arguments for our
program�

���� Block Input
Output

The
le I#O functions discussed so far perform reading and writing of di�erent types of data using
formatted ASCII information stored in
les� Each I#O operation acts on a stream of character
bytes� and the appropriate conversions from characters to an internal representation is performed
by the library routines� While it is convenient to have data stored in
les in an ASCII form �such
data can be read or written by other programs and devices such as text editors� printers� etc�	� it
can be tedious and ine�cient to perform all that data conversion from ASCII to internal binary�
and back to ASCII	� particularly for structure type data with many members of di�erent types�

C provides additional
le I#O library functions which allow direct input or output of the
binary� internal representation of data to
les� This form of I#O is called block I�O� because data
is transferred in blocks directly from the
le to storage locations in memory with no conversion�
It should be noted that the
les that store such data are binary
les and cannot be read or
written directly by other operating system programs such as text editors or printer software� Only
a program which knows the organization of binary information within the
les can access them
correctly�

The library functions provided for this type of I#O are fwrite�� and fread��� The function
fwrite�� writes �i�e� appends	 a block of data of speci
ed size to a
le� Similarly� fread�� reads
a block of data of speci
ed size into a memory location� The prototypes for these functions are

���

��� CHAPTER ��� FILES AND THE OPERATING SYSTEM

de
ned in stdio�h and they may be described as�

fread Prototype� size t fread�void 	buffer�

size t size� size t no items�

FILE 	fp��

in� �stdio�h�

Returns� actual number of items read �may be less than no items� NULL if error or
end of
le�

Description� This function reads no items� each of size� size� bytes from stream� fp�
into buffer�

fwrite Prototype� int fwrite�const void 	buffer� int size�

int no objs� FILE 	stream��

in� �stdio�h�

Returns� the number of objects written if successful� less than no objs on error�

Description� This function writes �appends	 no objs objects of size� size� from
buffer to stream�

The function prototypes use the data type� size t� de
ned in stdio�h� which is of an unsigned
type� �This is the type actually returned by the sizeof operator� As stated above� fread��
returns the number of items read� When an end of
le is encountered before no items items are
read� the return value will be less than the number requested� so this may be used to indicate end of

le� Also note that the
rst parameter of the prototype for fwrite�� uses a const quali
er� This
ensures that no attempt is made to change the object pointed to by buffer within the function�
Many prototypes use const quali
ers in the parameter declarations to prevent unplanned changes�

To see how to use these functions� let us use them to copy a
le� The program logic is straight
forward� open the input and output
les� read each block of characters from the input
le into a
bu�er� write each block to the output
le� When a short size block is read� terminate the loop�
write the short block� and close the
les� The code is shown in Figure ����� We have declared a
bu�er of type signed char so it can store any arbitrary bytes� We have also declared a pointer�
ptr� with the quali
er const� since it is to remain unchanged� and initialized it to point to the
bu�er� buf� After the
les are opened� the while loop reads a block of ��� items of char size from
the input
le� and writes the block to the output
le� The loop is terminated when less than ���
items are read� indicating less than ��� items were remaining in the
le to be read� so the end of

le has been reached� The number of items read are assigned to n� At this point� the number of
data bytes in the bu�er is stored in n� so writing a block of ��� items would result in some garbage
output� �The data from the previous block is still present in the rest of the bu�er	� Instead� the

nal block of n items is written�

This program simply copies blocks of ��� bytes at a time from the input
le to the output
le�
These
les can be any type of
le� such as text
les� program
les� other ASCII
les� even binary

les� at least on Unix systems� However� on some non�Unix systems� the system routines may not
be able to read or write arbitrary binary information unless the mode strings passed to fopen��

explicitly indicates opening a
le for binary I#O by appending the character &b& to the string�
Thus� the mode strings must be �rb� or �wb� instead of �r� or �w�� A program using block I#O to
copy binary
les on an IBM PC using DOS operating system and a TURBO C compiler is shown
in Figure ����� The program is the same as before except for the mode strings used in function
calls to fopen���

����� BLOCK INPUT�OUTPUT ���

�� File� blkcopy�c

The program uses block I�O to copy a file�

��

�include �stdio�h�

main�	

 signed char buf��

��

const void �ptr � �void �	 buf�

FILE �input� �output�

size�t n�

printf�����File Copy � Block I�O����n�n�	�

printf��Input File� �	�

gets�buf	�

input � fopen�buf� �r�	�

if ��input	

printf��Unable to open input file�n�	�

exit�
	�

�

printf��Output File� �	�

gets�buf	�

output � fopen�buf� �w�	�

if ��output	

printf��Unable to open output file�n�	�

exit�
	�

�

while ��n � fread�ptr� sizeof�char	� �

� input		 �� �

	

fwrite�ptr� sizeof�char	� �

� output	�

fwrite�ptr� sizeof�char	� n� output	�

close�input	�

close�output	�

�

Figure ����� Copying a File Using Block I�O

��� CHAPTER ��� FILES AND THE OPERATING SYSTEM

�� File� bincopy�c

This program copies a binary file� Standard files are not allowed�

��

�include �stdio�h�

main�	

 int c�

char s�����

FILE �input� �output�

printf�����Binary File Copy � Character I�O����n�n�	�

printf��Input File� �	�

gets�s	�

input � fopen�s� �rb�	�

if ��input	

printf��Unable to open input file�n�	�

exit�
	�

�

printf��Output File� �	�

gets�s	�

output � fopen�s� �wb�	�

if ��output	

printf��Unable to open output file�n�	�

exit�
	�

�

while ��c � fgetc�input		 �� EOF	

fputc�c� output	�

close�input	�

close�output	�

�

Figure ���	� File Copy Program for Binary Files

����� TELL AND SEEK ��

���� Tell and Seek

The �le functions described in the last section� as well as the formatted �le I�O functions� read
and write data sequentially from the current position in the �le� This position in the stream is
one of the pieces of information stored in the FILE data structure which we get a pointer to when
the �le is opened� The standard library provides a function to determine the current position�
ftell�	� The position returned from ftell�	 is in terms of the number of bytes o
set from the
beginning of the �le� The library also provides a function which allows a program to move the
current position elsewhere in stream� fseek�	�

ftell Prototype� long ftell�FILE �stream	� in� �stdio�h�

Returns� the current �le pointer in stream measured in bytes from the beginning� If
there is an error� it returns ��L�

fseek Prototype� int fseek�FILE �stream� long offset�

int base	�

in� �stdio�h�

Returns� � if successful� nonzero on failure� �DOS returns zero even if pointer is not
repositioned��

Description� The function� fseek� sets the �le pointer for stream to a new position
that is offset bytes from the location speci�ed by base� For binary �les� offset is
the number of bytes to o
set� For text �les� offset must be zero or a value returned
by ftell�	� The value of base must be � to indicate the beginning of the �le� � for
the current position� or 	 for the end of �le� stdio�h de�nes three constants for the
base position� SEEK SET is �� SEEK CUR is �� and SEEK END is ��

Let us illustrate the use of the above functions in a simple program� Suppose we wish to write
a program that opens a �le and begins to read items from the �le� Suppose at some point� the
program requires the size of the �le� Then� after the size is determined� the program should resume
reading items from where it left o
�

The program will� read and print a number of strings from a �le� then� call a function
filesize�	 that returns the size of the �le� and �nally� resume reading and printing strings
from the �le� The program driver is shown in Figure �����

Let us now write filesize�	� which returns the size of the �le� fp� It determines the size of
the �le by moving the current position to the end of the �le and �nding the o
set of the pointer
in bytes� However� before the current position is moved to the end of the �le� the function must
save the position where it left o
� This saved position is restored by filesize�	 before it returns
to the calling program� The function is shown in Figure �����

The function �rst saves the current position in savepos� then moves the pointer to the end of
the �le� It uses
L for o
set since the o
set must be long� Next� the function uses ftell�	 to �nd
the o
set in bytes of the current position� which is now at the end of the �le� The value of end is�
therefore� the size of the �le� Finally� the saved position is restored and the �le size is returned�
Here is a sample session�

���File Seek � File Size���

File Name� payin�dat

��� CHAPTER ��� FILES AND THE OPERATING SYSTEM

�� File� seek�c

This program illustrates the use of fseek�	 to reposition

a file pointer� The program reads a specified number of strings

from a file and prints them� Then� the program calls on filesize�	

to print out the size of the file� After that the program resumes

reading and printing strings from the file�

��

�include �stdio�h�

�define MAX ��

long int filesize�FILE �fp	�

main�	

 int m� n �
�

FILE �fp�

char s�MAX��

printf�����File Seek � File Size����n�n�	�

printf��File Name� �	�

gets�s	�

fp � fopen�s� �r�	�

if ��fp	

exit�
	�

printf��Number of lines in first printing� �	�

scanf���d�� �m	�

while �fgets�s� MAX� fp		
 �� read strings ��

fputs�s� stdout	� �� print the strings ��

n���

if �n �� m	 �� if m string are printed� print file size ��

printf��Size of file � �ld�n�� filesize�fp		�

�

fclose�fp	�

�

Figure ����� Driver for Program Illustrating ftell�	 and fseek�	

����� A SMALL DATA BASE EXAMPLE ���

�� File� seek�c � continued ��

�� Returns the size of the file stream fp���

long int filesize�FILE �fp	

 long int savepos� end�

savepos � ftell�fp	� �� save the file pointer position ��

fseek�fp�
L� SEEK�END	� �� move to the end of file ��

end � ftell�fp	� �� find the file pointer position ��

fseek�fp� savepos� SEEK�SET	� �� return to the saved position ��

return end� �� return file size ��

�

Figure ����� Code for filesize�	

Number of lines in first printing� �
�� File� payin�dat ��

ID Last First Middle Hours Rate

��

Size of file � ���

� Jones Mike David �
 �

 Johnson Charles Ewing �
 ��

�� Smythe Marie Jeanne �� �

In the sample session� the �rst three lines of payin�dat are printed and then the size of the
�le is printed as 	�� bytes� Finally� the rest of the �le payin�dat is printed�

A few comments on the use of fseek�	�

For text �les� the o
set value passed to fseek�	 can be either � or a value returned by ftell�	�

When fseek�	 is used for binary �les� the o
set must be in terms of actual bytes�

���� A Small Data Base Example

A data base is a collection of a large set of data� We have seen several examples of data bases
in previous chapters� such as our payroll data and the list of address labels discussed in Chapter
�	� In our programs working with these data bases we have simply read data from �les� possibly
performed some calculations� and printed reports� However� to be a useful data base program� it
should also perform other management and maintenance operations on the data� Such operations
include editing the information stored in the data base to incorporate changes� saving the current
information in the data base� loading an existing data base� searching the data base for an item�
printing a report based on the data base� and so forth� Programs that manage data bases can
become quite elaborate� and such a program to manage a large and complex data base is called a
Data Base Management System �DBMS��

��� CHAPTER ��� FILES AND THE OPERATING SYSTEM

�� File� lbldb�h

This file contains structure tags for labels� Label has two

members� name and address� each of which is a structure type�

��

struct name�recd

char last�����

char first�����

char middle�����

��

struct addr�recd

char street�����

char city�����

char state�����

long zip�

��

struct label

struct name�recd name�

struct addr�recd address�

��

typedef struct label label�

Figure ����� Data Structure De�nitions for Label Data Base Program

In this section we will implement a rather small data base system that maintains our data base
for address labels� We will assume that there are separate lists of labels for di
erent groups of
people� therefore� it should be possible to save one list in a �le named by the user as well as to
load a list from any of these �les� The data in a list of labels is mostly �xed� however� it should
be possible to make additions and�or changes� It should also be possible to sort and search a list
of labels�

In our skeleton data base system� we will not implement sorting and searching operations �we
have already implemented a sort function for labels in Section �	���� instead� our purpose here is to
illustrate some of the other operations to see the overall structure of a DBMS� We will implement
operations to add new labels� print a list of labels� as well as loading and saving lists in �les�
The program driver will be menu driven� The user selects one of the items in the menu� and
the program carries out an appropriate task� The data structures we will use include the label

structure and a type� label� de�ned in the �le lbldb�h shown in Figure ����� The program driver
is shown in Figure �����

The list of labels is stored in the array� lbllist��� and n stores the actual number of labels�
initially zero� A new list is read by the function load�	 which returns the number of labels loaded�
A list can be edited by edit�	 which updates the value of n� Both edit�	 and load�	 must not
exceed the maximum size of the array� The functions print�	 and save�	 write n labels from the

����� A SMALL DATA BASE EXAMPLE ���

�� File� lbldb�c

Header Files� lbldb�h

This program initiates a data base for labels� It allows the

user to edit labels� i�e�� add new labels� save labels in a

file� load a previously saved file� and print labels�

��

�define MAX �

�include �stdio�h�

�include �ctype�h�

�include �lbldb�h� �� declarations for the structures ��

main�	

 char s�����

label lbllist�MAX��

int n �
�

printf�����Labels � Data Base����n�	�

printf���nCommand� E	dit� L	oad� P	rint� S	ave� Q	uit�n�	�

while �gets�s		

switch�toupper��s		

case !E!� n � edit�lbllist� n� MAX	� break�

case !L!� n � load�lbllist� MAX	� break�

case !P!� print�lbllist� n	� break�

case !S!� save�lbllist� n	� break�

case !Q!� exit�
	�

default� printf��Invalid command � retype�n�	�

�

printf���nCommand� E	dit� L	oad� P	rint� S	ave� Q	uit�n�	�

�

�

Figure ����� Driver for Label Data Base Program

��	 CHAPTER ��� FILES AND THE OPERATING SYSTEM

current list�
Figure ���
 shows a partial implementation of edit�	� allowing only the addition of new labels�

It does not implement operations for deletion or change of a label� The edit�	 function presents
a sub�menu and calls the appropriate function to perform the task selected by the user� We have
included program �stubs� for the functions del label�	 and change label�	 which are not yet
implemented� The add label�	 function calls on readlbl�	 to read one label� If a label is read
by readlbl�	 it returns TRUE� otherwise� it returns FALSE� The loop that reads labels terminates
when either the maximum limit is reached or readlbl�	 returns FALSE� Each time readlbl�	 is
called� n is updated� and the updated value of n is returned by add label�	� In turn� edit�	
returns this value of n to the main driver�

The function readlbl�	 �rst reads the last name� as shown in Figure ����� If the user enters
an empty string� no new label is read and the function returns FALSE� otherwise� the remaining
informations for a label is read and the function returns TRUE�

The print�	 function calls on printlabel�	 to print a single label data to the standard
output� The functions are shown in Figure �����

Finally� we are ready to write functions load�	 and save�	� We will use fread�	 and fwrite�	
to read or write a number of structure items directly from or to a binary �le� This method of
storing the data base is much more e�cient that reading ASCII data� �eld by �eld for each label�
The code is shown in Figure ������ The function load�	 opens an input �le� and uses fread�	
to read the maximum possible �lim� items of the size of a label from the input �le� The bu
er
pointer passed to fread�	 is the pointer to the array of labels� lbllist� Finally� load�	 closes
the input �le and returns n� the number of items read� Similarly� save�	 opens the output �le�
and saves n items of label size from the bu
er to the output �le� It then closes the output �le
and returns n� If it is unable to open the speci�ed output �le� it returns �� A sample session is
shown below�

���Labels � Data Base���

Command� E	dit� L	oad� P	rint� S	ave� Q	uit

l
Input File� lbl�db

Command� E	dit� L	oad� P	rint� S	ave� Q	uit

p

Label Data�

James Edward Jones

�� Dole St

Honolulu Hi "#���

Jane Mary Darcy

�� University Ave

Honolulu Hi "#��#

Helen Gill Douglas

����� A SMALL DATA BASE EXAMPLE ���

�� File� lbldb�c � continued ��

�� Edits labels� adding labels has been implemented so far� ��

int edit�label lbllist��� int n� int lim	

 char s��
��

printf��A	dd� D	elete� C	hange�n�	�

gets�s	�

switch�toupper��s		

case !A!� n � add�label�lbllist� n� lim	�

break�

case !D!� del�label�	�

break�

case !C!� change�label�	�

break�

default� �

�

return n�

�

�� Adds new labels to lbllist�� which has n labels� The maximum

number of labels is lim�

��

int add�label�label lbllist��� int n� int lim	

while �n � lim �� readlbl��lbllist�n���		

�

if �n �� lim	

printf��Maximum number of labels reached�n�	�

else ��n� �� EOF encountered for last value of n ��

return n�

�

void del�label�void	

printf��Delete Label not yet implemented�n�	�

�

void change�label�void	

printf��Change Label not yet implemented�n�	�

�

Figure ���
� Partial Code for Editing the Data Base

��� CHAPTER ��� FILES AND THE OPERATING SYSTEM

�� File� lbldb�c � continued ��

�� Includes and defines included at the head of the file� ��

�define FALSE

�define TRUE �

�� This routine reads the label data until the name is a blank� ��

int readlbl�struct label � pptr	

 int x�

char s�����

printf��Enter Last Name� RETURN to quit� �	�

gets�s	�

if ���s	

return FALSE�

else strcpy�pptr��name�last� s	�

printf��Enter First and Middle Name� �	�

x � scanf���s �s��c��pptr��name�first� pptr��name�middle	�

printf��Enter Street Address� �	�

gets�pptr��address�street	�

printf��Enter City State Zip� �	�

scanf���s �s �ld��c��pptr��address�city� pptr��address�state�

��pptr��address�zip		�

return TRUE�

�

Figure ����� Code for readllbl�	

����� A SMALL DATA BASE EXAMPLE ���

�� File� lbldb�c � continued ��

�� Prints n labels stored in lbllist��� ��

void print�label lbllist��� int n	

 int i�

printf���nLabel Data��n�	�

for �i �
� i � n� i��	

printlabel��lbllist�i�	�

�

�� This routine prints the label data� ��

void printlabel�struct label � pptr	

printf���n�s �s �s�n�s�n�s �s �ld�n��

pptr��name�first�

pptr��name�middle�

pptr��name�last�

pptr��address�street�

pptr��address�city�

pptr��address�state�

pptr��address�zip	�

�

Figure ����� Code for print�	 and printlabel�	

��� CHAPTER ��� FILES AND THE OPERATING SYSTEM

�� File� lbldb�c � continued ��

�� Loads a maximum of lim labels from a file into lbllist���

Returns the number n of labels actually read�

��

int load�label lbllist��� int lim	

 char s�����

FILE �infp�

int n�

printf��Input File� �	�

gets�s	�

infp � fopen�s� �r�	�

if ��infp	

return
�

n � fread�lbllist� sizeof�label	� lim� infp	�

fclose�infp	�

return n�

�

�� Saves n labels from lbllist�� to a file� ��

int save�label lbllist��� int n	

 char s�����

FILE �outfp�

printf��Output File� �	�

gets�s	�

outfp � fopen�s� �w�	�

if ��outfp	

return
�

fwrite�lbllist� sizeof�label	� n� outfp	�

fclose�outfp	�

return n�

�

Figure ������ Code for load�	 and save

����� OPERATING SYSTEM INTERFACE ��

��� Kailani Ave

Kailua Hi "#���

Command� E	dit� L	oad� P	rint� S	ave� Q	uit

e
A	dd� D	elete� C	hange

a

Enter Last Name� RETURN to quit� Springer
Enter First and Middle Name� John Karl
Enter Street Address� Coconut Ave
Enter City State Zip� Honolulu Hi ��	��
Enter Last Name� RETURN to quit�

Command� E	dit� L	oad� P	rint� S	ave� Q	uit

s
Output File� lbl�db

Command� E	dit� L	oad� P	rint� S	ave� Q	uit

q

The session starts with the menu menu� We select the menu item Load to load a previously
saved list of labels in the �le� lbl�db� After this �le is loaded� we select Print to print the labels�
Next� we select Edit and Add to add one new label� Then we select Save to save the revised list to
the �le lbl�db� Finally� we select Quit to exit the program�

���� Operating System Interface

As stated at the beginning of the chapter� all of our programs so far have had minimal interaction
with the environment in which they are running� i�e� the operating system� and in particular the
shell� One area where we could make use of operating system support is in specifying �les to be
used in execution of the program� In our previous examples we have either redirected the input
or output when running the program �and read or written to the standard input or output in the
program code�� or prompted the user explicitly for the �le names once the program has begun
executing� However� this is not the only �nor most convenient� way to specify �les to a program�
It should also be possible to pass arguments to a program when it is executed� An executable
program is invoked by a command to the host operating system consisting of the name of the
program� However� the entire command may also include any arguments that are to be passed to
the program� For example� the C compiler does not prompt us for the �le names to be compiled�
instead we simply type the command�

cc filename�c

The entire command is called the command line and may include additional information to the
program such as options and �le names� The C compiler �and most� if not all� other commands�
is also simply a C program�

��� CHAPTER ��� FILES AND THE OPERATING SYSTEM

There must be a way this additional information can be passed to an executing program� There
is� The command line arguments are passed to the formal parameters of the function main�	� We
have always de�ned the function main�	 with no formal parameters� however� in reality it does
have such parameters� The formal parameters of main�	 are� an integer� argc� and an array of
pointers� argv��� The full prototype for main�	 is�

int main�int argc� char � argv��	�

Each word typed by the user on the command line is considered an argument �including the
program name�� The parameter argc receives the integer count of the number of arguments on
the command line� and each word of the line is stored in a string pointed to by the elements
of argv��� So� if the command line consists of just the program name� argc is � and argv�
�

points to a string containing the program name� If there are other arguments on the command
line� argv��� points to a string containing the �rst argument after the program name� argv���
to the next following one� and so forth� In addition� main�	 has an integer return value passing
information back to the environment speci�ed by the return or exit statement terminating
main�	� Recall� we have always used exit in the form�

exit�
	�

A common convention in Unix is that a program terminates with a zero return value if it terminates
normally� and with non�zero if it terminates abnormally�

Figure ����� shows a program that prints the values of argc and each of the strings pointed
to by the array argv��� The program then uses the �rst argument passed on the command line
as a �source� �le name� and the second as a �destination� �le name and copies the source �le to
the destination� The program returns zero to the environment to indicate normal termination�

Sample Session with a command line�

filecopy filecopy�c xyz

���Command Line Arguments � File Copy���

Number of arguments� argc � �

The arguments are the following strings

C�nBKnBOOKnCH"nFILECOPY�EXE
filecopy�c

xyz

The number of arguments in the command line is �� and each of the strings pointed to by
the array argv�� is then printed� The �rst argument is the complete path for the program name
as interpreted by the host environment� The program then opens the �les and copies the �le
filecopy�c to xyz�

In addition to receiving information from the operating system� a program can also call on the
shell to execute commands available in the host environment� This is very simple to do with C
using the library function system�	� Its prototype is�

int system�const char �cmmdstr	�

����� OPERATING SYSTEM INTERFACE ���

�� File� filecopy�c

This program shows the use of command line arguments� argc is the number

of words in the command line� The first word is the program name� the next

is the first argument� and so on� The program copies one file to another�

The command line to copy file� to file� is�

filecopy file� file�

��

�include �stdio�h�

main�int argc� char �argv��	

 int i� c�

FILE �fin� �fout�

printf�����Command Line Arguments � File Copy����n�n�	�

printf��Number of arguments� argc � �d�n�� argc	�

printf��The arguments are the following strings�n�	�

�� argv�
� is the program name� ��

�� argv��� is the first argument after the program name� etc� ��

for �i �
� i � argc� i��	

printf���s�n�� argv�i�	�

fin � fopen�argv���� �r�	�

fout � fopen�argv���� �w�	�

if� �fin $$ �fout 	 exit��	�

while ��c � fgetc�fin		 �� EOF	

fputc�c� fout	�

exit�
	�

�

Figure ������ File Copy Program Using Command Line Arguments

�	� CHAPTER ��� FILES AND THE OPERATING SYSTEM

The function executes the command given by the string cmmdstr� it returns � if successful� and
returns �� upon failure� Examples include�

system��date�	�

system��time�	�

system��clear�	�

The �rst prints the current date� the second prints the current time maintained by the system�
and the third clears the screen�

���� Summary

In this chapter we have looked at alternate �le I�O functions� fread�	 and fwrite�	 which
perform block I�O� transferring blocks of data directly between memory and data �les� This form
of I�O is more e�cient than formatted I�O which converts information between its internal binary
representation and the corresponding ASCII representation of the information as strings for the
actual I�O� It should be remembered that �les used for block I�O have information stored in
binary and are therefore NOT readable by other programs which do not know the format of the
data�

We also saw library routines for controlling the �current position� in the �le stream for I�O�
namely ftell�	 and fseek�	� These operations can be performed on either text or binary �les�

Finally� we discussed the interactions a program can perform with its environment � the
operating system or shell� These include receiving information from the shell in the form of
command line arguments which are passed to main�	 as arguments� and the system�	 function
which can call on the environment to perform some command�

����� PROBLEMS �	�

���� Problems

�� Write a program that copies one �le to another with �le names supplied by the command
line�

	� Modify the program in Problem � in Chapter �	 to add load and store operations to the
student data base program using block I�O�

�� Modify the program in Problem � in Chapter �	 to add load and store operations to the
club data base program using block I�O�

�� Modify the program in Problem �� in Chapter �	 to add load and store operations to the
library data base program using block I�O�

�� Write a program that serves as a dictionary and thesaurus� A dictionary keeps a meaning
for each word� A meaning may be one or more lines of text� A thesaurus keeps a set of
synonyms for each word� Assume that the maximum number of entries in the dictionary
is ���� there are no more than two lines for a meaning� and there are no more than three
synonyms for each word� Allow the user to ask for synonyms� meanings� spell check a text
�le with repacement of words or add word entries to dictionary� Use �les to load and save
the dictionary�

�		 CHAPTER ��� FILES AND THE OPERATING SYSTEM

Chapter ��

Storage Class and Scope

In previous chapters we have discussed the declaration of variables within functions and described
how memory space is allocated by the compiler for these variables as a program executes� How
�and where� this memory is allocated� as well as how long it is allocated is determined by what
is called the storage class for the variable� In addition we have discussed where within the code
the variable name is �visible�� i�e� where it can be accessed by name� This is called the scope of
the variable� The variables we have seen so far have all been of storage class automatic� i�e� they
are allocated when the function is called� and deallocated when it returns� with local scope� i�e�
visible only within the body of the function� The C language provides several other storage classes
together with their scope for controlling memory allocation� In this chapter we will discuss in more
detail the concepts of memory allocation and present the other storage classes available in C� viz�
automatic� external� register� and static� We will also see that functions� as well as variables� have
storage class and scope� We next discuss dynamic allocation of memory� where a program can
determine how much additional memory it needs as it executes� Finally� we introduce function
pointers� i�e� pointer variables which can hold pointers to functions rather than data� We will see
how these pointers are created� stored� passed as parameters� and accessed�

���� Storage Classes

Every C variable has a storage class and a scope� The storage class determines the part of memory
where storage is allocated for an object and how long the storage allocation continues to exist� It
also determines the scope which speci�es the part of the program over which a variable name is
visible� i�e� the variable is accessible by name� The are four storage classes in C are automatic�
register� external� and static�

������ Automatic Variables

We have already discussed automatic variables� They are declared at the start of a block� Memory
is allocated automatically upon entry to a block and freed automatically upon exit from the block�
The scope of automatic variables is local to the block in which they are declared� including any
blocks nested within that block� For these reasons� they are also called local variables� No block
outside the de�ning block may have direct access to automatic variables� i�e� by name� Of course�
they may be accessed indirectly by other blocks and�or functions using pointers�

�	�

�	� CHAPTER ��� STORAGE CLASS AND SCOPE

�� File� reg�c ��

main�	

 register float a �
�

auto int bb � ��

auto char cc � !w!�

�� rest of the program ��

�

Figure ����� Code fragment illustrating register and auto declarations
o

Automatic variables may be speci�ed upon declaration to be of storage class auto� However�
it is not required� by default� storage class within a block is auto� Automatic variables declared
with initializers are initialized each time the block in which they are declared is entered�

������ Register Variables

Register variables are a special case of automatic variables� Automatic variables are allocated
storage in the memory of the computer� however� for most computers� accessing data in memory
is considerably slower than processing in the CPU� These computers often have small amounts of
storage within the CPU itself where data can be stored and accessed quickly� These storage cells
are called registers�

Normally� the compiler determines what data is to be stored in the registers of the CPU at what
times� However� the C language provides the storage class register so that the programmer can
�suggest� to the compiler that particular automatic variables should be allocated to CPU registers�
if possible� Thus� register variables provide a certain control over e�ciency of program execution�
Variables which are used repeatedly or whose access times are critical� may be declared to be of
storage class register�

Register variables behave in every other way just like automatic variables� They are allocated
storage upon entry to a block� and the storage is freed when the block is exited� The scope of
register variables is local to the block in which they are declared� Rules for initializations for
register variables are the same as for automatic variables�

Figure ���� shows a code fragment for a main�	 function that uses register as well as auto
storage class� The class speci�er simply precedes the type speci�er in the declaration� Here�
the variable� a� should be allocated to a CPU register by the compiler� while bb and cc will be
allocated storage in memory� Note� the use of the auto class speci�er is optional�

As stated above� the register class designation is merely a suggestion to the compiler� Not
all implementations will allocate storage in registers for these variables� depending on the number
of registers available for the particular computer� or the use of these registers by the compiler�
They may be treated just like automatic variables and provided storage in memory�

Finally� even the availability of register storage does not guarantee faster execution of the
program� For example� if too many register variables are declared� or there are not enough registers
available to store all of them� values in some registers would have to be moved to temporary storage

����� STORAGE CLASSES ���

in memory in order to clear those registers for other variables� Thus� much time may be wasted
in moving data back and forth between registers and memory locations� In addition� the use of
registers for variable storage may interfere with other uses of registers by the compiler� such as
storage of temporary values in expression evaluation� In the end� use of register variables could
actually result in slower execution� Register variables should only be used if you have a detailed
knowledge of the architecture and compiler for the computer you are using� It is best to check the
appropriate manuals if you should need to use register variables�

������ External Variables

All variables we have seen so far have had limited scope �the block in which they are declared�
and limited lifetimes �as for automatic variables�� However� in some applications it may be useful
to have data which is accessible from within any block and�or which remains in existence for the
entire execution of the program� Such variables are called global variables� and the C language
provides storage classes which can meet these requirements� namely� the external and static classes�

External variables may be declared outside any function block in a source code 	le the same
way any other variable is declared� by specifying its type and name� No storage class speci	er is
used
 the position of the declaration within the 	le indicates external storage class� Memory
for such variables is allocated when the program begins execution� and remains allocated until the
program terminates� Fo rmost C implementations� every byte of memory allocated for an external
variable is initialized to zero�

The scope of external variables is global� i�e� the entire source code in the 	le following the
declarations� All functions following the declaration may access the external variable by using its
name� However� if a local variable having the same name is declared within a function� references
to the name access the local variable cell� Figure ���� shows an example of external variables and
their scope� The comments in the code indicate which variable is accessed in each reference to the
name� The situation is shown graphically in Figure ���
� Executing the program produces the
following sample session�

���Scope of External Variables���

a� � �

a� � a� b� � ��

a� � �

a� � ��� b� � ��	�

�

a� � ��

External variables may be initialized in declarations just as automatic variables� however� the
initializers must be constant expressions� The initialization is done only once at compile time� i�e�
when memory is allocated for the variables variables�

In general� it is a good programming practice to avoid use of external variables as they destroy
the concept of a function as a �black box�� The black box concept is essential to the development
of a modular program with independent modules� With an external variable� any function in the
program can access and alter the variable� thus making debugging more di�cult as well� This is
not to say that external variables should never be used� There may be occasions when the use of
an external variable signi	cantly simpli	es the implementation of an algorithm� Su�ce it to say
that external variables should be used rarely and with caution�

��� CHAPTER ��� STORAGE CLASS AND SCOPE

�� File� glb	c

This program clarifies the scope of external variables	

��

include �stdio	h�

void next�void��

void next��void��

int a� � �� �� external variable� global scope ��

�� scope� main��� next��� next��� ��

main��

�

printf�����Scope of External Variables����n�n���

a� � �� �� external var ��

printf��a� � �d�n�� a��� �� a� � � ��

next���

printf��a� � �d�n�� a��� �� a� � � ��

next����

printf��a� � �d�n�� a��� �� a� � �� ��

�

int b� �
� �� external variable ��

�� scope� global to next� next� ��

�� main�� cannot access b� ��

void next�void�

� char a�� �� auto var� scope local to next�� ��

�� next�� cannot access external a� ��

a� � �a�� �� local auto var ��

b� � ��� �� external var ��

printf��a� � �c� b� � �d�n�� a�� b��� �� a� � a� b� � �� ��

�

void next��void�

� float b�� �� auto var� scope local to next��� ��

�� next��� cannot access external b� ��

b� � ��	�� �� auto var ��

a� � ��� �� external var ��

printf��a� � �d� b� � �f�n�� a�� b��� �� a� � �� ��

�� b� � ��	� ��

�

Figure ����� Example of external variable scope

����� STORAGE CLASSES ���

main�� next�� next���

a� b�

a� b�

Figure ���
� Storage allocation for global variables

������ Variable De�nition vs Declaration

Up until now� we have been using the term declaration rather loosely when referring to variables�
In this section� we will �tighten� the de	nition of this term� So far when we have �declared� a
variable� we have meant that we have told the compiler about the variable� i�e� its type and its
name� as well as allocated a memory cell for the variable �either locally or globally�� This latter
action of the compiler� allocation of storage� is more properly called the de�nition of the variable�
The stricter de	nition of declaration is simply to describe information �about� the variable�

So far� we have used declarations to declare variable names and types as well as to de�ne

memory for them� Most of the time these two actions occur at the same time� that is� most
declarations are de	nitions� however� this may not always be the case�

We have already seen an analogous case illustrating the di�erence between declaring and de�n�

ing with functions� The prototype statement for a function declares it� i�e� tells the compiler
�about� the function
 its name� return type� and number and type of its parameters� A similar
statement� the function header� followed by the body of the function� de�nes the function
 giving
the details of the steps to perform the function operation�

For automatic and register variables� there is no di�erence between de	nition and declaration�
The process of declaring an automatic or a register variable de	nes the variable name and allocates
appropriate memory� However� for external variables� these two operations may occur indepen�
dently� This is important because memory for a variable must be allocated only once� to ensure
that access to the variable always refers to the same cell� Thus� all variables must be de	ned once
and only once� If an external variable is to be used in a 	le other than the one in which it is de�ned�
a mechanism is needed to �connect� such a use with the uniquely de	ned external variable cell
allocated for it� This process of connecting the references of the same external variable in di�erent
	les� is called resolving the references�

As we saw in the previous section� external variables may be de	ned and declared with a
declaration statement outside any function� with no storage class speci	er� Such a declaration
allocates memory for the variable� A declaration statement may also be used to simply declare a
variable name with the extern storage class speci	er at the beginning of the declaration� Such
a declaration speci	es that the variable is de�ned elsewhere� i�e� memory for this variable is
allocated in another 	le� Thus� access to an external variable in a 	le other than the one in which

��� CHAPTER ��� STORAGE CLASS AND SCOPE

it is de�ned is possible if it is declared with the keyword extern� no new memory is allocated� Such
a declaration tells the compiler that the variable is de	ned elsewhere� and the code is compiled
with the external variable left unresolved� The reference to the external variable is resolved during
the linking process�

Here are some examples of declarations of external variables that are not de�nitions�

extern char stack��
��

extern int stkptr�

These declarations tell the compiler that the variables stack�� and stkptr are de	ned else�
where� usually in some other 	le� If the keyword extern were omitted� the variables would be
considered to be new ones and memory would be allocated for them� Remember� access to the
same external variable de	ned in another 	le is possible only if the keyword extern is used in the
declaration� Figure ���� shows an example of a source program that references the same external
variable in di�erent 	les� The 	les are assumed to be compiled separately and linked together to
create a load module� A sample run is shown below�

���Declaration vs Definition���

a� � �

a� � ��

������ An Example	 Lexical Scanner

To illustrate the use of external storage class variables� let us now consider an example in which
a good program design is facilitated by the use of an external variable� The task is to 	nd the
next token in an input stream of characters� A token is a useful chunk of characters in the input
stream� e�g� an operator� an identi	er� an integer� a �oating point number� etc� Tokens are also
called symbols� A function that 	nds the next token in an input stream and identi	es its type is
called a lexical scanner� For our example� we will write a simple lexical scanner� get token��� to
	nd the next token and its type until an end of 	le is reached�

We will assume that the only valid tokens in the input stream to be identi	ed by the program
are either integers or operators� Further� we assume that integers can have no more than 	ve digit
characters and the operator can have no more than a single character� The operators allowed are ��
�� �� �� If an integer type token exceeds the size limit� an oversize type is to be identi	ed� White
space characters between tokens are to be ignored� Any other character is an invalid character
which is to be identi	ed as an illegal type of token� Finally� the end of 	le is to be signaled by an
end of text type of token�

We assume that get token�� determines the next token in the input stream and its type�
We use a 	le symdef	h for all the de	nes� The function prototype for get token�� is included in
symtok	h� The function takes two arguments� a string for the token� and the maximum size of the
token� The function returns the type of the token� a symbolic constant with an integer value� The
	les symdef	h and symtok	h are shown in Figure ����� The logic for the driver is straightforward
and the implementation is in the 	le called symbol	c shown in Figure ����� A loop is executed as
long as there is a new token� and for each iteration� a token and its type are printed� When the
end of 	le is reached� the token type returned by get token�� is EOT� the loop is terminated and

����� STORAGE CLASSES ���

�� File� ext	c

This example shows reference to an external variable

in more than one file	 The program is organized in

three files	 The external variable a� is defined in ext	c�

and it is declared as extern in FILE�	C	

��

include �stdio	h�

void next�void��

void next��void��

int a� � �� �� definition of external a� ��

main��

�

printf�����Declaration vs Definition����n�n���

a� � ��

printf��a� � �d�n��a��� �� a� � � ��

next��� �� No change in external a� ��

next���� �� external a� changed to �� ��

printf��a� � �d�n�� a��� �� a� � �� ��

�

�� File� FILE�	C ��

int b� �
� �� definition of external b� ��

void next�void�

� char a�� �� auto a� defined ��

a� � �a�� �� only local a� is visible ��

b� � ��� �� external b� is accessed ��

�

�� File� FILE�	C ��

extern int a�� �� declaration of external a� ��

void next��void�

� float b�� �� auto b� defined ��

b� � ��	�� �� only local b� is visible ��

a� � ��� �� external a� is accessed ��

�

Figure ����� Example of the use of extern declarations

�
� CHAPTER ��� STORAGE CLASS AND SCOPE

�� File� symdef	h ��

�� Token Types ��

define INT
 �� integer ��

define OPR � �� operator ��

define ILG � �� illegal ��

define EOT � �� end of text ��

define OVR � �� oversize ��

define LIM � �� token size limit ��

�� File� symtok	h ��

int get�token�char � token� int lim��

Figure ����� Header 	les for Lexical Scanner

�� File� symbol	c

Other Source Files� symtok	c� symio	c

Header Files� symdef	h� symtok	h� symio	h

This program reads an input stream and determines the tokens in the

input stream	 The primary token types are integer and operator	 If

the integer type token exceeds a specified limit� the token is of

type oversize	 Leading white space is skipped over	 All other

characters are considered to be illegal type tokens	 Finally� EOF is

returned as a special token type to terminate the program	

��

include �stdio	h�

include �symdef	h�

include �symtok	h�

main��

� int type�

char symbol�LIM � ���

printf�����Tokens and Types����n�n���

printf��Types� integers�
�� operators���� illegal�����n���

printf�� end of text���� and oversize integers����n���

printf��Type input text� EOF to quit�n���

while ��type � get�token�symbol� LIM�� � EOT�

printf��Token � �!s Type � �!d�n�� symbol� type��

�

Figure ����� Driver for Lexical Scanner

����� STORAGE CLASSES �
�

the program ends� The size limit on a token is de	ned by LIM� The string� symbol� has a size of
LIM plus one to accommodate the terminating NULL character�

Here is our logic for get token��� The function scans the input stream� skipping over any
leading white space� The 	rst non�white character determines the type of token to build� For
example� if the 	rst non�white character is a digit character� the function builds a token of type
INT� The integer type token is built using a loop� As long as the input character is a digit character
and the token size limit is not exceeded� the input character is appended to the token string� If the
token size limit is exceeded� the type is identi	ed as OVR and the digit is discarded� The process of
discarding digits continues until a non�digit character is read� The token string is terminated with
a NULL� and the token type is returned� Otherwise� the building of an integer token is terminated
when a non�digit character is read� The non�digit character read must somehow be returned to the
input stream� so that it is available in building the next token� For example� if the next character is
an operator� �� that character must be used in building the next token� If this non�digit character
were discarded� it would be lost� Thus� the extra character that was read must be placed back
into the input stream to be available once again for building the next token�

We will assume that the desired I�O actions are performed using an �e�ective input stream��
We will write two functions� getchr�� and ungetchr�c� for I�O with the e�ective stream� The
function getchr�� correctly reads a character from the e�ective input stream� and ungetchr�c�

puts a character� c� back into the e�ective input stream� Assuming these functions� the algorithm
for building an integer type token is simple�

if �isdigit�c�� � �� if c is a digit� ��

type � INT� �� type is integer ��

while �isdigit�c�� � �� repeat as long as c is a digit� ��

if �i � lim� �� if the size limit is not exceeded� ��

s�i��� � c� �� append the digit char� ��

else type � OVR� �� otherwise� we have an oversize token ��

c � getchr��� �� get the next input char ��

�

s�i� � NULL� �� append the NULL ��

ungetchr�c�� �� put back the extra char read ��

�

The prototypes for the functions getchr�� and ungetchr�� are�

�� File� symio	h ��

int getchr�void��

void ungetchr�int c��

Assuming these functions are available in the source 	le� symio	c� we can implement the
function get token�� in Figure ����� Finally� we are ready to write the functions getchr�� and
ungetchr�� in a separate 	le� We will use a bu�er to simulate the e�ective input stream so that
when a character is to be returned to the input stream� it is placed in the bu�er� When a character
is to be read� the bu�er is examined 	rst� If there is a character in the bu�er� that character is
taken as the next input character� If the bu�er is empty� a new character is read from standard
input using getchar��� Thus� the one character bu�er serves as an adjunct to the input stream�
getchr�� gets the next character either from the bu�er or from the standard input� depending on

�
� CHAPTER ��� STORAGE CLASS AND SCOPE

�� File� symtok	c ��

include �stdio	h�

include �symdef	h�

include �symio	h�

include �ctype	h�

define TRUE �

define FALSE

�� Gets the next token s with a size limit of lim�

and returns the token type	

��

int get�token�char s��� int lim�

� int i� c� type�

i �
� �� initialize string index i to zero ��

c � getchr��� �� get the first character ��

while �isspace�c�� �� skip over white space ��

c � getchr���

if �isdigit�c�� � �� if c is a digit ��

type � INT� �� type is INT ��

while �isdigit�c�� � �� Build an INT token ��

if �i � lim� �� if size limit not exceeded� ��

s�i��� � c� �� add the next char to token� ��

else type � OVR� �� else� type is OVR ��

c � getchr��� �� get next char ��

�

ungetchr�c�� �� and put back the extra char read	 ��

�

else if �is�op�c�� � �� if c is an operator ��

s�i��� � c� �� build an operator token ��

type � OPR�

�

else if �c �� EOF� �� if end of file ��

type � EOT� �� type is EOT ��

else �

type � ILG� �� otherwise� we have an illegal char ��

s�i��� � c� �� a single char string is built ��

�

s�i� � NULL� �� terminate the token string ��

return�type�� �� return token type ��

�

�� Checks to see if c is an operator ��

int is�op�int c�

�

if �c �� ��� "" c �� ��� "" c �� ��� "" c �� ����

return�TRUE��

return�FALSE��

�

Fi �� � C d f t t k ��

����� STORAGE CLASSES �

�� File� symio	c ��

include �stdio	h�

include �symdef	h� �� needed for stdio	h ��

int c � NULL� �� buffer c initialized to zero ��

�� initialization unnecessary ��

�� Gets the next character either from the buffer if there is

one� otherwise gets a char from stdin	

��

int getchr�void�

� int ch�

if �c� � �� if c is not a null char� ��

ch � c� �� save it temporarily� and ��

c � NULL� �� reset c to NULL ��

return ch� �� return the saved value ��

�

else

return getchar��� �� else� return a char from stdin ��

�

�� Puts a char into the buffer for later use ��

void ungetchr�int cc�

�

c � cc� �� save the char cc in the buffer ��

�

Figure ����� Code for implementing the �e�ective input stream�

the state of the bu�er� while ungetchr�� saves a character into the bu�er for later use� E�ectively�
getchr�� gets a character from the input stream� and ungetchr�� returns a character to the input
stream� Both getchr�� and ungetchr�� must access the bu�er� However� get token�� should
not be concerned with the details of accessing the input stream� Such details should be hidden

from the rest of the program� Such information hiding is an important component of modular
program design� The above case obviously calls for it� thus� get token�� should not be involved
with the details of maintaining the bu�er�

To achieve this information hiding� we put getchr�� and ungetchr�� in a separate 	le together
with the external variable used as a one character bu�er which is accessible to both getchr�� and
ungetchr��� Figure ���� shows the implementation� The external variable for the character bu�er
used in the 	le symio	c makes it unnecessary for other functions to pass a bu�er variable as an
argument in function calls to getchr�� and ungetchr��� Separation of these functions and the
external variable they use into a distinct 	le makes for a modular program design� No other
function needs access to the external variable de	ned in the 	le symio	c�

A standard library function� ungetch��� is available which returns its argument to the keyboard

�
� CHAPTER ��� STORAGE CLASS AND SCOPE

bu�er� We could have also used ungetch�� and getchar�� to handle the above tasks of getting
and ungetting characters from the keyboard input stream�

A sample run of the program symbol	c is shown below�

���Tokens and Types���

Types� integers�
�� operators���� illegal����

end of text���� and oversize integers���

Type input text� EOF to quit

��� � �����	
 ��

Token � ��� Type �

Token � � Type � �

Token � ����� Type � �

Token � � Type � �

Token � �� Type �

��
����

Token � �� Type �

Token � � Type � �

Token � �� Type �

Token � � Type � �

Token � � Type �

x � �

Token � x Type � �

Token � � Type � �

Token � ! Type �

Token � � Type � �

�D

In the 	rst input line� we use blanks to separate the tokens� We also have an oversize token
in this case� In the second input line� no blanks are used to separate the tokens� Finally� the last
line includes many illegal characters� In each case� the longest possible token is built�

While we caution against the use of external variables as a rule� there are occasions when the
use of external variables results in better programs� The deciding factor should always be better
program design that provides modularity and �exibility� and that facilitates debugging�

�����
 Static Variables

As we have seen� external variables have global scope across the entire program �provided extern

declarations are used is 	les other than where the variable is de	ned�� and a lifetime over the the
entire program run� The storage class� static� similarly provides a lifetime over the entire program�
however� it provides a way to limit the scope of such variables� Static storage class is declared
with the keyword static as the class speci	er when the variable is de	ned� These variables are
automatically initialized to zero upon memory allocation just as external variables are� Static
storage class can be speci	ed for automatic as well as external variables�

Static automatic variables continue to exist even after the block in which they are de	ned
terminates� Thus� the value of a static variable in a function is retained between repeated function

����� STORAGE CLASSES �
�

calls to the same function� The scope of static automatic variables is identical to that of automatic
variables� i�e� it is local to the block in which it is de	ned� however� the storage allocated becomes
permanent for the duration of the program� Static variables may be initialized in their declarations�
however� the initializers must be constant expressions� and initialization is done only once at
compile time when memory is allocated for the static variable�

Figure ���� shows an example which sums integers� using static variables� Function sumit��

reads a new integer and keeps a cumulative sum of the previous value of the sum and the new
integer read in� The cumulative value of sum is kept in the static variable� sum� The driver� main��
calls sumit�� 	ve times to sum 	ve integers�

Sample Session�

���Static Variables���

Please enter � numbers to be summed

Enter a number� ��

The current total is ��

Enter a number� ��

The current total is ��

Enter a number� ��

The current total is #�

Enter a number� ��

The current total is ���

Enter a number� �	

The current total is ��

Program completed

While the static variable� sum� would be automatically initialized to zero� it is better to do so
explicitly� In any case� the initialization is performed only once at the time of memory allocation
by the compiler� The variable sum retains its value during program execution� Each time the
function sumit�� is called� sum is incremented by the next integer read�

Static storage class designation can also be applied to external variables� The only di�erence
is that static external variables can be accessed as external variables only in the 	le in which they
are de	ned� No other source 	le can access static external variables that are de	ned in another
	le�

�� File� xxx	c ��

static int count�

static char name�!��

main��

�

			 �� program body ��

�

Only the code in the 	le xxx	c can access the external variables count and name� Other 	les
cannot access them� even with extern declarations�

We have seen that external variables should be used with care� and access to them should
not be available indiscriminately� De	ning external variables to be static provides an additional

�
� CHAPTER ��� STORAGE CLASS AND SCOPE

�� File� static	c ��

�� Program uses a function to sum integers	 The function

uses a static variable to store the cumulative sum	

��

include �stdio	h�

define MAX �

void sumit�void��

main��

� int count�

printf�����Static Variables����n�n���

printf��Please enter � numbers to be summed�n���

for �count �
� count � MAX� count���

sumit���

printf��Program completed�n���

�

�� Function reads an integer� and keeps cumulative sum of

integer read and the previous value of a static variable sum	

��

void sumit�void�

� static int sum �
� �� sum is initialized to zero ��

�� at compile time	 ��

int num�

printf��Enter a number� ���

scanf���d��$num��

sum �� num�

printf��The current total is �d�n��sum��

�

Figure ����� An example of static variables

����� STORAGE CLASSES �
�

�� File� symio�	c ��

include �stdio	h�

include �symdef	h�

static int c � NULL� �� static external c ��

�� Gets the next character either from the buffer if there is

one� otherwise gets a char from stdin	

��

int getchr��

� int ch�

if �c� � �� if c is not a null char� ��

ch � c� �� save it temporarily� and ��

c � NULL� �� reset c to zero ��

return�ch�� �� Return the saved value ��

�

else

return�getchar���� �� else� return a char from stdin ��

�

�� Puts a char into the buffer for later use ��

void ungetchr�int cc�

�

c � cc� �� save the char cc in the buffer ��

�

Figure ������ Revised 	le symio	c using static variable

control on which functions can access them� For example� in the symbol	c example in the last
section� we created a 	le symio	c which contained an external variable� This external variable
should be accessible only to the functions in that 	le� However� there is no way to guarantee that
some other 	le may not access it by declaring it as extern� We can ensure that this will not
happen by declaring the variable as static as shown in Figure ������ The static variable c would
not be accessible to functions de	ned in any other 	le� thus preventing an unplanned use of it as
an external variable by the code in other 	les�

������ Storage Class for Functions

Like variables� functions in C have a storage class and scope� All functions in C are external by
default and are accessible to all source 	les� However� functions may be declared to be of static
class� in which case they are accessible only to functions in the 	le in which they are de	ned� not
to functions in other 	les� This is another way of hiding information� Information hiding makes
these static function names invisible to all other 	les� thus� these names may be used to de	ne

�
� CHAPTER ��� STORAGE CLASS AND SCOPE

other functions elsewhere�
Here is an example that uses static variables as well as a static function� The program assigns

bins to di�erent part numbers� The array� index� represents the bin number where the part
number is stored �it is easy to generalize the program to structures�� The program is organized in
two 	les� bins	c and binutil	c� The 	rst 	le� bins	c� contains the driver which reads in the part
numbers� and calls a function� getbin��� to assign a bin number to each part number� Finally�
the driver prints the bins and the corresponding part numbers using the function printbin���
Here are the prototypes�

�� File� binutil	h ��

void getbin�int bin��� int part� int lim��

void printbin�int bin��� int lim��

The function getbin�� needs three arguments� an array of bins� a part number� and the array
size limit� The bin number is just the array index� so getbin�� assigns one of the bins in the array
to the part number� and stores the part number in the array at the corresponding bin number
index� The function printbin�� needs the array of bins and its size as arguments� It prints
out each bin number index and the corresponding part number stored at that array index� The
driver is shown in Figure ������ The program loop reads a part number and if it is not zero� it
calls getbin�� to assign a bin number to the part number� If the part number is zero� the loop
terminates� and printbin�� prints bin numbers and corresponding part numbers�

Let us now implement getbin��� Unused array elements of bin should be initialized to some
invalid part number� say ��� so that printbin�� would be able to distinguish the valid elements
of the array� The 	rst time getbin�� is called� it calls initbin�� which initializes bin to ��� In
addition� getbin�� should assign the next available index to the part number� The functions are
shown in Figure ������ The function getbin�� uses a static variable� first� initialized to TRUE�
to determine if the function is being called for the 	rst time� When the function is called the 	rst
time� it initializes the array� bin and changes 	rst to FALSE� A second static variable� bin number

is used to remember the next available bin number between function calls� As a bin is assigned to
a part number� bin number is incremented� Since it is a static variable� its latest value is available
each time the function is called� The function printbin�� merely prints each array index and
the part number stored at that index� Initialization of the array bin is done by a static function
initbin��� This function is not required anywhere else� and so a static class is declared for it�
thus the details of array initialization are hidden from all other functions� A sample run of the
program is shown below�

���Bin Assignments to Parts���

Type part numbers� enter zero to quit

Enter part number� ����

Enter part number� ���

Enter part number� ���

Enter part number� ����

Enter part number� �

Bin number
 has part number ����

Bin number � has part number ���

����� STORAGE CLASSES �
�

�� File� bins	c

Other Source Files� binutil	c

Header Files� binutil	h

This program assigns a unique bin number to each part number	 The

user types the part numbers and the program assigns bin numbers

to the parts in sequence	 A zero part number terminates the program	

It is also assumed that the user types only new part numbers	 No

check is made to see if a part number is already assigned a bin	

��

include �stdio	h�

include �binutil	h� �� prototypes for getbin��� printbin�� ��

define MAX �

main��

� int bin�MAX�� part�no�

printf�����Bin Assignments to Parts����n�n���

printf��Type part numbers� enter zero to quit�n���

do �

printf��Enter part number� ���

scanf���d��$part�no��

if �part�no�

getbin�bin� part�no� MAX��

� while �part�no��

printbin�bin� MAX��

�

Figure ������ Driver for bins program

��� CHAPTER ��� STORAGE CLASS AND SCOPE

�� File� binutil	c ��

include �stdio	h�

include �binutil	h� �� prototypes for getbin��� printbin�� ��

define TRUE �

define FALSE

static void initbin�int bin��� int lim��

�� Initializes an array bin of size lim	 The function

is declared static since no other file needs it	

��

static void initbin�int bin��� int lim�

� int i�

for �i �
� i � lim� i���

bin�i� �
�

�

�� Assigns a bin element to a part number	 First time it

is called� it initializes the array bin��	

��

void getbin�int bin��� int part� int lim�

� static int first � TRUE�

static bin�number �
�

if �first� �

initbin�bin� lim��

first � FALSE�

�

if �bin�number � lim�

bin�bin�number��� � part�

else

printf��Error � out of Part Bins�n���

�

�� Prints out bin numbers and part numbers	 ��

void printbin�int bin��� int lim�

� int i�

for �i �
� i � lim $$ bin�i�� i���

printf��Bin number �d has part number �d�n��i�bin�i���

�

Figure ������ Code for bin utilities

����� STORAGE CLASSES ���

main� �

Top

�a�

main� � main� �

Top

�b� �c�

parameters

func�� �

Top

Figure ����
� Organization of the Stack

Bin number � has part number ���

Bin number � has part number ���

������ Stack vs Heap Allocation

We conclude our discussion of storage class and scope by brei�y describing how the memory of
the computer is organized for a running program� When a program is loaded into memory� it is
organized into three areas of memory� called segments� the text segment� stack segment� and heap

segment� The text segment �sometimes also called the code segment� is where the compiled code
of the program itself resides� This is the machine language representation of the program steps to
be carried out� including all functions making up the program� both user de	ned and system�

The remaining two areas of system memory is where storage may be allocated by the compiler
for data storage� The stack is where memory is allocated for automatic variables within functions�
A stack is a First In First Out �FIFO� storage device where new storage is allocated and deallocated
at only one �end�� called the Top of the stack� This can be seen in Figure ����
� When a program
begins executing in the function main��� space is allocated on the stack for all variables declared
within main��� as seen in Figure ����
�a�� If main�� calls a function� func���� additional storage
is allocated for the variables in func��� at the top of the stack as shown in Figure ����
�b�� Notice
that the parameters passed by main�� to func��� are also stored on the stack� If func��� were
to call any additional functions� storage would be allocated at the new Top of stack as seen in the
	gure� When func��� returns� storage for its local variables is deallocated� and the Top of the
stack returns to to position shown in Figure ����
�c�� If main�� were to call another function�
storage would be allocated for that function at the Top shown in the 	gure� As can be seen� the
memory allocated in the stack area is used and reused during program execution� It should be
clear that memory allocated in this area will contain garbage values left over from previous usage�

The heap segment provides more stable storage of data for a program� memory allocated in
the heap remains in existence for the duration of a program� Therefore� global variables �storage

��� CHAPTER ��� STORAGE CLASS AND SCOPE

class external�� and static variables are allocated on the heap� The memory allocated in the heap
area� if initialized to zero at program start� remains zero until the program makes use of it� Thus�
the heap area need not contain garbage�

���� Dynamic Memory Allocation

In the previous section we have described the the storage classes which determined how memory
for variables are allocated by the compiler� When a variable is de	ned in the source program�
the type of the variable determines how much memory the compiler allocates� When the program
executes� the variable consumes this amount of memory regardless of whether the program actually
uses the memory allocated� This is particularly true for arrays� However� in many problems� it is
not clear at the outset how much memory the program will actually need� Up to now� we have
declared arrays to be �large enough� to hold the maximum number of elements we expect our
application to handle� If too much memory is allocated and then not used� there is a waste of
memory� If not enough memory is allocated� the program is not able to handle the input data�

We can make our program more �exible if� during execution� it could allocate additional
memory when needed and free memory when not needed� Allocation of memory during execution
is called dynamic memory allocation� C provides library functions to allocate and free memory
dynamically during program execution� Dynamic memory is allocated on the heap by the system�

It is important to realize that dynamic memory allocation also has limits� If memory is
repeatedly allocated� eventually the system will run out of memory�

���
�� Library Functions for Dynamic Allocation

Two standard library functions are available for dynamic allocation� The function malloc�� allo�
cates memory dynamically� and the function free�� deallocates the memory previously allocated
by malloc��� When allocating memory� malloc�� returns a pointer which is just a byte address�
As such� it does not point to an object of a speci	c type� A pointer type that does not point to a
speci	c data type is said to point to void type� i�e� the pointer is of type void �� In order to use
the memory to access a particular type of object� the void pointer must be cast to an appropriate
pointer type� Here are the descriptions for malloc��� and free���

malloc Prototype� void � malloc�unsigned size�� in� �stdlib	h and alloc	h�

Returns� void pointer to the allocated block of memory if successful� NULL otherwise

Description� Returned pointer must be cast to an appropriate type�

free Prototype� void free�void � ptr�� in� �stdlib	h and alloc	h�

Returns� none

Description� ptr must be a pointer to previously allocated block of memory

If successful� malloc�� returns a pointer to the block of memory allocated� Otherwise� it
returns a NULL pointer� One must always check to see if the pointer returned is NULL� If malloc��
is successful� objects in dynamically allocated memory can be accessed indirectly by dereferencing
the pointer� appropriately cast to the type of pointer required�

����� DYNAMIC MEMORY ALLOCATION ��

The size of the memory to be allocated must be speci	ed� in bytes� as an argument to malloc���
Since the memory required for di�erent objects is implementation dependent� the best way to
specify the size is to use the sizeof operator� Recall that the sizeof operator returns the size�
in bytes� of the operand�

For example� if the program requires memory allocation for an integer� then the size argument
to malloc�� would be sizeof�int�� However� in order for the pointer to access an integer object�
the pointer returned by malloc�� must be cast to an int �� The code takes the following form�

int �ptr�

ptr � �int ��malloc�sizeof�int���

Now� if the pointer returned by malloc�� is not NULL� we can make use of it to access the memory
indirectly� For example�

if �ptr � NULL�

�ptr � ���

Or� simply�

if �ptr�

�ptr � ���

printf��Value stored is �d�n�� �ptr��

Later� memory allocated above may no longer be needed� In which case� it is important to free
the memory� Thus�

free��void �� ptr��

deallocates the previously allocated block of memory pointed to by ptr� Or� more simply� we
could write�

free�ptr��

ptr is 	rst converted to void � in accordance with the function prototype� and then the block of
memory pointed to by ptr is freed�

It is possible to allocate a block of memory for several elements of the same type by giving the
appropriate value as an argument� Suppose� we wish to allocate memory for ��� �oat numbers�
Then� if fptr is a float �� the following statement does the job�

fptr � �float �� malloc��

 � sizeof�float���

Pointer fptr points to the beginning of the memory block allocated� i�e� to the 	rst object of the
block of ��� �oat objects� fptr � � points to the next �oat object� and so on� In other words� we
have a pointer to an array of �oat type� The above approach can be used with data of any type
including structures� The example in Figure ����� allocates memory for a structure� reads data
into it� and then prints the data�

Sample Session�

���Dynamic Memory Allocation���

Student Name� James J� Hillary

Student ID� ���

Student Name� James J	 Hillary ID� ���

��� CHAPTER ��� STORAGE CLASS AND SCOPE

�� File� dynstruct	c

This program uses dynamic allocation of a block of memory

for an element of type stdrec structure	 It then stores data

for one student in the memory block� and prints out the data	

��

include �stdio	h�

include �stdlib	h�

struct stdrec �

char name��
��

int id�

��

main��

� struct stdrec � p�

printf�����Dynamic Memory Allocation����n�n���

p � �struct stdrec ��malloc��sizeof�struct stdrec����

if �p� �

printf��Student Name� ���

gets�p��name��

printf��Student ID� ���

scanf���d��c�� $p��id��

printf��Student Name� ���
s �� p��name��

printf��ID� ��d�n�� p��id��

�

else

printf��Out of Memory�n���

�

Figure ������ Example program using a dynamic structure

����� DYNAMIC MEMORY ALLOCATION ���

���
�
 Dynamic Arrays

Our next example allocates a block of memory dynamically for a number of elements of structure
type� It reads data into the elements and prints the data� Once the returned pointer is cast to an
appropriate type� the allocated memory block may be treated as an array of elements� with the
returned pointer a pointer to the array� The code is shown in Figure ������

Sample Session�

���Dynamic Arrays � Student Records���

Number of students� �

Student Name� James J� Hillary

Student ID� ���

Student Name� John Paul Jones

Student ID� ���

�D

Student Name� James J	 Hillary ID� ���

Student Name� John Paul Jones ID� ���

Dynamic memory allocation can also be performed by the library function calloc��� and the
allocated memory freed as before by free��� All bytes in memory allocated by calloc�� are
cleared to zero� whereas memory allocated by malloc�� is left unchanged� The description for
calloc�� is�

calloc Prototype� void � calloc�unsigned number� unsigned size�� in� �stdlib	h

and alloc	h�

Returns� void pointer to the allocated block of memory if successful� NULL otherwise

Description� Returned pointer must be cast to an appropriate type�

Example�

void � ptr� �� pointer to allocated block of memory ��

unsigned number� �� number of elements to allocate ��

unsigned size� �� size of memory to allocate in bytes ��

ptr � calloc�number� size��

We could have used calloc�� in the previous program example as follows�

p � �struct stdrec ��calloc�n� sizeof�struct stdrec���

We could have then used the fact that the allocated memory is set to zero to signal the end of the
number of elements in the e�ective array�

Normally� an array is de	ned with the range for each dimension speci	ed� and memory is
allocated at compile time� As we saw above� a single dimensional array of a desired size can be
e�ectively de	ned at run time� i�e� during execution� using dynamic allocation� It is equally easy
to de	ne multi�dimensional arrays during execution by using dynamic allocation�

We 	rst allocate an appropriate block of memory for the two dimensional array size desired�
Since array storage in C is in row major form� we then treat the block as a sequence of rows with

��� CHAPTER ��� STORAGE CLASS AND SCOPE

�� File� dynaray	c

This program shows dynamic allocation of a block of memory

for elements of the type struct stdrec	 This is equivalent

to allocating memory for an array of the specified size	

The program reads in the number of students� allocates memory

for that many structures� gets data for the students� and prints

out the data	

��

include �stdio	h�

include �stdlib	h�

struct stdrec �

char name��
��

int id�

��

void getdata�struct stdrec � p� int n��

void printdata�struct stdrec � p� int n��

main��

� int n�

struct stdrec � p�

printf�����Dynamic Arrays � Student Records����n�n���

printf��Number of students� ���

scanf���d��c�� $n��

p � �struct stdrec ��malloc�n � �sizeof�struct stdrec����

if �p� �

getdata�p� n��

printdata�p� n��

�

else

printf��Out of Memory�n���

�

����� DYNAMIC MEMORY ALLOCATION ���

�� Gets data for n students ��

void getdata�struct stdrec � p� int n�

� int id� i�

for �i �
� i � n� i��� �

printf��Student Name� ���

gets�p��name��

printf��Student ID� ���

scanf���d��c�� $p��id��

p���

�

�

�� Prints data for all students ��

void printdata�struct stdrec � p� int n�

� int i�

for �i �
� i � n� i��� �

printf��Student Name� ���
s �� p��name��

printf��ID� ��d�n�� p��id��

p���

�

�

Figure ������ Example code for a dynamic array of structures

��� CHAPTER ��� STORAGE CLASS AND SCOPE

�� File� dyn�aray	c

This program shows a dynamic specification of array size for

a two dimensional array	 Appropriate block of memory is then

allocated	 This block is then treated as a two dimensional

array of the size specified	

��

include �stdio	h�

include �stdlib	h�

void get�data�int � p� int rows� int cols��

void print�data�int � p� int rows� int cols��

main��

� int cols� rows�

int �p�

printf�����Dynamic Arrays � Two Dimensions����n�n���

printf��Type number of rows� ���

scanf���d�� $rows��

printf��Type number of columns� ���

scanf���d�� $cols��

p � �int ��malloc�rows � cols � sizeof�int���

get�data�p� rows� cols��

print�data�p� rows� cols��

�

the desired number of columns� The pointer to the allocated block is a pointer to the base type
of the array� therefore� it must be incremented to access the next column in a given row� It must
also be incremented to move from the last column of a row to the 	rst column of the next row�

Figure ����� shows an example that asks the user to specify the number of rows and columns
for a two dimensional array� It then dynamically allocates a block of memory to accommodate the
array� The block is then treated as a two dimensional array with the speci	ed rows and columns�
Data is read into the array� and then the array is printed� A sample output is shown below�

���Dynamic Arrays � Two Dimensions���

Type number of rows� �

Type number of columns� �

Type a row of integers with � columns� � � �

Type a row of integers with � columns� � � #

The array is�

� � �

� � #

����� DYNAMIC MEMORY ALLOCATION ���

�� Gets data for a two dimensional array pointed to by int �� p�

with specified rows and cols	

��

void get�data�int � p� int rows� int cols�

� int i� j�

for �i �
� i � rows� i��� �

printf��Type a row of integers with �d columns� �� cols��

for �j �
� j � cols� j��� �

scanf���d�� p��

p���

�

�

�

�� Prints data in an array pointed to by int �� p� with

specified rows and cols	

��

void print�data�int � p� int rows� int cols�

� int i� j�

printf��The array is��n���

for �i �
� i � rows� i��� �

for �j �
� j � cols� j��� �

printf����d�� �p��

p���

�

printf���n���

�

�

Figure ������ Dynamic allocation for �D arrays

��� CHAPTER ��� STORAGE CLASS AND SCOPE

���� Pointers to Functions

We saw earlier that functions have a storage class and scope� similar to variables� In C� it is
also possible to de	ne and use function pointers� i�e� pointer variables which point to functions�
Function pointers can be declared� assigned values and then used to access the functions they
point to� Function pointers are declared as follows�

int ��fp����

double ��fptr����

Here� fp is declared as a pointer to a function that returns int type� and fptr is a pointer to
a function that returns double� The interpretation is as follows for the 	rst declaration� the
dereferenced value of fp� i�e� ��fp� followed by �� indicates a function� which returns integer
type� The parentheses are essential in the declarations� The declaration without the parentheses�

int �fp���

declares a function fp that returns an integer pointer�
We can assign values to function pointer variables by making use of the fact that� in C� the

name of a function� used in an expression by itself� is a pointer to that function� For example� if
isquare�� and square�� are declared as follows�

int isquare�int n��

double square�double x��

the names of these functions� isquare and square� are pointers to those functions� We can assign
them to pointer variables�

fp � isquare�

fptr � square�

The functions can now be accessed� i�e� called� by dereferencing the function pointers�

m � ��fp��n�� �� calls isquare�� with n as argument ��

y � ��fptr��x�� �� calls square�� with x as argument ��

Function pointers can be passed as parameters in function calls and can be returned as function
values� Use of function pointers as parameters makes for �exible functions and programs� An
example will illustrate the approach� Suppose we wish to sum integers in a speci	ed range from x
to y� We can easily implement a function to do so�

�� File� sumutil	h ��

int sum�int�int x� int y��

�� File� sumutil	c ��

include �stdio	h�

include �sumutil	h�

�� Function sums integers from x to y	 ��

int sum�int�int x� int y�

� int i� cumsum �
�

����� POINTERS TO FUNCTIONS ���

for �i � x� i �� y� i���

cumsum �� i�

return cumsum�

�

The 	le sumutil	h contains prototypes for all the functions written in sumutil	c� Next� suppose
we wish to sum squares of integers from x to y� We must write another function to do so�

�� File� sumutil	h � continued ��

int sum�squares�int x� int y��

int isquare�int x��

�� File� sumutil	c � continued ��

�� Function sums squares of integers form x to y	 ��

int sum�squares�int x� int y�

� int i� cumsum �
�

for �i � x� i �� y� i���

cumsum �� isquare�i��

return cumsum�

�

�� Function returns the square of x	 ��

int isquare�int x�

�

return x � x�

�

Function isquare�� returns the integer square of i� The constructions of the two functions
sum int�� and sum squares�� are identical� In both cases� we cumulatively add either the integers
themselves or squares of the integers� A function iself��� which returns the value of the integer
argument� can be used in sum int�� to make the functions truly identical� Here is a modi	ed
function that uses iself���

�� File� sumutil	h � continued ��

int sum�integers�int x� int y��

int iself�int x��

�� File� sumutil	c � continued ��

�� Function sums integers from x to y	 ��

int sum�integers�int x� int y�

� int i� cumsum �
�

for �i � x� i �� y� i���

cumsum �� iself�i��

return cumsum�

��� CHAPTER ��� STORAGE CLASS AND SCOPE

�

�� Function returns the argument x	 ��

int iself�int x�

�

return x�

�

The two sum functions� sum integers�� and sum squares��� are now identical except for the
functions used in the cumulative sum expressions� In one case� we use iself��� in the other case�
isquare��� It is clear that a single more �exible generic sum function can be written by passing
a function pointer� fp� as an argument with a value pointing to the appropriate function to use�
The cumulative sum expression would then take the form�

cumsum �� ��fp��i��

Here is the implementation�

�� File� sumutil	h � continued ��

int sum�gen�int ��fp���� int x� int y��

�� File� sumutil	c � continued ��

�� Function sums values of �fp applied to integers from x to y	 ��

int sum�gen�int ��fp���� int x� int y�

� int i� cumsum �
�

for �i � x� i �� y� i���

cumsum �� ��fp��i��

return cumsum�

�

Finally� we can improve the generic sum function by using a pointer to a function that updates
the integer using a speci	ed step size�

�� File� sumutil	h � continued ��

int sum�int ��fp���� int x� int ��up���� int step� int y��

�� File� sumutil	c � continued ��

�� Function returns the sum of function �fp applied

to integers from x to y� incremented by �up in step size	

��

int sum�int ��fp���� int x� int ��up���� int step� int y�

� int i� cumsum �
�

for �i � x� i �� y� i � ��up��i� step��

cumsum �� ��fp��i��

return cumsum�

�

����� POINTERS TO FUNCTIONS ��

The function pointed to by ��up� takes two arguments� an integer to be updated and the step size�
The generic function sum�� can now be used to sum ��fp��i� applied to integers i� which are
updated by ��up��i� step�� The pointer variable� fp can point to any function that processes
an integer and returns an integer� Similarly� up can point to any function that returns an updated
integer value�

Let us now write a program that reads starting and ending integers as well as step size until
EOF� For each set of data read� the program 	rst computes and prints the sum of integers using
sum int� and sum of squares using sum squares��� These two sums are in steps of one� since that
is how the functions are written� Next� the program uses the above generic sum function sum��

to compute sums of integers and squares in speci	ed step sizes� Figure ����� shows the program�
The update function used is iincr��� which merely returns x plus the step size� The program
source 	les� sums	c and sumutil	c� are compiled separately and linked together� A sample run
of the program is shown below�

Sample Session�

���Function Pointers � Sums of Integer Function Values���

Type starting� ending limits� and step size� EOF to quit

� � �

Sum of integers from � to � in steps of � � ��

Sum of squares from � to � in steps of � � ���

Sum of integers from � to � in steps of � is ��

Sum of squares from � to � in steps of � is ���

� � �

Sum of integers from � to � in steps of � � ��

Sum of squares from � to � in steps of � � ���

Sum of integers from � to � in steps of � is ��

Sum of squares from � to � in steps of � is !�

� � �

Sum of integers from � to � in steps of � � ��

Sum of squares from � to � in steps of � � ���

Sum of integers from � to � in steps of � is �

Sum of squares from � to � in steps of � is ��

�D

For each set of input data� the output 	rst shows sums of integers and squares in steps of one�
and then in speci	ed steps�

������ Function Pointers as Returned Values

It is also possible for functions to return a function pointer as a value� This ability increases
the �exibility of programs� We will use a simple example to implement a function that returns
a function pointer� The example is merely illustrative� and it would be easy to write a program
to perform the same task without the use of a function pointer� Let us de	ne a type� which is a
pointer to a function that returns an integer�

typedef int ��PFI����

��� CHAPTER ��� STORAGE CLASS AND SCOPE

�� File� sums	c

Other Source Files� sumutil	c

Header Files� sumutil	h

This program illustrates the use of function pointers to define a

single function sum�� that sums powers of integers between specified

limits	 The function is then applied to sum integers and squares	

Individual functions to sum integers and squares are also implemented	

The results are printed out for both approaches	

��

include �stdio	h�

include �sumutil	h�

main��

� int x� y� step� isquare��� iself��� iincr���

printf�����Function Pointers � Sums of Function Values����n�n���

printf��Type starting� ending limits� and step size� EOF to quit�n���

while �scanf���d �d �d�� $x� $y� $step� � EOF� �

printf��Sum of integers from �d to �d in steps of � � �d�n��

x� y� sum�int�x� y���

printf��Sum of squares from �d to �d in steps of � � �d�n��

x� y� sum�squares�x� y���

printf��Sum of integers from �d to �d in steps of �d is �d�n��

x� y� step� sum�iself� x� iincr� step� y���

printf��Sum of squares from �d to �d in steps of �d is �d�n��

x� y� step� sum�isquare� x� iincr� step� y���

�

�

�� File� sumutil	h � continued ��

int iincr�int x� int step��

�� File� sumutil	c � continued ��

�� Increments x by size of step	 ��

int iincr�int x� int step�

�

return x � step�

�

Figure ������ Program illustrating function pointers

����� SUMMARY ���

We can now use PFI as a data type in declaring variables� parameters� and returned values�
Our example program repeatedly reads an integer until EOF� If an integer is odd� the program

computes its cube� otherwise� the program computes its square� For each integer� we call a function
evenodd�� which returns a function pointer either to icube�� or to isquare�� depending on
whether the integer is odd or even� The function pointer returned by evenodd�� and the integer
itself are both passed to a function process��� which applies the dereferenced function pointer to
the integer� The result is then printed� Figure ����� shows the program driver� For each integer�
the program calls evenodd�� to get a returned function pointer which is assigned to fptr� Then� it
calls process�� to apply ��fptr� to x� The result is then printed� Let us now write the function
evenodd�� that takes an integer as an argument� If the argument is odd� the function returns
a pointer to icube��� otherwise� it returns a pointer to isquare��� The function evenodd���
together with functions process�� and icube�� are also shown in Figure ������

When the program 	les fptr	c and sumutil	c are compiled and linked� the sample session is�

���Function Pointers � Squares and Cubes���

Type integers� EOF to quit

�

Integer � �� power � or � � ��

�

Integer � �� power � or � � ���

�

Integer � �� power � or � � �#

�D

Using function pointers as parameters we can write generic functions� By returning function
pointers� the called functions can select the functions that must be used in di�erent circumstances�
Function pointers help make a program compact as well as intelligent�

���� Summary

In this chapter we have discussed the concepts of storage class and scope for variables in a C
program� The language provides four storage classes� automatic� register� external� and static�
By default� variables declared in functions are of class auto� meaning that memory is allocated
for them when the block is entered and automatically deallocated when the block is exited� Such
variables may be referenced by name only within the block in which they are declared� i�e� they
have local scope� Register storage class� declared with the class speci	er� register� are a spe�
cial case of automatic variables� This class suggests to the compiler that storage for the variable
should be allocated in the CPU registers rather than memory� Use of this class should be lim�
ited to frequently referenced� time critical variables and only with familiarity with the particular
architecture on which the program will be run�

External storage class is used for variables which should remain allocated for the entire ex�
ecution of a program� and which have global scope� In using external variables� the operation
of de�ning the variable �allocating memory for it� may be independent of declaring the variable
�associating a name with the variable�� An external variable must be de	ned exactly once� by

��� CHAPTER ��� STORAGE CLASS AND SCOPE

�� File� fptr	c

Other Source Files� sumutil	c

Header Files� sumutil	h

This program illustrates the use of function pointers� both as

parameters in function calls and as returned values	 Program

reads integers until EOF	 As each integer is read� the program

calls a function evenodd�� which returns a function pointer	

This function pointer is then passed to process�� to process

the integer	

evenodd�� returns a pointer to isquare�� if the argument is even�

and to icube�� otherwise	 Function process�� applies its first

argument� which is a function pointer� to its second argument� which

is an integer	

��

include �stdio	h�

include �sumutil	h�

typedef int ��PFI����

PFI evenodd�int x��

int process�PFI fp� int x��

main��

� int x� y� z�

PFI fptr�

printf�����Function Pointers � Squares and Cubes����n�n���

printf��Type integers� EOF to quit�n���

while �scanf���d�� $x� � EOF� �

fptr � evenodd�x��

y � process�fptr� x��

printf��Integer � �d� power � or � � �d�n�� x� y��

�

�

�� Function returns a function pointer	 If x is odd� it returns

a pointer to icube��	 Otherwise� it returns a pointer to

isquare��	

��

PFI evenodd�int x�

� int isquare��� icube���

if �x � ��

return icube� �� icube is a pointer to function icube�� ��

else

return isquare� �� isquare is a pointer to isquare�� ��

�

����� SUMMARY ���

�� Function returns the result of applying the dereferenced function

pointer fp to x	

��

int process�PFI fp� int x�

�

return ��fp��x�� �� dereferenced fp applied to x ��

�

�� File� sumutil	h � continued ��

int icube�int x��

�� File� sumutil	c � continued ��

�� Function returns the cube of x	 ��

int icube�int x�

�

return x � x � x�

�

Figure ������ Driver illustrating function pointer return values

specifying its type and name outside any function block� A declaration speci	ed as extern de�
clares the name of the variable without allocating storage� with the expectation that it has been
de	ned elsewhere�

The storage class� static� is used for variables which have local scope� but which remain allocated
for the entire program execution� Such variables� while local to a particular function� will retain
their values across repeated calls and returns�

We have also seen how memory for variables of di�erent storage classes is allocated in the
memory of the computer� automatic variables are allocated and deallocated on the stack� whereas
external and static variables are allocated from the heap�

In addition to storage allocated by the compiler� we have seen that additional storage can
be allocated dynamically �i�e� at run time� using the malloc�� or calloc system functions� and
deallocated by the free�� function� Data stored in dynamically allocated memory is always
referenced indirectly�

Finally� we have expanded our discussion of functions� seeing that they have storage class� like
variables� and that we can declare and access function indirectly through pointers� Functions are
generally external and have global scope� However� we can limit the scope of a function to be
within a single source 	le by declaring it to be of static storage class�

��� CHAPTER ��� STORAGE CLASS AND SCOPE

���� Problems

�� Modify the functions getchr�� and ungetchr�� of Section ������ so that any number of
characters� up to a maximum of ��� can be put back into the input stream� Use these
functions in a program that reads characters and puts all vowels back until a newline is
read� At that point� the program writes the vowels that were put back in the input stream�

�� Write a program that reads scores from a 	le� but uses a dynamically allocated array� Assume
that the 	rst line of the 	le has the number of students� Read the value of the number of
students� dynamically allocate an array for the scores� read the scores� and print them out�

� Modify � so a student record is a structure� The 	le lists the number of students in the 	rst
line and the number of exams in the second line� Assume that an old weighted average is
present as the last column in the 	le and that the 	rst two columns are student name and an
id number� Use dynamic allocation to write a menu�driven grading program that allows all
possible options� add student� delete student� change grade� add new exam scores� compute
various averages� etc�

�� Write a program that reads and sorts an array of numbers� Use a function to sort the array�
but use a pointer to a function to make a comparison of two numbers� If the function returns
True� swap the elements� otherwise� the elements are in correct order� Test the program with
functions to sort in increasing and in decreasing order�

�� Write a program that reads an array of transliterated strings that represent equivalent strings
in some language� The strings are to be sorted according to the alphabet of that language�
First order the ASCII characters according to the alphabet of that language� Then use
a function that returns True if two characters are ordered in a correct sequence� Use the
function to sort the array of strings�

�� Use a structure with two members to represent either a complex number or a rational
number� We will call each of them an ordered pair number� Write a generic function to add
two ordered pair numbers where the addition is performed by a function a pointer to which
is passed as an argument�

�� Repeat � to subtract two ordered pair numbers�

�� Repeat � to multiply two ordered pair numbers�

�� Repeat � to divide two ordered pair numbers�

��� Write a lexical analyzer that 	nds tokens of the following type in a string�

identifier

integer

float

operator

end of string

����� PROBLEMS ���

��� Repeat �� without using an external variable� Use a pointer to a character as an argument to
a function get token�� which indirectly returns the character read� but unused in a token�

��� Repeat ��� but use a static character variable in get token�� instead of indirectly returning
the character read but unused� The static character will remain unchanged and may be used
for the start of the next token�

��� CHAPTER ��� STORAGE CLASS AND SCOPE

Chapter ��

Engineering Programming Examples

In the preceding chapters we have presented the major features of the C language for declaring and
accessing data� and controlling program execution �ow including both the syntax required by the
language and the semantics of the statements� We have also discussed �good� programming style
and organization emphasizing the top down design process� In this chapter we make use of these
features and techniques to develop several programs for commonly used operations in engineering
and scienti	c computing�

We begin with with operations on matrices� including transforms and sums and products�
We next discuss complex numbers together with their representation as a user de	ned data type
and their uses� A program to 	nd solutions to systems of linear algebraic equations is presented
next using our complex number functions� followed by another common applications of complex
number� the analysis of electrical circuits� We conclude the chapter with a program for numeric
integration of arbitrary algebraic functions�

���� Matrices

We saw in Chapter � that systems of simultaneous linear algebraic equations can be represented
and manipulated using two dimensional arrays� For example� a set of n equations in m unknowns�

a��� � x� � a��� � x� � � � �� a��m�� � xm�� � y�

a��� � x� � a��� � x� � � � �� a��m�� � xm�� � y�
���

an���� � x� � an���� � x� � � � �� an���m�� � xm�� � yn��

Mathematically� such a system can be thought of in terms of a matrix equation written in the

form�

A�X � Y

where A is a matrix� i�e� a two dimensional array of coe�cients ai�j� X is a vector� i�e� a one
dimensional array of elements xj� and Y is also a vector� yi� In a matrix representation of algebraic
equations� the number of rows corresponds to the number of equations� and the number of columns
corresponds to the number of unknowns� �In our case� the values of i range from � through n� ��

���

��� CHAPTER ��� ENGINEERING PROGRAMMING EXAMPLES

and those of j range from � through m � ��� When the number of rows and columns are equal�
the matrix is square� otherwise the matrix is rectangular�

Such a matrix equation may be viewed as a transformation of a vector�X � to another vector�
Y � by matrix operator A� Matrix formalism facilitates combinations of transformations� deriving
properties of transformations� as well as 	nding solutions of equations�

In the next few sections� we will illustrate some useful matrix manipulations and begin to build
our own library of utility functions for matrix operations� Many of the functions written can be
used in a variety of programs� therefore� we will organize our code in several source 	les� The
	le matutil	c will contain all the functions we write for matrix manipulations� As usual� the
prototypes for these functions are assumed to be in the 	le matutil	h�

In constructing our library� we 	rst implement basic input�output functions for matrices and
vectors� the function readmatrix�� reads the elements of a matrix into a two dimensional array�
and the function printmatrix�� prints the matrix elements� �These functions are similar to
the functions getcoeffs�� and pr�adbl�� in Chapter �� except that the right hand side is not
included in the matrix array�� Vectors are read and printed by functions readvector�� and
printvector��� We assume the number of rows and columns are passed as parameters� and that
the matrices are arrays of type double� The basic I�O functions for matrices and vectors and
the requisite header 	les are straightforward to develop� and are shown in Figure ���� These
functions are quite simple� The number of rows and columns for the two dimensional arrays are
passed as parameters� as are the sizes of the one dimensional arrays� The functions readmatrix��
and readvector�� return a cumulative sum of the input values� If desired� these sums may be
used by the calling function to detect a matrix or a vector with all zero elements�

������ Matrix Operations	 Transforms

The 	rst operation we will implement is the transformation of a vector X by a matrix A into a
vector Y�

A�X � Y

In other words� given the values of coe�cients and the variables on the left hand side� 	nd the
values on the right hand side of the equations� Such linear transformation of a set of values
is a common phenomenon in many practical applications such as electronic circuits� mechanical
systems� chemical combinations� economic models� interactive relationships� and so forth�

If matrix A has r rows and c columns� the algorithm for the ith equation is�

y�i� � a�i��
��x�
� � a�i�����x��� �			� a�i��c����x�c���

This is applied for all the rows from � to r � �� Translating this algorithm into C code� Figure
���� shows the function mapvector�� that uses A to map �i�e� transform� vector X into vector
Y �

With these utility functions in had� we can now write a driver program that reads a matrix
and then transforms vectors until a zero vector is entered� The code is shown in Figure ���
� The
program declares all array ranges of size MAX and uses the function getrc�� to read the number
of rows and columns in the matrix� It then reads and prints the transform matrix of the speci	ed
size� Then� the program reads vectors until a zero vector is entered� and for each vector maps it

����� MATRICES ���

�� File� matdef�h ��

�define MAX ��

�� File� matutil�h ��

�include �matdef�h�

int readmatrix	double x
�
MAX�� int r� int c
�

void printmatrix	double x
�
MAX�� int r� int c
�

int readvector	double x
�� int n
�

void printvector	double x
�� int n
�

�� File� matutil�c ��

�include �stdio�h�

�include �matdef�h�

�include �matutil�h�

�� Reads a matrix x with r rows and c columns� MAX

provides the maximum column range for the array�

��

int readmatrix	double x
�
MAX�� int r� int c

� int i� j�

double z� sum � ��

printf	�Matrix data entry��n�
�

for 	i � �� i � r� i��
 � �� for each row of matrix ��

printf	�Type a row of �d numbers�n�� c
�

for	j � �� j � c� j��
� �� read c elements of the row ��

scanf	��lf�� �z
�

x
i�
j� � z�

sum �� z�

�

�

return sum�

�

�� Prints a matrix with r rows and c columns ��

void printmatrix	double x
�
MAX�� int r� int c

� int i� j�

printf	�Matrix is��n�
�

for 	i � �� i � r� i��
 � �� for each row ��

for	j � �� j � c� j��
 �� print the row ��

printf	��f ��x
i�
j�
�

printf	��n�
�

�

�

��� CHAPTER ��� ENGINEERING PROGRAMMING EXAMPLES

�� Reads a vector of size n� Function returns the sum

of input values�

��

int readvector	double x
�� int n

� int i�

double sum � ��

printf	�Type �d numbers� �all zeros to quit�� �� n
�

for 	i � �� i � n� i��
 �

scanf	��lf�� x � i
�

sum �� x
i��

�

return sum�

�

�� Prints a vector of size n� ��

void printvector	double x
�� int n

� int i�

printf	�Vector is��n�
�

for 	i � �� i � n� i��

printf	��f�n�� x
i�
�

�

Figure ����� Matrix and Vector I�O Functions

����� MATRICES ���

�� File� matutil�h � continued ��

void mapvector	double a
�
MAX�� double x
�� double y
��

int r� int c
�

�� File� matutil�c � continued ��

�� Computes a � x ����� y� where a
�
� has r rows and c columns� ��

void mapvector	double a
�
MAX�� double x
�� double y
��

int r� int c

� int i� j�

for 	i � �� i � r� i��
�

y
i� � ��

for 	j � �� j � c� j��

y
i� �� a
i�
j� � x
j��

�

�

Figure ���	� Code for mapvector	

by mapvector	
 into a new vector which is printed� The function getrc	
 shown in Figure ����
and is included in
le matutil�c� The source
les mat�c and matutil�c are compiled and linked
and tested producing the following sample session�

���Matrices and Vector Transformations���

Rows� �

Columns� �

Matrix data entry�

Type a row of � numbers

� � �

Type a row of � numbers

� � �

Matrix is�

�������� �������� ��������

�������� �������� ��������

Type � numbers� �all zeros to quit�� � � �

Transformed Vector is�

���������

���������

��� CHAPTER ��� ENGINEERING PROGRAMMING EXAMPLES

�� File� mat�c

Other Source Files� matutil�c

Header Files� matutil�h

This program reads a matrix� It then repeatedly reads vectors�

Each vector is transformed by the matrix and printed out�

��

�include �stdio�h�

�include �matdef�h�

�include �matutil�h�

main	

� double a
MAX�
MAX��

double x
MAX�� y
MAX��

int r� c�

printf	����Matrices and Vector Transformations����n�n�
�

getrc	�r� �c
�

readmatrix	a� r� c
�

printmatrix	a� r� c
�

while 	readvector	x� c

 �

mapvector	a� x� y� r� c
�

printf	�Transformed �
� �� Prefix to printvector	
 mesg ��

printvector	y� r
�

�

�

Figure ����� Driver to read and transform vectors

����� MATRICES ���

�� File� matutil�h � continued ��

void getrc	int � rp� int � cp
�

�� File� matutil�c � continued ��

�� Gets the number of rows and columns for a matrix� rp point to

rows and cp points to columns�

��

void getrc	int � rp� int � cp

�

printf	�Rows� �
�

scanf	��d�� rp
�

printf	�Columns� �
�

scanf	��d�� cp
�

�

Figure ����� Code for getrc	

Type � numbers� �all zeros to quit�� � � �

Transformed Vector is�

���������

���������

Type � numbers� �all zeros to quit�� ��� � ���

Transformed Vector is�

���������

���������

Type � numbers� �all zeros to quit�� � � �

������ Matrix Operations� Sums and Products

Other common manipulations involving matrices require addition of two matrices� multiplication

of two matrices� and inversion of matrices� In this section� we will implement matrix addition and

matrix multiplication algorithms� Addition of two matrices may arise when two sets of equations

relate the same set of variables� For example� consider the matrix equations�

A�X � Y �

B �X � Y �

Corresponding equations of the two sets can be added together to obtain a combined single set�

C �X � Y

��
 CHAPTER ��� ENGINEERING PROGRAMMING EXAMPLES

�� File� matutil�h � continued ��

void matsum	double c
�
MAX�� double a
�
MAX��

double b
�
MAX�� int rows� int cols
�

�� File� matutil�c � continued ��

�� Adds matrix a to matrix b to generate a matrix c� Parameters

r and c specify the rows and columns�

��

void matsum	double c
�
MAX�� double a
�
MAX��

double b
�
MAX�� int rows� int cols

� int i� j�

for 	i � �� i � rows� i��

for 	j � �� j � cols� j��

c
i�
j� � a
i�
j� � b
i�
j��

�

Figure ����� Code to add rectangular matrices

where� in matrix terms�

C � A �B

and

Y � Y � � Y �

Vectors are special cases of rectangular matrices having n rows and � column� We will therefore
implement a single function that sums two rectangular matrices� The sum of matrices A and B
generates a new matrix� say C� If the elements of matrix A are a
i�
j�� and those of B are
b
i�
j�� then the sum matrix� C with elements c
i�
j�� is determined as follows�

c
i�
j� � a
i�
j� � b
i�
j�

The implementation of matrix addition is easy� and the code is shown in Figure �����

Multiplication of two matrices A and B results when combining two transformations� i�e�

where a vector being transformed by a matrix A is itself the result of a transformation by a

matrix B� Consider the following two sets of equations�

A� Z � Y

and

B �X � Z

����� MATRICES ���

Since� by the second equation� Z equals B �X � we can substitute B �X for Z in the
rst

equation�

A �B �X � Y

Or� the combined equation results in�

C �X � Y

The product of matrices A and B generates a matrix C� If the number of rows and columns of
A are given by r� and c�� and those of B are given by r	 and c	� then� the number of elements
of Z represents the number of columns of A and the number of rows of B� i�e� c� � r	� Also� C
must have the same number of rows as A and the same number of columns as B� That is� the
number of rows and columns of C must be r� and c	� It turns out that each c
i�
j� is a result
of a scalar product of row i of matrix A and column j of matrix B� Let the ith row of A and the
jth column of B be�

a
i�
�� a
i�
�� ��� a
i�
c� � ��

b
��
j� b
��
j� ��� b
r� � ��
j�

then� the scalar product� c
i�
j�� is given by�

a
i�
�� � b
��
j� � a
i�
�� � b
��
j� � ��� � a
i�
c���� � b
r����
j�

With this algorithm� the sum is easily implemented as a cumulative sum� initialized to zero� Each
pass through the loop adds one product term� a
i�
k� � b
k�
j�� for k from zero through c����
That is� the following loop computes c
i�
j��

c
i�
j� � ��

for 	k � �� k � c�� k��

c
i�
j� �� a
i�
k� � b
k�
j��

Such a loop is repeated for all appropriate i rows and j columns� The code for matrix product is
shown in Figure �����

We can now write a simple example that uses the matrix functions de
ned above as shown in
Figure ����� The program adds and multiplies matrices� To keep the program simple� we assume
square matrices� The program
rst reads in the size of square matrices� and then reads in the
two matrices� These matrices are added and multiplied� and the resultant matrices are printed�
A sample session is shown below�

���Square Matrices � Sums and Products���

Size of square matrices� �

Matrix data entry�

Type a row of � numbers

� �

Type a row of � numbers

� �

��� CHAPTER ��� ENGINEERING PROGRAMMING EXAMPLES

�� File� matutil�h � continued ��

void matprod	double c
�
MAX�� double a
�
MAX�� double b
�
MAX��

int r�� int c�� int r�� int c�
�

�� File� matutil�c � continued ��

�� Matrix multiplication of matrix a 	r� rows and c� columns

and matrix b 	r� rows and c� columns
� Result is matrix c with

r� rows and c� columns�

��

void matprod	double c
�
MAX�� double a
�
MAX�� double b
�
MAX��

int r�� int c�� int r�� int c�

� int i� j� k�

if 	c� �� r�
 �

printf	�Error � Columns of matrix A do not match rows of B�n�
�

return�

�

for 	i � �� i � r�� i��

for 	j � �� j � c�� j��
 �

c
i�
j� � ��

for 	k � �� k � c�� k��

c
i�
j� �� a
i�
k� � b
k�
j��

�

�

Figure ����� Code for matrix product

����� MATRICES ���

�� File� matops�c

Other Source Files� matutil�c

Header Files� matutil�h

This program adds and multiplies two square matrices�

The matrices are read into two dimensional arrays�

��

�include �stdio�h�

�include �matdef�h�

�include �matutil�h�

main	

� double a
MAX�
MAX�� b
MAX�
MAX�� c
MAX�
MAX��

int n�

printf	����Square Matrices � Sums and Products����n�n�
�

printf	�Size of square matrices� �
�

scanf	��d�� �n
�

readmatrix	a� n� n
�

readmatrix	b� n� n
�

matsum	c� a� b� n� n
�

printf	�Sum �
� �� Prefix to msg in printmatrix	
 ��

printmatrix	c� n� n
�

matprod	c� a� b� n� n� n� n
�

printf	�Product �
� �� Prefix to msg in printmatrix	
 ��

printmatrix	c� n� n
�

�

Figure ����� Driver to test matrix operations

��	 CHAPTER ��� ENGINEERING PROGRAMMING EXAMPLES

Matrix data entry�

Type a row of � numbers

� �

Type a row of � numbers

� 	

Sum Matrix is�

�������� ��������

 ������� ���������

Product Matrix is�

��������� ���������

��������� ���������

Another important matrix operation is the inversion of a square matrix� An inverse matrix

has the property�

A
��
� A � A

��
� A � I

where A�� is the inverse matrix and I is a unit matrix with unit diagonal elements and zero

elements elsewhere� The unit matrix has the property�

I �X � X � I � X

If A�X � Y � it follows that

A
��
� A�X � A

��
� Y

or

X � A
��
� Y

Thus� given the inverse matrix� the solution to the matrix equation for any Y is easily obtained�
Inversion of a matrix is somewhat more complex� An inverse of a matrix can be obtained

by the Gauss�Jordan method � a modi
ed version of the Gauss elimination method discussed
in Chapter �� A good reference ���� for matrix computational methods as well as other numeric
methods� is given at the end of this chapter�

���� Complex Numbers

Complex numbers are encountered in many mathematical applications� In this section� we will

rst review complex numbers and operations involving complex numbers� We will then repre�
sent complex numbers using structure types and implement many of the basic complex number
operations�

The squares of a real number� either positive or negative� is a positive number� Numbers whose
squares are negative cannot be real numbers� they are� therefore� called imaginary numbers� Thus�

����� COMPLEX NUMBERS ���

real

�ve

imag

�ve

�ve

�ve �

y

x

�
z � x � jy

Figure ���
� Complex Numbers in Rectangular Coordinates

imaginary numbers are the square roots of negative numbers� For example� consider�

z �
q
�jxj

Here jxj is the absolute value of x� and thus z is a square root of a negative number� i�e� an
imaginary number� Imaginary numbers are written in a normalized manner as follows�

z �
q
�� � jxj

�
p�� �

q
jxj

� j � y
where� j �

p��� and y �
q
jxj� Square root of �� is represented by the special symbol� i in

mathematics or j in Electrical Engineering� Thus� an imaginary number is represented by j times
a real number y� A complex number is a number that is sums of both a real and an imaginary
number�

z � x � j � y
Both x and y are real numbers� and z is a complex number� Either of the real numbers x or y can�
of course� be zero� in which case� the complex number reduces to either a real or an imaginary
number� The number x is called the real part of z� and y is called the imaginary part� Remember
that both the real part� x� and the imaginary part� y� are real numbers� It is j that is an imaginary
number� not y�

Complex numbers can be visualized geometrically as points on a two dimensional plane with
rectangular axes� real and imag� Then� the real part of a number is the projection of the point
onto the real axis� and the imaginary part of the number is the projection onto the imaginary axis
imag �see Figure ���
� For these reasons� the complex number representation as a sum of real and
imaginary parts is called representation in rectangular coordinates�

Addition� subtraction� multiplication� and division operators for complex numbers are de
ned
in terms of the same operator symbols as for real numbers� viz� �� �� �� �� The sum of two

��� CHAPTER ��� ENGINEERING PROGRAMMING EXAMPLES

complex numbers is simply the sum of their real parts plus j times the sum of their imaginary
parts� Thus� if

z� � x� � j � y�

z	 � x	 � j � y	

then the sum of z� and z� is given by�

z� � z	 � �x� � x	� � j � �y� � y	�

The product of z� and z� is obtained by multiplying the two numbers� replacing j � j by ���
and collecting the real terms and the imaginary terms� Thus�

z� � z	 � �x� � j � y�� � �x	 � j � y	�

� �x� � x	 � y� � y	� � j � �x� � y	 � x	 � y���

Division of two complex numbers is a little more involved� First� we de
ne the complex conju�

gate� z�� of a number� z � x � j � y� as one with the same real part� x� but whose imaginary part
is �y� Thus� the complex conjugate of z is�

z� � x� j � y
Observe that the product of z and z� is real�

z � z� � �x � x � y � y� � j � �x � y � x � y�

� x � x � y � y�
Now� we can divide two complex numbers�

z�

z	
�

x� � j � y�

x	 � j � y	

To separate the result into real and imaginary parts� we
rst make the denominator real by
multiplying both the numerator and the denominator by z	��

z�

z	
�

z� � z	�

z	 � z	�

�
�x� � j � y�� � �x	 � j � y	�

x	 � x	 � y	 � y	

�
x� � x	 � y� � y	

x	 � x	 � y	 � y	
� j � ��x� � y	 � x	 � y�

x	 � x	 � y	 � y	

With this description of complex numbers and operations on them� we would like to develop
programs that can work with them� Complex number is not a native data type in C� but we would
like to represent complex numbers in a program as if it were� We will de
ne an abstract data type�
complex� using typedef and de
ne functions to serve as operators on complex numbers�

We will represent complex numbers as ordered pairs of real and imaginary parts� �using rect�
angular form de
ned above�� and implement the ordered pairs as structures� We will use typedef

to de
ne a data type� rect� for this structure� �We choose the name rect because complex data
type with an identical structure is already de
ned in math�h� We can� of course� use the complex

type de
ned in math�h� but we de
ne a rect type to illustrate the use of typedef�� Figure ����
shows this de
nition and the functions for addition and multiplication of complex numbers� We
use type double in the structure rect for greater precision in computation� In a similar manner�
it is easy to write the remaining functions for subtraction and division of two complex numbers�
Implementation of these functions is left as an exercise�

����� COMPLEX NUMBERS ���

�� File� compdef�h ��

struct rect �

double real�

double imag�

��

typedef struct rect rect�

�� File� computil�h ��

rect addc	rect z�� rect z�
�

rect multc	rect z�� rect z�
�

�� File� computil�c ��

�include �stdio�h�

�include �math�h� �� math function protos� sqrt	
� atan	
� etc� ��

�include �compdef�h�

�include �computil�h�

�� Returns a sum of two complex numbers � rect form� ��

rect addc	rect z�� rect z�

� rect z�

z�real � z��real � z��real�

z�imag � z��imag � z��imag�

return z�

�

�� Returns a product of two complex numbers � rect form� ��

rect multc	rect z�� rect z�

� rect z�

z�real � z��real � z��real � z��imag � z��imag�

z�imag � z��real � z��imag � z��imag � z��real�

return z�

�

Figure ����� Complex number utility functions

��� CHAPTER ��� ENGINEERING PROGRAMMING EXAMPLES

real

�ve

���
�
�
�
�
�
���

imag

�ve

�ve

�ve �

y

x

�
r

�

z

Figure ������ Complex Numbers in Polar Coordinates

������ Complex Numbers and Vectors

It is also possible to represent a point on a two dimensional plane in terms of polar coordinates�
Polar coordinates are given in terms of�

�� the length� r� of the �directional� line from the origin to the point� and

	� the counterclockwise angle� �� that the line makes with the reference axis� namely the positive
horizontal axis�

The directional line of length r at an angle � with respect to the reference axis is called a vector
�See Figure ������� The projection of the vector onto the real axis is r � cos���� and the projection
onto the imaginary axis is r � sin���� Thus� a complex number� represented by the pair �r� �� in
polar coordinates� can be written in rectangular coordinates as�

z � r � cos��� � j � r � sin���

� x � j � y

Thus� the real and imaginary parts� x and y� in terms of r and � are�

x � r � cos���

y � r � sin���

Since�

exp�j � �� � cos��� � j � sin���

z can also be written as�

z � r � exp�j � ��

As we shall soon see� this exponential form is convenient for multiplication and division�

����� COMPLEX NUMBERS ���

Given rectangular coordinates x and y� we can determine r and � as follows� We know�

x� � y� � r�

y

x
� tan���

so�

r �
q
x� � y�

� � arctan�
y

x
�

Observe that the length� r� is the square root of z � z�� The length r is called the magnitude of the
vector� and the angle � is called the angle or phase angle of the vector�

As we have seen� addition and subtraction of complex numbers is easy to perform in rectangular
coordinates� On the other hand� multiplication and division of two complex numbers in rectangular
coordinates is not so easy� Conversely� it is easy to perform multiplication and division in polar
coordinates� Given that two numbers are�

p� � r� � exp�j � ���

p	 � r	 � exp�j � �	�

It is easy to see that�

p� � p	 � r� � r	 � exp�j � ��� � �	��
p�

p	
�

r�

r	
� exp�j � ��� � �	���

From this analysis� we can implement complex numbers in polar coordinates as shown in
Figure ����� together with functions for multiplication and division in polar coordinates� It is
also important to be able to convert back and forth between rectangular and polar coordinates�
It is easy to write the necessary conversion routines to convert complex numbers in rectangular
coordinates to polar coordinates� and vice versa � they are shown in Figure ����	� The function
polar to rect	
 is quite straight forward� rect to polar	
 uses the arc tangent function atan	

de
ned in the standard library� This function returns an angle in the range ���	 to ��	� thus
we need to adjust the angle when the real part is zero and when it is negative� If the real part
is zero� the angle is ��	 if the imaginary part is positive� and ���	 if it is negative� Next� if the
real part is negative� the angle must be incremented by �� Since we use many standard library
trigonometric functions� the
le math�h must be included at the head of computil�c and we must
link the math library when the program is compiled�

These functions provide a useful library for processing with complex numbers� Let us now
make use of them in two application programs�

������ Roots of Algebraic Equations

One such application where complex numbers occur is in
nding roots of algebraic equations� A
linear algebraic equation of the form�

a � x � b � �

��
 CHAPTER ��� ENGINEERING PROGRAMMING EXAMPLES

�� File� compdef�h � continued ��

struct polar �

double r�

double theta�

��

typedef struct polar polar�

�� File� computil�h � continued ��

polar multp	polar p�� polar p�
�

polar divp	polar p�� polar p�
�

�� File� computil�c � continued ��

�� Returns a product of complex numbers � polar form� ��

polar multp	polar p�� polar p�

� polar p�

p�r � p��r � p��r�

p�theta � p��theta � p��theta�

return p�

�

�� Returns p� � p� � polar form� ��

polar divp	polar p�� polar p�

� polar p�

p�r � p��r � p��r�

p�theta � p��theta � p��theta�

return p�

�

Figure ������ Complex number utility functions in polar coordinates

����� COMPLEX NUMBERS ���

�� File� computil�h � continued ��

rect polar!to!rect	polar p
�

polar rect!to!polar	rect z
�

�� File� computil�c � continued ��

�� Returns the rect form of a number in polar form� ��

rect polar!to!rect	polar p

� rect z�

z�real � p�r � cos	p�theta
�

z�imag � p�r � sin	p�theta
�

return z�

�

�� Returns the polar form of a number in rect form� ��

�define PI ������

polar rect!to!polar	rect z

� polar p�

p�r � sqrt	z�real � z�real � z�imag � z�imag
�

if 	z�real �� �

p�theta � z�imag �� � " PI � � � � PI � ��

else

p�theta � atan	z�imag � z�real
�

if 	z�real � �

p�theta � PI � p�theta�

return p�

�

Figure ����	� Conversion from polar to rect and rect to polar

�
� CHAPTER ��� ENGINEERING PROGRAMMING EXAMPLES

in one unknown variable� x� can be easy to solve depending on the values of the coe�cients� a and
b� If a � � and b � �� the equation is homogeneous and has no unique solution� any value for x
will make the equation true� If a � � but b is non�zero� the equation has no solution� no value of
x will make it true� Otherwise� if a is non�zero� the solution for x is easily determined�

x � �b�a

A quadratic equation is a polynomial of second degree in x of the form�

a � x� � b � x � c � �

If a is zero� the equation reduces to a linear equation that is easy to solve� If a is non�zero� there
are two solutions�

x� �
�b �

p
b� � � � a � c
	 � a

x	 �
�b�p

b� � � � a � c
	 � a

The form of the solutions depends on the discriminant�

b� � � � a � c
If the discriminant is positive� the square root is a real number and the roots� x� and x	 are
both real numbers� If the discriminant is zero� the two roots are real and equal� Otherwise� if
the discriminant is negative� the square root is an imaginary number and the roots are complex
numbers�

x� �
�b

	 � a � j �
q

� � a � c� b��

	 � a

x	 �
�b

	 � a � j �
q

� � a � c� b��

	 � a
In fact� the two roots are complex conjugates� the real parts are the same� the imaginary parts
are negatives of each other� Complex roots of polynomials with real coe�cients always occur in
complex conjugate pairs�

We will now implement a program that
nds the roots of a quadratic equation� and then tests
each root by evaluating the quadratic polynomial for that value of the variable� If the value is a
root� the polynomial must evaluate to zero� When testing roots� we must be able to evaluate the
polynomial for all possible values of roots� including complex values� For consistency in testing� we
will represent all roots as complex numbers with real roots having a zero imaginary part� Therefore�
we will need a function to force a real number into a complex number� as well as a function to
make a complex number given its real and imaginary parts� These functions are shown in Figure
������ and are added to the
le computil�c with their prototypes in computils�h� Finally� since
complex numbers are not a native data type in C� we will also need a function to print complex
numbers in the accepted form� If the number is real� it must print only the real part� If the
number is imaginary� it must print only j times the imaginary part� Otherwise� it must print a
complex number as a� j � b or a� j � b� depending on the sign of the imaginary part� The function
is also shown in Figure ������

����� COMPLEX NUMBERS �
�

�� File� computil�h � continued ��

rect make!rect	double x� double y
�

rect force!rect	double x
�

void print!rect	rect z
�

�� File� computil�c � continued ��

�� Makes a complex number in rect form� ��

rect make!rect	double x� double y

� rect z�

z�real � x�

z�imag � y�

return z�

�

�� Forces a real number to a complex number � rect form� ��

rect force!rect	double x

� rect z�

z�real � x�

z�imag � ��

return z�

�

�� Prints a complex number in rect form� ��

void print!rect	rect z

�

if 	z�real �� � �� z�imag �� �
 �� if number is zero ��

printf	���
� �� print zero� ��

if 	z�real �� �
 �� print real part� if non�zero ��

printf	��f �� z�real
�

if 	z�imag �� �
 � �� print imag part� if non�zero ��

if 	z�imag � �

printf	�� j � �f�� z�imag
�

else if 	z�imag � �

printf	�� j � �f�� �z�imag
�

�

printf	��n�
�

�

Figure ������ Code for make rect	
 and force rect	

�
	 CHAPTER ��� ENGINEERING PROGRAMMING EXAMPLES

With all of these utility functions completed� the program logic is now simple to implement�
It reads in the coe�cients a� b� c of the quadratic equation and uses the function findroots	
 to

nd the roots of the quadratic� The function forces the roots to complex form and returns them
indirectly� The arguments of findroots	
 are the coe�cients of the quadratic� and pointers to
the two roots� The program then uses the function eval quad	
 to verify each root by evaluating
the quadratic polynomial at that value� The arguments of eval quad	
 are the coe�cients of the
quadratic� and the value at which the quadratic is to be evaluated� The code for the driver is
shown in Figure ������ For each set of coe�cients� main	
 checks if a is zero and b is non�zero�
in which case it prints that the equation is linear with root �c�b� Otherwise� if both a and b are
zero� it prints an invalid equation message� and in either case continues to read the next set of
coe�cients� On the other hand� if a is non�zero� the driver calls findroots	
 to
nd the roots as
complex numbers and returns them by indirectly to z� and z�� Each root is printed and veri
ed
using eval quad	
� The process continues until end of
le�

We next implement the function findroots	
 shown in Figure ������ It computes the roots�
forces them to complex numbers and returns the values through the pointer parameters�

Finally� we write eval quad	
 to evaluate a quadratic polynomial at a given complex value of
the unknown variable� Since the value of the unknown� x is complex� we force all coe�cients to
complex numbers before using our utility functions addc	
 and multc	
� To reduce the number
of multiplications required to evaluate the polynomial we perform the expression

a � x� � b � x � c � a � x � c � b � x � c

� ���a � z� � b� � z� � c

The function is shown in Figure ����� The complex variable� w� is initialized to zero and then
used for the cumulative complex sum of the polynomial� As we saw in Chapter �� due to errors in
rounding and �oating point number representation� our result may not be precisely zero� Therefore�
eval quad	
 checks that w�real and w�imag are su�ciently close to zero using the library function
fabs	
 to verify the solution and print an appropriate message� A sample run of the program is
shown below�

���Roots of Quadratic Equations���

Quadratic Equation� a � x � x � b � x � c � �

Type coefficients a b c� EOF to quit

� � �

z� � ���#����� � j � ��� � ��

The value is verified as a root of the equation

z� � ���#����� � j � ��� � ��

The value is verified as a root of the equation

� � �

z� � ���������

The value is verified as a root of the equation

z� � ���������

The value is verified as a root of the equation

� � �

z� � ��������� � j � ��������

The value is verified as a root of the equation

����� COMPLEX NUMBERS �
�

�� File� roots�c

Other Source Files� computil�c

Header Files� compdef�h� computil�h

This program finds the roots of quadratic equations� For each

equation� the program verifies that the roots make the

quadratic polynomial evaluate to zero� All roots� including real

roots� are treated as complex roots�

��

�include �stdio�h�

�include �math�h� �� needed in this file and in computil�c ��

�include �compdef�h� �� defines rect and polar types ��

�include �computil�h� �� prototypes for functions in computil�c ��

void eval!quad	double a� double b� double c� rect z
�

void findroots	double a� double b� double c� rect �zp�� rect �zp�
�

main	

� rect z�� z��

double a� b� c� x�

printf	����Roots of Quadratic Equations����n�n�
�

printf	�Quadratic Equation� a � x � x � b � x � c � ��n�
�

printf	�Type coefficients a b c� EOF to quit�n�
�

while 	scanf	��lf �lf �lf�� �a� �b� �c
 �� EOF
 �

if 	a �� �
 �

if 	b �� �
 �

printf	�Linear equation � root is �f�n�� � c � b
�

continue�

�

else �

printf	�Invalid equation�n�
�

continue�

�

�

else

findroots	a� b� c� �z�� �z�
�

printf	�z� � �
�

print!rect	z�
�

eval!quad	a� b� c� z�
�

printf	�z� � �
�

print!rect	z�
�

eval!quad	a� b� c� z�
�

�

�

Figure ������ Code for quadratic solver driver

�
� CHAPTER ��� ENGINEERING PROGRAMMING EXAMPLES

�� File� roots�c � continued ��

�� Finds the roots of a quadratic equation� Roots are forced

to complex values and stored where zp� and zp� point�

��

void findroots	double a� double b� double c� rect �zp�� rect �zp�

� double discr� x� x�r� x�r� x�i� x�i�

rect z�� z��

x � � � a�

discr � b � b � � � a � c�

if 	discr �� �
 �

x�r � �b � x � sqrt	discr
 � x�

x�r � �b � x � sqrt	discr
 � x�

x�i � x�i � ��

�

else �

x�r � x�r � �b � x�

x�i � sqrt	�discr
 � x�

x�i � �x�i�

�

z� � make!rect	x�r� x�i
�

z� � make!rect	x�r� x�i
�

�zp� � z��

�zp� � z��

�

Figure ������ Code for findroots	

����� COMPLEX NUMBERS �
�

�� File� roots�c � continued ��

�� Function evaluates a quadratic equation with x equal to

the unknown variable�

��

void eval!quad	double a� double b� double c� rect x

� rect w � ��� ���

w � multc	force!rect	a
� x
� �� a � x ��

w � addc	w� force!rect	b

� �� a � x � b ��

w � multc	w� x
� �� a � x � x � b � x ��

w � addc	w� force!rect	c

� �� a � x � x � b � x � c ��

if 	fabs	w�real
 � �������� �� fabs	w�imag
 � ��������

printf	�The value is verified as a root of the equation�n�
�

else

printf	�The value is not a root of the equation�n�
�

�

Figure ������ Code for eval quad	

z� � ��������� � j � ��������

The value is verified as a root of the equation

D

������ Impedance of Electrical Circuits

Another important application of complex numbers is in computing impedances of electrical cir�
cuits� The basic components of such circuits are resistors� inductors� and capacitors as shown in
Figure ������ These devices can be connected in series or parallel to make more complex circuits
as shown in Figure ����
 where each component has an impedance� Z� In general� the impedance
is modeled as a complex quantity depending on their value and the value of the angular frequency�
�� in radians per second� of the electrical signal for which the impedance is to be computed� The
impedance of a resistor of R ohms is simply R� that of an inductor of L henrys is j � � � L� and
that of a capacitor of C farads is �j

���C� �
The impedance of a series or a parallel combination of sub�circuits is de
ned in terms of the

individual impedances of the sub�circuits� The impedance of a series combination of impedances�
Z� and Z� is the sum of the individual impedances� i�e� Z� � Z	� The impedance of a parallel
combination of impedances Z� and Z� is the reciprocal of the reciprocal sum of the individual
impedances�

�
�
Z� � �

Z�

Let us
rst write a set of circuit utility functions to determine�

� the impedance of a basic component�

� the impedance of a series combination�

�
� CHAPTER ��� ENGINEERING PROGRAMMING EXAMPLES

��
��
�

� 	

�

� �
�

HH����HHHH����HH

R C L

Resistor Capacitor Inductor

Figure ������ Basic Electrical Circuit Components

Z�

Z�

Z� Z�

Series Parallel

Figure ����
� Series and Parallel Combinations

����� COMPLEX NUMBERS �
�

� and the impedance of a parallel combination�

We will use the complex data type� rect� as de
ned in compdef�h as well as the functions de
ned
in computil�c�

The function comp imped	
 determines the impedance of a basic component whose element
type �a character� and value are passed together with the value of the angular frequency � �we
will call w�� The code is shown in Figure ������ The only point to note here is that if w � C is
zero� the impedance is in
nite� It is not possible to handle an in
nite value in computers� so some
garbage value is returned� The calling program must handle a zero value of w � C as a special case�
Next� we implement the functions that compute the series and parallel combination of impedances
shown in Figure ���	�� The function series	
merely returns the sum of the two impedances� The
function parallel	
 uses polar coordinates to compute the reciprocals of impedances� It is much
easier to compute the reciprocal of a complex number in polar coordinates than in rectangular
coordinates� whereas complex numbers are easier to sum in rectangular coordinates� Conversion
routines are used to convert polar to rectangular� and vice versa�

�
We are now ready to implement a program to compute the impedance of an electrical circuit�

Let us assume a circuit which is a series combination of two sub�circuits as shown in Figure ���	��
The
rst sub�circuit is a series combination of resistor R� and inductor L� The second sub�circuit
is a parallel combination of resistor R� and capacitor C� Figure ���		 shows the program to
nd
the impedances of this circuit for di�erent sets of values of R�� R�� L� C� and �� The program
reads a set of values for R�� R�� L� C� and �� It calls series	
 to compute the impedance z�

of R� and L in series� If �C is zero� the impedance of the capacitor is in
nite� so the impedance
of the parallel combination� z�� is just the impedance of R�� Otherwise� parallel	
 is called to
compute the impedance z� of R� and C in parallel� In all cases� comp imped	
 is used to compute
the impedances of the basic components and series	
 is called to compute the impedance of z�
and z� in series� The values of these impedances are printed by print rect	
� A sample run is
shown below�

���Impedance of Electrical Circuits���

Ckt� a series combination of�

R� and L in series� and

R� and C in parallel�

Type values of R� R� L C W� EOF to quit

� � � � �

Impedance of series branch z� � �������� � j � ��������

Impedance of parallel branch z� � �������� � j � ���

Overall impedance z � �������� � j � ��������

�� ����� ���� �������� �����

Impedance of series branch z� � ��������� � j � ����������

Impedance of parallel branch z� � �������� � j � � ����

Overall impedance z � ��������� � j � ���� �

D

The second circuit values represent a circuit near resonance� Its impedance is almost purely
resistive� since the imaginary part is close to zero�

�

 CHAPTER ��� ENGINEERING PROGRAMMING EXAMPLES

�� File� cktutil�h ��

rect comp!imped	int component� double value� double w
�

�� File� cktutil�c ��

�include �stdio�h�

�include �math�h�

�include �compdef�h�

�include �computil�h�

�include �cktutil�h�

�� Returns the impedance for each of the components R� L� C� ��

rect comp!imped	char component� double value� double w

� rect z�

double x�

switch	component
 �

case r� z � force!rect	value
� �� impedance is R ��

break�

case l� z�real � ��

z�imag � w � value� �� impedance is j � w � L ��

break�

case c� z�real � ��

x � w � value� �� x � w � C ��

�� if x is non�zero� impedance is �j�	w�C
 ��

if 	x

z�imag � � � � x�

else � �� else� impedance is infinite ��

break� �� handle separately ��

�

return z�

�

Figure ������ Code for comp imped	

����� COMPLEX NUMBERS �
�

�� File� cktutil�h � continued ��

rect series	rect z�� rect z�
�

rect parallel	rect z�� rect z�
�

�� File� cktutil�c � continued ��

�� Returns the impedance of a series combination of impedances

z� and z�� sum of z� and z��

��

rect series	rect z�� rect z�

�

return addc	z�� z�
�

�

�� Returns the impedance of a parallel combination of impedances

z� and z�� reciprocal of the sum of � � z� and � � z��

��

rect parallel	rect z�� rect z�

� polar p�� p�� p�

rect z�

p� � rect!to!polar	z�
�

p��r � � � p��r� �� reciprocal of z� ��

p��theta � �p��theta�

p� � rect!to!polar	z�
�

p��r � � � p��r� �� reciprocal of z� ��

p��theta � �p��theta�

z � addc	polar!to!rect	p�
� polar!to!rect	p�

� �� sum reciprocals

��

p � rect!to!polar	z
�

p�r � � � p�r� �� take reciprocal of the sum ��

p�theta � �p�theta�

z � polar!to!rect	p
� �� convert to rect� ��

return z� �� return in rect form ��

�

Figure ���	�� Code for series	
 and parallel	

��� CHAPTER ��� ENGINEERING PROGRAMMING EXAMPLES

�����������������������HH�����������������������

�� ��� ���� �����
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�

A
A�
�A
A���������������

�
�
�
��
� � �

��

�

R� L

C R�

Figure ���	�� An Example Circuit

���� Integrals

Another common operation that arises in engineering and scienti
c computing is integration�
While software application packages exist to perform symbolic integration� some functions do not
lend themselves to such a �closed form� method� A common computing method for approximating
the value of an integral in numeric integration� In this section we will develop a small program
implementing Simpson�s Rule for numeric integration�

The integral of a function between speci
ed limits gives the area under the function curve as
shown in Figure ���	�� Numeric methods can approximate the area under the curve by summing
approximate sub�areas under linearized parts of the function at uniformly sampled points �Figure
���	��� The smaller the sampling interval� h� the greater the precision of the computed integral�
An algorithm to evaluate such an integral may be written in terms of the value of the function at
sample points between the two limits� For example� assume the limits of integration for function�
f�x� are x � a and x � b� Then� the function values between the two limits at intervals of h are�

f�a�� f�a � h�� f�a � 	h�� � � � � f�b�

The total number of samples is
�b� a�

h

There are many methods to approximate the value of an integral in terms of these sample values�
Simpson�s Rule gives a fairly accurate integral of function f�x� between speci
ed limits a and b�

Integralvalue �
h

�
�y� � �y� � 	y� � �y� � 	y� � � � � � yn�

where� yk � f�a�kh� for k � �� �� 	� ���� n� h is the sampling interval� and n � b�a

h
with h adjusted

so that n is an even integer� Except for the multiplier h

� � the above sum is called the Simpson

sum� Observe that in the Simpson sum� sample values of the function evaluated at odd k� i�e�
y�� y�� y�� � � �� are multiplied by �� and sample values at even values of k� except for y� and yn� are
multiplied by 	� Finally� sample values y� and yn are added without a multiplier�

We will now slightly modify the concept of a generic sum from Chapter �� to implement a func�
tion that numerically evaluates an integral of a speci
ed function between two limits� i�e� modify
the generic function� sum	
� into a generic Simpson sum function� Since integral computation
requires real numbers� we use type double for all our computation� The parameters to simpsum

����� INTEGRALS ���

�� File� imped�c

Other Source Files� computil�c� cktutil�c

Header Files� compdef�h� computil�h� cktutil�h

This program finds the impedance of an electrical circuit for

different values of the components and the frequency� The

circuit consists of a series of two sub�circuits� a series

combination of a resistor R� and an inductor L� and a parallel

combination of a resistor R� and a capacitor C� The values of

these components are specified by the user together with the

angular frequency w in radians per second� The impedance is found

for each user specified set of values until EOF�

��

�include �stdio�h�

�include �math�h�

�include �compdef�h�

�include �computil�h�

�include �cktutil�h�

main	

� rect z� z�� z��

double r�� r�� l� c� w�

printf	����Impedance of Electrical Circuits����n�n�
�

printf	�Ckt� A series combination of��n�
�

printf	� R� and L in series� and�n�
�

printf	� R� and C in parallel��n�
�

printf	�Type values of R� R� L C w� EOF to quit�n�
�

while 	scanf	��lf �lf �lf �lf �lf��

�r�� �r�� �l� �c� �w
 �� EOF
 �

z� � series	comp!imped	r� r�� w
� comp!imped	l� l� w

�

if 	w �� � %% c �� �

z� � comp!imped	r� r�� w
�

else

z� � parallel	comp!imped	r� r�� w
�

comp!imped	c� c� w

�

z � series	z�� z�
�

printf	�Impedance of series branch z� � �
�

print!rect	z�
�

printf	�Impedance of parallel branch z� � �
�

print!rect	z�
�

printf	�Overall impedance z � �
�

print!rect	z
�

�

�

Figure ���		� Driver program for an example circuit

��	 CHAPTER ��� ENGINEERING PROGRAMMING EXAMPLES

���
�
�
�
���

��� Z
Z
ZZhhhhhh

�

�

�
�
�

�
�
�

�
�
�
�
�
�
�
�

f�x�

x
	 a b

Figure ���	�� Integral of a Function from a to b

���
�
�
�
���

��� Z
Z
ZZhhhhhh

�
�
�

�
�

�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�

�
�
�

�

�
�

� 	

f�x�

x
	 a b

h

Figure ���	�� Function Sampling at Intervals of h

����� INTEGRALS ���

�� File� simputil�h ��

double simpsum	double 	�fp
	
� double a� double 	�up
	
�

double step� double b
�

�� File� simputil�c ��

�include �stdio�h�

�include �simputil�h�

�� Returns the Simpson sum of �fp from a to b� ��

double simpsum	double 	�fp
	
� double a� double 	�up
	
�

double step� double b

� double i� cumsum � ��

int m�

for 	i � a� m � �� i � b� m��� i � 	�up
	i� step

 �

if 	m �� �

cumsum �� 	�fp
	i
�

else if 	m � �

cumsum �� � � 	�fp
	i
�

else

cumsum �� � � 	�fp
	i
�

�

cumsum �� 	�fp
	b
�

return cumsum�

�

Figure ���	�� Code to compute the Simpson sum

are the function pointer� fp� a lower limit� a� an update function pointer� up� a sampling interval�
step� and an upper limit� b� The code is shown in Figure ���	��

The integer variable� m represents the sample number� If m is zero� the function sample is
added to the cumulative sum� if it is odd� the sample value times � is added to the cumulative
sum� otherwise� sample value times 	 is added� Finally� the sample value yn at b is added and
the resulting Simpson sum is returned� It is easy now to implement the function integral	

to compute the integral of a function between limits a and b� It merely gets the Simpson sum�
multiplies by step�� and returns it as seen in Figure ���	� The update function incr	
 merely
returns the value of its
rst argument increased by the value of the second argument� step� This
function is included in sumutil�c together with other useful functions� self	
� square	
� and
cube	
 shown in Figure ���	��

Finally� we write a simple driver that computes integrals of several functions using integral	

shown in Figure ���	
� The program
rst reads the sampling interval� h� then repeatedly reads
the integration limits until EOF� For each set of limits� it calculates the number of samples� n� for
the speci
ed h� Since the Simpson sum requires an even number of samples� n is increased by one
if it is odd� and the sampling interval h is adjusted to correspond to the even value of n� Then�
the program computes the integral by calling integral	
 for three di�erent functions� a straight

��� CHAPTER ��� ENGINEERING PROGRAMMING EXAMPLES

�� File� simputil�h � continued ��

double integral	double 	�fp
	
� double a� double b� double step
�

�� File� simputil�c � continued ��

�� Computes integral of a function �fp from a to b in sample

steps of step�

��

double integral	double 	�fp
	
� double a� double b� double step

� double r� incr	
�

r � simpsum	fp� a� incr� step� b
�

return r � step � ��

�

Figure ���	�� Code for integral	

line f�x� � x� a square� f�x� � x�� and a cube� f�x� � x�� The values of integrals are printed�
The program is in three source
les� which must be compiled and linked� integr�c� sumutil�c�
and simputil�c� Here are two sample sessions with di�erent sampling intervals�

���Integration by Simpson$s Rule���

Integrals of x� square of x� and cube of x

Sampling interval for integration� ���

Type lower and upper limits� EOF to quit

� �

Integral of st� line � �������#

Integral of square � ��������

Integral of cubic � �������#

D

���Integration by Simpson$s Rule���

Integrals of x� square of x� and cube of x

Sampling interval for integration� ����

Type lower and upper limits� EOF to quit

� �

Integral of st� line � ��������

Integral of square � ��������

Integral of cubic � ��������

D

Remember� the smaller the sampling interval� the greater the accuracy of the computed integral�
The
rst session speci
es a fairly large sampling interval of ��� and the results are not very accurate�
The exact answers for the integrals are ���� ������� and ��	�� The second session speci
es a

����� INTEGRALS ���

�� File� sumutil�h � continued ��

double self	double x
�

double square	double x
�

double cube	double x
�

double incr	double x� double step
�

�� File� sumutil�c � continued ��

�� Returns x� ��

double self	double x

�

return x�

�

�� Returns square of x� ��

double square	double x

�

return x � x�

�

�� Returns cube of x� ��

double cube	double x

�

return x � x � x�

�

�� Returns x incremented by step� ��

double incr	double x� double step

�

return x � step�

�

Figure ���	�� Code for self	
� cube	
� and incr	

��� CHAPTER ��� ENGINEERING PROGRAMMING EXAMPLES

�� File� integr�c

Other Source Files� sumutil�c� simputil�c

Header Files� sumutil�h� simputil�h

This program computes definite integrals of several functions

between specified limits� Parameters of integral	
 are� a

function pointer� limits� and number of samples� It returns

the integral of that function� Integrals of straight line�

square� and a cubic are printed out for specified limits�

Simpson$s Rule is used to compute integral of a function f	x

between limits a and b as follows�

I � 	h � �
 � 	y� � �y� � �y� � �y� � �y� ����� yn
�

where� yk � f	a � kh
� and h � 	b � a
 � n for some even integer

n� Except for the multiplier h��� the above sum is called the

Simpson sum�

��

�include �stdio�h�

�include �sumutil�h�

�include �simputil�h�

main	

� double r� a� b� h� self	
� square	
� cube	
�

int n�

printf	����Integration by Simpson$s Rule����n�n�
�

printf	�Integrals of x� square of x� and cube of x�n�
�

printf	�Sampling interval for integration� �
�

scanf	��lf�� �h
�

printf	�Type lower and upper limits� EOF to quit�n�
�

while 	scanf	��lf �lf�� �a� �b
 �� EOF
 �

n � 	b � a
 � h�

if 	n � �
 �

n���

h � 	b � a
 � n�

�

r � integral	self� a� b� h
�

printf	�Integral of st� line � �f�n�� r
�

r � integral	square� a� b� h
�

printf	�Integral of square � �f�n�� r
�

r � integral	cube� a� b� h
�

printf	�Integral of cubic � �f�n�� r
�

�

�

Figure ���	
� Driver for Numeric Integration Program

����� SUMMARY ���

somewhat better sampling interval ����� and the results are quite accurate� A smaller sampling
interval would be even better� but would require more computation time� A compromise between
accuracy and speed is required in most numeric computations�

���� Summary

In this chapter we have shown how we can use the features of the C language as well as the pro�
gram design techniques we have discussed throughout this text to implement programs for several
common engineering and scienti
c applications� In general� we have done this by developing a set
of utility functions to use as a toolbag for writing the application� Our treatment of engineering
and scienti
c computing has not been� by any means� comprehensive� References� such as ��� be�
low� can be a source of algorithms for many additional applications� However� with your current
knowledge of C you can now develop programs from these algorithms to solve your problems�

E ho omaika i oukou�
�Good luck��

References�

���� Press� William H�� Flannery� Brian P�� Teukolsky� Saul A�� Vettering� William T�� Numerical
Recipes in C� Cambridge University Press� Cambridge� ��

�

��
 CHAPTER ��� ENGINEERING PROGRAMMING EXAMPLES

���� Problems

�� Write a menu driven program that allows the user to specify a matrix operation� add�
subtract� multiply�

	� Write a simple calculator program that performs complex number arithmetic� The input
should be an operand� followed by an operator� followed by an operand� The output should
be the result of applying the operator to operands�

�� Repeat 	� but allow the user to continue entering operators and operands in sequence� The
user may also request that a value should be saved for later use�

�� Evaluate a polynomial P �z� with speci
ed coe�cients for a complex value of the variable�
The highest degree of the polynomial is ��� The user must enter coe�cient and exponent
pairs for the polynomial� and specify the value of the variable for which the polynomial is
to be evaluated�

�� Consider a rational function of a variable s�

P �s�

Q�s�

where P �s� and Q�s� are polynomials in a variable� s� with real coe�cients� Evaluate the
function for a value of s � j�� Evaluate the function for di�erent values of s� Plot the
magnitude and angle of the values�

