
Paging

• Divide memory up into small pages

• Map virtual pages to physical pages

- Each process has separate mapping

• Allow OS to gain control on certain operations

- Read-only pages trap to OS on write

- Invalid pages trap to OS on read or write

- OS can change mapping and resume application

• Other features sometimes found:

- Hardware can set “accessed” and “dirty” bits

- Control page execute permission separately from read/write

- Control caching of page

16 / 36



Paging trade-offs

• Eliminates external fragmentation

• Simplifies allocation, free, and backing storage (swap)

• Average internal fragmentation of .5 pages per “segment”

17 / 36



Simplified allocation

gcc emacs

Disk

physical
memory

• Allocate any physical page to any process

• Can store idle virtual pages on disk

18 / 36



Paging data structures
• Pages are fixed size, e.g., 4K

- Least significant 12 (log2 4K) bits of address are page offset

- Most significant bits are page number

• Each process has a page table
- Maps virtual page numbers to physical page numbers

- Also includes bits for protection, validity, etc.

• On memory access: Translate VPN to PPN,
then add offset

19 / 36



Example: Paging on PDP-11

• 64K virtual memory, 8K pages

- Separate address space for instructions & data

- I.e., can’t read your own instructions with a load

• Entire page table stored in registers

- 8 Instruction page translation registers

- 8 Data page translations

• Swap 16 machine registers on each context switch

20 / 36



x86 Paging
• Paging enabled by bits in a control register (%cr0)

- Only privileged OS code can manipulate control registers

• Normally 4KB pages

• %cr3: points to 4KB page directory
- See pagedir activate in Pintos

• Page directory: 1024 PDEs (page directory entries)
- Each contains physical address of a page table

• Page table: 1024 PTEs (page table entries)
- Each contains physical address of virtual 4K page

- Page table covers 4 MB of Virtual mem

• See old intel manual for simplest explanation
- Also volume 2 of AMD64 Architecture docs

- Also volume 3A of latest Pentium Manual
21 / 36

http://www.scs.stanford.edu/14wi-cs140/pintos/pintos_3.html#SEC37
http://www.scs.stanford.edu/05au-cs240c/lab/i386/s05_02.htm
http://developer.amd.com/Resources/documentation/guides/Pages/default.aspx#manuals
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html


x86 page translation

Page Directory

Directory Entry

CR3 (PDBR)

Page Table

Page−Table Entry

4−KByte Page

Physical Address

32*

10

12

10

20

0

irectory e f s

31 21 111222

Linear Address

D Tabl O f et

*32 bits aligned onto a 4−KByte boundary

1024 PDE × 1024 PTE = 220 Pages

22 / 36



x86 page directory entry

3 1

A v a ila b le fo r s y s te m p ro g ra m m e r ’s u s e

G lo b a l p a g e (Ig n o re d )

P a g e s iz e (0 in d ic a te s 4 K B y te s )

R e s e rv e d (s e t to 0 )

1 2 11 9 8 7 6 5 4 3 2 1 0

P
S

P
CA0

A c c e s s e d

C a c h e d is a b le d

W rite −th ro u g h

U s e r/S u p e rv is o r

R e a d /W rite

P re s e n t

D
P

P
W
T

U
/

S

R
/

W
GA v a ilP a g e −Ta b le B a s e A d d re ss

P a g e −D i r e c t o r y E n t r y (4 −K B y t e P a g e Ta b l e )

23 / 36



x86 page table entry

31

Available for system programmer’s use

Global Page

Page Table Attribute Index

Dirty

12 11 9 8 7 6 5 4 3 2 1 0

P
CAD

Accessed

Cache Disabled

Write−Through

User/Supervisor

Read/Write

Present

D
P

P
W
T

U
/
S

R
/

W
AvailPage Base Address

Page−Table En ry (4−KByte Page)

P
A
T

G

t

24 / 36



x86 hardware segmentation
• x86 architecture also supports segmentation

- Segment register base + pointer val = linear address

- Page translation happens on linear addresses

• Two levels of protection and translation check
- Segmentation model has four privilege levels (CPL 0–3)

- Paging only two, so 0–2 = kernel, 3 = user

• Why do you want both paging and segmentation?

• Short answer: You don’t – just adds overhead
- Most OSes use “flat mode” – set base = 0, bounds = 0xffffffff

in all segment registers, then forget about it

- x86-64 architecture removes much segmentation support

• Long answer: Has some fringe/incidental uses
- VMware runs guest OS in CPL 1 to trap stack faults

- OpenBSD used CS limit for W∧X when no PTE NX bit

25 / 36



x86 hardware segmentation
• x86 architecture also supports segmentation

- Segment register base + pointer val = linear address

- Page translation happens on linear addresses

• Two levels of protection and translation check
- Segmentation model has four privilege levels (CPL 0–3)

- Paging only two, so 0–2 = kernel, 3 = user

• Why do you want both paging and segmentation?

• Short answer: You don’t – just adds overhead
- Most OSes use “flat mode” – set base = 0, bounds = 0xffffffff

in all segment registers, then forget about it

- x86-64 architecture removes much segmentation support

• Long answer: Has some fringe/incidental uses
- VMware runs guest OS in CPL 1 to trap stack faults

- OpenBSD used CS limit for W∧X when no PTE NX bit
25 / 36



Making paging fast

• x86 PTs require 3 memory references per load/store

- Look up page table address in page directory

- Look up PPN in page table

- Actually access physical page corresponding to virtual address

• For speed, CPU caches recently used translations

- Called a translation lookaside buffer or TLB

- Typical: 64-2K entries, 4-way to fully associative, 95% hit rate

- Each TLB entry maps a VPN→ PPN + protection information

• On each memory reference

- Check TLB, if entry present get physical address fast

- If not, walk page tables, insert in TLB for next time
(Must evict some entry)

26 / 36



TLB details

• TLB operates at CPU pipeline speed =⇒ small, fast

• Complication: what to do when switch address space?

- Flush TLB on context switch (e.g., old x86)

- Tag each entry with associated process’s ID (e.g., MIPS)

• In general, OS must manually keep TLB valid

• E.g., x86 invlpg instruction

- Invalidates a page translation in TLB

- Must execute after changing a possibly used page table entry

- Otherwise, hardware will miss page table change

• More Complex on a multiprocessor (TLB shootdown)

27 / 36



x86 Paging Extensions

• PSE: Page size extensions

- Setting bit 7 in PDE makes a 4MB translation (no PT)

• PAE Page address extensions

- Newer 64-bit PTE format allows 36 bits of physical address

- Page tables, directories have only 512 entries

- Use 4-entry Page-Directory-Pointer Table to regain 2 lost bits

- PDE bit 7 allows 2MB translation

• Long mode PAE

- In Long mode, pointers are 64-bits

- Extends PAE to map 48 bits of virtual address (next slide)

- Why are aren’t all 64 bits of VA usable?

28 / 36



x86 long mode paging

Sign Extend Level−4 offset

Page−Map

(PML4)

Virtual Address

Pointer Offset

Page Directory−

Offset

Page Directory Page−Table

Offset

Physical−

Page Offset

Table Table Table Table

Page
Page−

DirectoryPointer
Directory

Page−
Page−Map

Level−4

4−Kbyte

Physical

Page

01112202129303839474863

Physical

Address

PTE

PDE

PDPE

PML4E

9999

52

52

52

52

1251

CR3Page−Map L4 Base Addr

12

29 / 36



Where does the OS live?
• In its own address space?

- Can’t do this on most hardware (e.g., syscall instruction won’t
switch address spaces)

- Also would make it harder to parse syscall arguments passed as
pointers

• So in the same address space as process
- Use protection bits to prohibit user code from writing kernel

• Typically all kernel text, most data at same VA in every
address space

- On x86, must manually set up page tables for this

- Usually just map kernel in contiguous virtual memory when boot
loader puts kernel into contiguous physical memory

- Some hardware puts physical memory (kernel-only) somewhere in
virtual address space

30 / 36



Pintos memory layout

Data segment

Kernel/

User stack

Pseudo-physical memory
0xffffffff

0x00000000

0x08048000

(PHYS BASE)
0xc0000000

BSS / Heap

Code segment

Invalid virtual addresses

31 / 36

http://www.scs.stanford.edu/14wi-cs140/pintos/pintos_3.html#SEC38


Very different MMU: MIPS

• Hardware has 64-entry TLB

- References to addresses not in TLB trap to kernel

• Each TLB entry has the following fields:
Virtual page, Pid, Page frame, NC, D, V, Global

• Kernel itself unpaged

- All of physical memory contiguously mapped in high VM

- Kernel uses these pseudo-physical addresses

• User TLB fault hander very efficient

- Two hardware registers reserved for it

- utlb miss handler can itself fault—allow paged page tables

• OS is free to choose page table format!

32 / 36



DEC Alpha MMU

• Software managed TLB (like MIPS)

- 8KB, 64KB, 512KB, 4MB pages all available

- TLB supports 128 instruction/128 data entries of any size

• But TLB miss handler not part of OS

- Processor ships with special “PAL code” in ROM

- Processor-specific, but provides uniform interface to OS

- Basically firmware that runs from main memory like OS

• Various events vector directly to PAL code

- call pal instruction, TLB miss/fault, FP disabled

• PAL code runs in special privileged processor mode

- Interrupts always disabled

- Have access to special instructions and registers

33 / 36



PAL code interface details

• Examples of Digital Unix PALcode entry functions

- callsys/retsys - make, return from system call

- swpctx - change address spaces

- wrvptptr - write virtual page table pointer

- tbi - TBL invalidate

• Some fields in PALcode page table entries

- GH - 2-bit granularity hint→ 2N pages have same translation

- ASM - address space match→ mapping applies in all processes

34 / 36



Example: Paging to disk
• gcc needs a new page of memory

• OS re-claims an idle page from emacs

• If page is clean (i.e., also stored on disk):
- E.g., page of text from emacs binary on disk

- Can always re-read same page from binary

- So okay to discard contents now & give page to gcc

• If page is dirty (meaning memory is only copy)
- Must write page to disk first before giving to gcc

• Either way:
- Mark page invalid in emacs

- emacs will fault on next access to virtual page

- On fault, OS reads page data back from disk into new page, maps
new page into emacs, resumes executing

35 / 36



Paging in day-to-day use

• Demand paging

• Growing the stack

• BSS page allocation

• Shared text

• Shared libraries

• Shared memory

• Copy-on-write (fork, mmap, etc.)

• Q: Which pages should have global bit set on x86?

36 / 36


