
Want processes to co-exist

• Consider multiprogramming on physical memory

- What happens if pintos needs to expand?

- If emacs needs more memory than is on the machine??

- If pintos has an error and writes to address 0x7100?

- When does gcc have to know it will run at 0x4000?

- What if emacs isn’t using its memory?

1 / 36



Issues in sharing physical memory

• Protection

- A bug in one process can corrupt memory in another

- Must somehow prevent process A from trashing B’s memory

- Also prevent A from even observing B’s memory (ssh-agent)

• Transparency

- A process shouldn’t require particular physical memory bits

- Yes processes often require large amounts of contiguous memory
(for stack, large data structures, etc.)

• Resource exhaustion

- Programmers typically assume machine has “enough” memory

- Sum of sizes of all processes often greater than physical memory

2 / 36



Virtual memory goals

load

app.

kernel

virtual address
0x30408

MMU

Is address
legal?

Yes, phys. addr
0x92408

memorydata

NoTo fault handler

• Give each program its own “virtual” address space
- At run time, Memory-Management Unit relocates each load, store

to actual memory. . . App doesn’t see physical memory

• Also enforce protection
- Prevent one app from messing with another’s memory

• And allow programs to see more memory than exists
- Somehow relocate some memory accesses to disk

3 / 36



Virtual memory advantages
• Can re-locate program while running

- Run partially in memory, partially on disk

• Most of a process’s memory will be idle (80/20 rule).

gcc

kernel

idle idle

emacs

kernel

physical
memory

- Write idle parts to disk until needed

- Let other processes use memory of idle part

- Like CPU virtualization: when process not using CPU, switch
(Not using a memory region? switch it to another process)

• Challenge: VM = extra layer, could be slow
4 / 36



Idea 1: load-time linking

• Linker patches addresses of symbols like printf

• Idea: link when process executed, not at compile time
- Determine where process will reside in memory

- Adjust all references within program (using addition)

• Problems?

- How to enforce protection

- How to move once in memory (Consider: data pointers)

- What if no contiguous free region fits program?

5 / 36



Idea 1: load-time linking

• Linker patches addresses of symbols like printf

• Idea: link when process executed, not at compile time
- Determine where process will reside in memory

- Adjust all references within program (using addition)

• Problems?
- How to enforce protection

- How to move once in memory (Consider: data pointers)

- What if no contiguous free region fits program?
5 / 36



Idea 2: base + bound register

• Two special privileged registers: base and bound

• On each load/store:
- Physical address = virtual address + base

- Check 0 ≤ virtual address < bound, else trap to kernel

• How to move process in memory?

- Change base register

• What happens on context switch?

- OS must re-load base and bound register

6 / 36



Idea 2: base + bound register

• Two special privileged registers: base and bound

• On each load/store:
- Physical address = virtual address + base

- Check 0 ≤ virtual address < bound, else trap to kernel

• How to move process in memory?
- Change base register

• What happens on context switch?

- OS must re-load base and bound register

6 / 36



Idea 2: base + bound register

• Two special privileged registers: base and bound

• On each load/store:
- Physical address = virtual address + base

- Check 0 ≤ virtual address < bound, else trap to kernel

• How to move process in memory?
- Change base register

• What happens on context switch?
- OS must re-load base and bound register

6 / 36



Definitions

• Programs load/store to virtual (or logical) addresses

• Actual memory uses physical (or real) addresses

• VM Hardware is Memory Management Unit (MMU)

- Usually part of CPU

- Accessed w. privileged instructions (e.g., load bound reg)

- Translates from virtual to physical addresses

- Gives per-process view of memory called address space

7 / 36



Address space

8 / 36



Base+bound trade-offs

• Advantages

- Cheap in terms of hardware: only two registers

- Cheap in terms of cycles: do add and compare in parallel

- Examples: Cray-1 used this scheme

• Disadvantages

- Growing a process is expensive or impossible

- No way to share code or data (E.g., two
copies of bochs, both running pintos)

• One solution: Multiple segments

- E.g., separate code, stack, data segments

- Possibly multiple data segments

9 / 36



Base+bound trade-offs

• Advantages

- Cheap in terms of hardware: only two registers

- Cheap in terms of cycles: do add and compare in parallel

- Examples: Cray-1 used this scheme

• Disadvantages

- Growing a process is expensive or impossible

- No way to share code or data (E.g., two
copies of bochs, both running pintos)

• One solution: Multiple segments

- E.g., separate code, stack, data segments

- Possibly multiple data segments

9 / 36



Segmentation

• Let processes have many base/bound regs

- Address space built from many segments

- Can share/protect memory at segment granularity

• Must specify segment as part of virtual address
10 / 36



Segmentation mechanics

• Each process has a segment table

• Each VA indicates a segment and offset:
- Top bits of addr select segment, low bits select offset (PDP-10)

- Or segment selected by instruction or operand (means you need
wider “far” pointers to specify segment)

11 / 36



Segmentation example

0x4000

0x3000

0x2000

0x1500

0x1000

0x0700

0x0000

virtual physical

0x4700

0x3000

0x500

0x0000

0x4000

• 2-bit segment number (1st digit), 12 bit offset (last 3)

- Where is 0x0240? 0x1108? 0x265c? 0x3002? 0x1600?
12 / 36



Segmentation trade-offs

• Advantages

- Multiple segments per process

- Allows sharing! (how?)

- Don’t need entire process in memory

• Disadvantages

- Requires translation hardware, which could limit performance

- Segments not completely transparent to program (e.g., default
segment faster or uses shorter instruction)

- n byte segment needs n contiguous bytes of physical memory

- Makes fragmentation a real problem.

13 / 36



Fragmentation

• Fragmentation =⇒ Inability to use free memory

• Over time:

- Variable-sized pieces = many small holes (external fragmentation)

- Fixed-sized pieces = no external holes, but force internal waste
(internal fragmentation)

14 / 36


