Want processes to co-exist

0x9000
0S
0x7000
cc
J 0x4000
bochs/pintos
0x3000
emacs
0x0000

¢ Consider multiprogramming on physical memory

- What happens if pintos needs to expand?

If emacs needs more memory than is on the machine??

If pintos has an error and writes to address 0x7100?

When does gcc have to know it will run at 0x4000?

What if emacs isn’t using its memory?

Issues in sharing physical memory

e Protection

- A bug in one process can corrupt memory in another
- Must somehow prevent process A from trashing B’s memory

- Also prevent A from even observing B’s memory (ssh-agent)

¢ Transparency

- A process shouldn’t require particular physical memory bits

- Yes processes often require large amounts of contiguous memory
(for stack, large data structures, etc.)

¢ Resource exhaustion

- Programmers typically assume machine has “enough” memory

- Sum of sizes of all processes often greater than physical memory

Virtual memory goals

Is address
legal?
o

app. virtual address S Yes, phys. addr
0x30408 0x92408
\ | data | memory
kernel

To fault handler No

¢ Give each program its own “virtual” address space

- At run time, Memory-Management Unit relocates each load, store
to actual memory... App doesn’t see physical memory

e Also enforce protection
- Prevent one app from messing with another’s memory
¢ And allow programs to see more memory than exists

- Somehow relocate some memory accesses to disk

3/36

Virtual memory advantages

¢ Can re-locate program while running

- Run partially in memory, partially on disk

e Most of a process’s memory will be idle (80/20 rule).

gce emacs
><><
kernel
. |

- Write idle parts to disk until needed

kernel

- Let other processes use memory of idle part
- Like CPU virtualization: when process not using CPU, switch
(Not using a memory region? switch it to another process)
e Challenge: VM = extra layer, could be slow

4/36

Idea 1: load-time linking

static a.out

Jjump 0x2000

0x3000

0x1000

0Ss

a.out’
jump 0x5000

0x6000

0x4000

o Linker patches addresses of symbols like printf

¢ Idea: link when process executed, not at compile time

- Determine where process will reside in memory

- Adjust all references within program (using addition)

e Problems?

Idea 1: load-time linking

static a.out

Jjump 0x2000

0x3000

0x1000

0Ss

a.out’
jump 0x5000

0x6000

0x4000

o Linker patches addresses of symbols like printf

¢ Idea: link when process executed, not at compile time

- Determine where process will reside in memory

- Adjust all references within program (using addition)

e Problems?

- How to enforce protection

- How to move once in memory (Consider: data pointers)

- What if no contiguous free region fits program?

Idea 2: base + bound register

static a.out
0x3000

Jjump 0x2000

0x1000

0Ss

a.out’
jump 0x5000

0x6000

0x4000

Two special privileged registers: base and bound

On each load/store:

- Physical address = virtual address + base

- Check 0 < virtual address < bound, else trap to kernel

How to move process in memory?

What happens on context switch?

Idea 2: base + bound register

static a.out
0x3000

Jjump 0x2000

0x1000

0Ss

a.out’
jump 0x5000

0x6000

0x4000

Two special privileged registers: base and bound

On each load/store:

- Physical address = virtual address + base

- Check 0 < virtual address < bound, else trap to kernel

How to move process in memory?

- Change base register

What happens on context switch?

Idea 2: base + bound register

static a.out
0x3000

Jjump 0x2000

0x1000

0Ss

a.out’
jump 0x5000

0x6000

0x4000

Two special privileged registers: base and bound

On each load/store:

- Physical address = virtual address + base

- Check 0 < virtual address < bound, else trap to kernel

How to move process in memory?

- Change base register

What happens on context switch?

- OS must re-load base and bound register

Definitions

¢ Programs load/store to virtual (or logical) addresses

e Actual memory uses physical (or real) addresses

e VM Hardware is Memory Management Unit (MMU)

virtual addrs

CPU

.

Usually part of CPU

Accessed w. privileged instructions (e.g., load bound reg)

Physical
addrs

MMU

L

Translates from virtual to physical addresses

memory

Gives per-process view of memory called address space

Address space

Virtual Address Physical Address
View View

0

0S

Base+bound trade-offs

e Advantages

- Cheap in terms of hardware: only two registers
- Cheap in terms of cycles: do add and compare in parallel

- Examples: Cray-1 used this scheme

¢ Disadvantages

Base+bound trade-offs

e Advantages
- Cheap in terms of hardware: only two registers
- Cheap in terms of cycles: do add and compare in parallel

- Examples: Cray-1 used this scheme

¢ Disadvantages Free space

- Growing a process is expensive or impossible _

- No way to share code or data (E.g., two
. o gce
copies of bochs, both running pintos)

pinfosl

¢ One solution: Multiple segments

- E.g., separate code, stack, data segments

- Possibly multiple data segments

9/36

0x1000

0x3000

0x5000

0x6000

gcc

Text seg
r/o

Stack seg
r/w

Segmentation

Baseé&bound?

Real memory

¢ Let processes have many base/bound regs

- Address space built from many segments

- Can share/protect memory at segment granularity

e Must specify segment as part of virtual address

0x2000

0x8000

0x6000

Segmentation mechanics

fault
Virtual addr n mem
3 P& 0x100Q
1 1
Seg 128

seg

e Each process has a segment table
e Each VA indicates a segment and offset:
- Top bits of addr select segment, low bits select offset (PDP-10)

- Or segment selected by instruction or operand (means you need
wider “far” pointers to specify segment)

Segmentation example

bounds rw

Seg Dbase
0 0x4000
1 0x0000
2 0x3000
3

Ox6ff
Ox4ff
Oxfff

10
11
11
00

virtual physical
024000 0x4700
0%3000 0%4000
0%2000 0%3000
0x1500

0x0700

0x0000

¢ 2-bit segment number (Ist digit), 12 bit offset (last 3)
- Where is 0x0240? 0x1108? 0x265c? 0x3002? 0x1600?

12 /36

Segmentation trade-offs

e Advantages]
- Multiple segments per process gcc
- Allows sharing! (how?) = 4
- Don’t need entire process in memory
- where?
¢ Disadvantages gee emacs?

Requires translation hardware, which could limit performance

Segments not completely transparent to program (e.g., default
segment faster or uses shorter instruction)

n byte segment needs n contiguous bytes of physical memory

Makes fragmentation a real problem.

Fragmentation

e Fragmentation = Inability to use free memory

e Over time:

- Variable-sized pieces = many small holes (external fragmentation)

- Fixed-sized pieces = no external holes, but force internal waste
(internal fragmentation)

External
] e ,—,—”””fra mentation
Pintos fele} g

} Unused

(“internal
fragmentation”)

allocated

14/ 36

