
Windows Syscall Quiz

by Mateusz Jurczyk (j00ru)

Do you consider yourself a Windows internals expert?
If you do, then try to correctly answer the following
questions. If not, feel free to follow along and hopefully
learn some interesting facts about the kernel of the
most popular desktop operating system in the world. ,

The quiz:

1. How many syscalls do Windows NT 4.0 and Win-
dows 10 1903 have, i.e. how much has the system
call table grown in the 23 years between 1996–2019?

2. Are there differences in the syscall interfaces be-
tween various editions of the same versions of Win-
dows?

3. Have any legitimate driver ever registered their own
syscall table(s) beyond the standard ntoskrnl.exe

and win32k.sys?

Ready? Let’s see how you did!

Question 1: syscall table growth

The first release of Windows NT 4.0 Workstation had
210 core system calls and 496 graphical ones, adding up
to a total of 706. At the time of this writing, the latest
32-bit build of Windows 10 declares 464 + 1256 = 1720
syscalls:

210

496464

1256

0

250

500

750

1000

1250

ntoskrnl.exe win32k.sys

Windows NT 
4.0

Windows 10 
19H1

This is a 143% increase in the size of the interface,
which is an attack surface available to locally running
code. In other words, a new system call has been
added on average every week for the past two decades.
Of course it is not a fully precise metric as it doesn’t ac-
count for code hidden behind the win32k!NtUserCall

family, IOCTLs and many other factors, but it does il-
lustrate the growth of the kernel complexity over time.
Fortunately, starting with Windows 8 developers can re-
strict access to parts of the attack surface for their sand-
boxed processes, thanks to new features such as the sys-
tem call disable policy1.

1https://docs.microsoft.com/en-us/windows/win32/api/
winnt/ns-winnt-process mitigation system call disable policy

Question 2: cross-edition differences

As a general rule, various editions of the same OS
(Home, Pro, Enterprise etc.) use the same underly-
ing kernel and thus share the same set of system calls.
However, there is one notable exception. In May 2019,
I noticed that in the syscall tables served on my blog,
there were a few names only present in Windows NT
4.0 SP4, but not in SP3, SP5, or any other system. One
such symbol was NtCreateWinStation:

After a brief evening research with Gynvael Coldwind,
we figured out that these syscalls (5 of them in total)
were only found in the Terminal Server Edition of Win-
dows NT, released two years after Workstation. Consid-
ering that the data came from the original table created
by skape and hosted by Metasploit, the list for SP4 must
have been extracted from a TS version of the system, un-
like for other service packs, and so it has stayed this way
up until recently. And so the riddle was solved.

Question 3: non-standard syscall tables

In that same evening, we decided to finally establish if
there ever had been real syscalls with IDs above 0x2000,
i.e. registered in the SSDT by a non-standard driver.
We had heard rumors about IIS doing it at some point
in time, but we had never observed it in real life.

Very quickly, we found several online sources confirm-
ing that story for IIS4 and IIS5, on Windows NT–2000.
Some of them pointed us to a driver called SPUD.sys,
which stands for Special Purpose Utility Driver (if you
find that name funny, check the story behind afd.sys).
We found the driver on an extra Option Pack CD for
Windows NT, and on the standard installation disk of
Windows 2000. This way, we confirmed that it indeed
called KeAddSystemServiceTable with 9 entries in IIS4
and 7 entries in IIS5. We also learned that the associ-
ated ring-3 library was isatq.dll, with “atq” meaning
asynchronous thread queue. The only missing piece were
the names of the syscalls.

After another while of recon, we managed to dig
out the symbols for both versions, in a dedicated
.cab archive (NT) and a complete system symbols
package (2000). Our curiosity was finally satis-
fied, with the mysterious syscalls turning out to be
SPUD{Initialize, Terminate, TransmitFileAndRecv,
SendAndRecv, Cancel, GetCounts, CreateFile} in
IIS5, with the addition of SPUDCheckStatus and
SPUDOplockAcknowledge in IIS4. It was a fun arche-
ological adventure into operating system prehistory.

Mateusz Jurczyk

Windows Syscall QuizOS Internals

Blog: https://j00ru.vexillium.org/
Twitter: https://twitter.com/j00ru
GitHub: https://github.com/j00ru SAA-ALL 0.0.519


