
Operating systems 2018
1DT044 and 1DT096

2018-02-07 karl.marklund@it.uu.se Uppsala University

CPU scheduling
Lecture 3

Module 3

mailto:karl.marklund@it.uu.se

ready queue CPU

I/O queueI/O
event

I/O
request

job
termination

job
creation

Multiprogramming
A schematic view of multiprogramming

A job only leave the
CPU when requesting
I/O.

In RAM

In RAM

ready queue CPU

I/O queueI/O
event

I/O
request

job
termination

job
creation

Multitasking
A schematic view of multitasking

time slice
expires

A job can be forced to
leave the CPU by a
timer.

In RAM

In RAM

ready queue CPU

I/O queueI/O
event

I/O
request

process
termination

time slice
expires

fork a
child

a new child process is created

Process creation

Processes are
created by forking,
i.e., the parent
process creates a
new process where
the new process is
a copy of the
parent.

In RAM

In RAM

ready queue
ready queue CPU

I/O queueI/O event I/O request

process
termination

time slice
expires

fork a child

STS

The Short-term scheduler (STS), aka CPU scheduler,
selects which process in the in memory ready queue that
should be executed next and allocates CPU.

Short-term scheduler

In RAM

In RAM

Scheduler dispatch
The CPU scheduler selects one process from among the
processes in memory that are READY to execute. The
scheduler dispatcher then gives the selected process control
of the CPU. This action is called scheduler dispatch (SD).

ready running terminated

waiting

new

SD

Dispatcher module gives control of the CPU to
the process selected by the short-term
scheduler; this involves:

★ switching context

★ switching to user mode

★ jumping to the proper location in the user
program to resume execution of that
program.

Dispatch latency: time it takes for the
dispatcher to stop one process and start another.

Process
Control Block

(PCB)

Process Control Block (PCB)

The process control block (PCB) is a data
structure in the operating system kernel
containing the information needed to
manage a particular process.
Source https://en.wikipedia.org/wiki/Process_control_block 2018-01-21

In brief, the PCB serves as the repository
for any information that may vary from
process to process.

https://en.wikipedia.org/wiki/Process_control_block

Process Control Block (PCB)

Process id (PID)

Process state (new, ready, running,
waiting or terminated)

CPU Context

I/O status information

Memory management information

CPU scheduling information

Example of information stored in the PCB

ready queue
ready queue CPU

I/O queueI/O event I/O request

process
termination

time slice
expires

fork a childLTS

STS

The Long-term scheduler (LTS) (aka job scheduler) decides whether a new
process should be brought into the ready queue in main memory or delayed.
When a process is ready to execute, it is added to the job pool (on disk). When
RAM is sufficiently free, some processes are brought from the job pool to the
ready queue (in RAM).

Long-term scheduler (1)

In RAM

In RAM

Job pool

In secondary storage

ready queue
ready queue CPU

I/O queueI/O event I/O request

process
termination

time slice
expires

fork a childLTS

STS

On some systems, the long-term scheduler may be absent or
minimal. For example, time-sharing systems such as UNIX and
Microsoft Windows systems often have no long-term scheduler but
simply put every new process in memory for the short-term scheduler.

In RAM

In RAM

Job pool

In secondary storage

Long-term scheduler (2)

ready queue CPU

I/O queueI/O event I/O request

process
termination

time slice
expires

fork a childLTS

STS

Swapped outMTS MTS

The medium-term scheduler (MTS) temporarily removes processes from
main memory and places them in secondary storage and vice versa,
which is commonly referred to as "swapping in" and "swapping out".

Medium-term scheduler

In RAM

In RAM

In secondary storage

Job pool

In secondary storage

Scheduling
algorithms

ready
queue

CPU

I/O queueI/O event I/O request

process
termination

time slice
expires

fork a child

Short Term
Scheduler (STS)

Algorithms?

Scheduling algorithms

Perfomance
Performance is a context dependent metric.

What do we mean by performance?

Scheduling
criteria

ready queue CPU

I/O queueI/O
event

I/O
request

job
termination

job
creation

Multiprogramming
Multiprogramming maximises CPU utilisation.

Scheduling
criteria

CPU utilisation is not the only criteria ...

Criteria Definition Goal

CPU utilization The % of time the CPU is executing user
level process code. Maximize

Throughput Number of processes that complete their
execution per time unit. Maximize

Turnaround time Amount of time to execute a particular
process. Minimize

Waiting time Amount of time a process has been
waiting in the ready queue. Minimize

Response time
Amount of time it takes from when a
request was submitted until the first
response is produced.

Minimize

Scheduling criteria

All animals are
equal, but some
animals are more
equal than others.

George Orwell
Animal farm (1945)

(An example of political satire)

Are all processes
equal, or are
some processes
more equal than
others?

Karl Marklund
Operating systems 2018

Classification
of processes

Do all processes behave the same?

Do all processes have the same needs?

CPU bursts and I/O bursts
When a program executes it alternates between CPU
bursts and I/O bursts.

Histogram of CPU-burst times
Number of
CPU bursts

CPU burst
duration

(ms)

Long CPU burst are very rare - why?

Long CPU burst means long period working with memory
and registers without any output to screen or any input
from a user or any input from file or any output to file.
But, eventually, every program does at least one of these.
Even background programs are usually reading/writing files.

An I/O-bound process spends
more time doing I/O than
computations and is characterised
by many short CPU bursts.

An CPU-bound process spends
more time doing computations and
is characterised by few very long
CPU bursts.

ready queue CPU

I/O queueI/O event I/O request

process
termination

time slice
expires

fork a childLTS

STS

Swapped outMTS MTS

The medium-term scheduler (MTS) can be used to maintain a good
balance between I/O bound and CPU bound processes in the ready
queue.

I/O bound and CPU bound processes

In RAM

In RAM

In secondary storage

Process A Process B Process Z

The operating systems controls the hardware and coordinates its use
among the various application programs for the various user. An operating
system provides an environment for the execution of programs.

Computer hardware

Human user Human user

Not all processes
interacts with human
users.

★ Interactive

★ Batch

★ Real-Time

★ I/O Bound

★ CPU Bound

In general, processes can be classified by the following
characteristics.

Classification of processes

Interactive
Interactive processes interact constantly with their human users.

★ Spend a lot of time waiting for keypresses and mouse
operations.

★ When input is received, the process must be woken up
quickly, or the user will find the system to be
unresponsive.

★ Typically, the average delay must fall between 50 and 150
ms. The variance of such delay must also be bounded, or
the user will find the system to be erratic.

Typical examples:

★ Command shells and interpreters, text editors, graphical
applications and games.

Batch
Batch processes do not interact with human users.

★ Do not need to be responsive.

★ Often run in the background.

★ Often penalised by the scheduler.

Typical examples:

★ Compilers, database search engines, and scientific
computations.

Real-time
Real-time processes have very strong scheduling
requirements.

★ Such processes should never be blocked by lower-
priority processes.

★ Should have a short response time.

★ Most important, response time should have a minimum
variance.

 Typical examples:

★ Video and sound applications, robot controllers, and
programs that collect data from physical sensors.

The two classifications above are somewhat independent. For
instance, a batch process can be either I/O-bound (e.g., a database
server) or CPU-bound (e.g., an image-rendering program).

Interactive

Batch

Real-time

CPU-bound

IO-bound

Relation?

In general, there is no way to distinguish between interactive and
batch programs. In order to offer a good response time to
interactive applications, Linux (like all Unix kernels) implicitly
favours I/O-bound processes over CPU-bound ones.

Scheduling
algorithms

ready
queue

CPU

I/O queueI/O event I/O request

process
termination

fork a child

Short Term Scheduler (STS)
Algorithms

• First-Come, First-Served (FCFS)
• Shortest Job First (SJF)
• Round-Robin (RR)
• Other alternatives?

Scheduling algorithms

Evaluation of
CPU scheduling

algorithms

Trace with CPU and I/O burst times

Evaluation of CPU schedulers by simulation
To evaluate different CPU scheduling algorithms, data obtained from
instrumented executables can be used as input in simulations.

Model of
CPU

scheduling

ready running terminated

waiting

new

Simplified model of CPU
scheduling

To make it easy to reason about CPU scheduling we will
use a simplified model.

Events causing a
scheduler dispatch

ready running terminated

waiting

new

SD

1

2

5
4

3

1 A new process arrives at the ready queue.

ready running terminated

waiting

new

SD

1

2

5
4

3

2 Time slice expires or other forms of preemption.

3 The running process terminates.

4 The running process requests I/O.

5 An I/O request completes.

Preemptive and nonpreemptive
Scheduler dispatch can be preemptive or nonpreemptive.

ready running terminated

waiting

new

SD

1

2

5
4

3

A preemptive dispatch is caused by an event external to the
running running process.

A nonpreemptive dispatch is caused by the running process
itself.

Events causing a preemptive scheduler dispatch:

Events causing a nonpreemptive scheduler dispatch:

Preemptive and nonpreemptive
Scheduler dispatch can be preemptive or nonpreemptive.

1 2

3 4

ready running terminated

waiting

new

SD

1

2

5
4

3

5

ready running terminated

waiting

new

4

3

CPU burst
With CPU burst we mean the time spent by a running process
using the CPU before terminating or performing a
blocking system call.

3 4

ready running terminated

waiting

new

Preemption
A process may get preempted , i.e., forced off the CPU
and put back in the ready queue before completing its CPU
burst.

P

P

ready running terminated

waiting

new

Process arrival
We make no difference between a new process arriving to
the ready queue and a process coming back to the ready
queue after completion of a blocking system call.

1

5

1

5

ready running terminated

waiting

new

Waiting time
With waiting time we mean the total time a process has been waiting in the
ready queue until terminating or performing a blocking system call.
A process may get preempted and forced off the CPU and put back in
the ready queue before completing its CPU burst and have more waiting
time added.

4

3

3 4

P

P

ready running terminated

waiting

new

Response time
The model we use to study and compare different CPU scheduling algorithms
is abstract and don't take into account what a response is and that it may take
time to produce a response once a task gets to execute on the CPU. In this
model response time is defined as the time from when a task enters the ready
queue (or) to the time the task first gets to execute on the cpu . 1

1

5

SD

5 SD

PID

CPU burst
time

Process representation
When studying CPU scheduling a process will be
represented by process ID (PID) and the next
CPU burst time.

FCFS
First-Come, First-Served

ready queue
ready queue CPU

I/O queueI/O event I/O request

process
termination

fork a child

FCFS

The first come, first served (commonly called FIFO ‒ first
in, first out) process scheduling algorithm is the simplest
process scheduling algorithm. Processes are executed on
the CPU in the same order they arrive to the ready queue.

First-Come, First-Served (FCFS)

Ready queue (FIFO)

CPU

I/O queueI/O event I/O request

process
termination

fork a child

FCFS

Scheduling algorithms

P3 P2 P1

3 3 24

Gantt Chart for the FCFS schedule

PID Waiting time
P1 0
P2 24
P3 27

Average waiting time

(0 + 24 + 27)/3 = 17

PID P3 P2 P1

CPU burst
time 3 3 24

P1 P2 P3

0 24 27 30

The processes arrive to the
ready queue in the order:
P1, P2, P3.

PID P1 P3 P2

CPU burst
time 24 3 3

What if the same processes
arrive to the ready queue in
the order: P2, P3, P1.

PID Waiting time
P1 6
P2 0
P3 3

Average waiting time

(6 + 0 + 3)/3 = 3

P2 P3 P1

0 3 6 30

Gantt Chart for the FCFS schedule

The convoy effect
When using FCFS scheduling, if I/O bound (short CPU
burst) processes are scheduled after CPU bound (long
CPU burst) processes, the average waiting time increases.

Long CPU burstShort CPU burstShort CPU burst

PID P1 P3 P2

CPU burst time 24 3 3

PID Waiting time

P1 6

P2 0

P3 3

P2 P3 P1

0 3 6 30

Gantt Charts for the FCFS schedules

PID P3 P2 P1

CPU burst time 3 3 24

P1 P2 P3

0 24 27 30

Average waiting
time

PID Waiting time

P1 0

P2 24

P3 27

(0 + 24 + 27)/3 = 17

Average waiting
time

(6 + 0 + 3)/3 = 3

The convoy effect
When using FCFS scheduling, if I/O bound (short CPU burst)
processes are scheduled after CPU bound (long CPU burst)
processes, the average waiting time increases.

First-Come, First-Served (FCFS)

Source: https://en.wikibooks.org/wiki/Operating_System_Design/Scheduling_Processes/FCFS 2016-02-02

Advantages

★ Simple

★ Easy

★ First come, first served

Disadvantages

★ This scheduling method is nonpreemptive, that is, a
process will execute its CPU burst until it finishes.

★ Because of this nonpreemptive scheduling, short
processes which are at the back of the queue have to
wait for the long process at the front to finish making
the average waiting time increase - the convoy effect.

What is the optimal
schedule?

To answer this question we must first
define what we mean with optimal.

What schedule
minimises the

average waiting
time?

A better question

In general, if we have CPU bursts x1, ... xn, calculate the total
waiting time Twait.

Twait = 0 +
 x1 +
 x1 + x2 +
 x1 + x2 + x3 +
 ... +
 x1 + x2 + x3 + ... + xn-1

 = (n-1)x1 + (n-2)x2 + ... + xn-1

Now, calculate the average waiting time.

Average(Twait) = [(n-1)x1 + (n-2)x2 + ... + xn-1]/n

Scheduling the shortest job first gives the minimal average waiting time.

The average waiting time is reduced if the xi's that are multiplied
the most times are the smallest ones.

SJF
Shortest Job First

ready queue
ready queue CPU

I/O queueI/O event I/O request

process
termination

fork a child

SJF

Shortest Job First (SJF) scheduling assigns the process
estimated to complete fastest, i.e, the process with
shortest CPU burst, to the CPU as soon as CPU time is
available.

Shortest Job First (SJF)

Shortest Job First (SJF)
Shortest Job First (SJF) scheduling assigns the process estimated
to complete fastest to the CPU as soon as CPU time is available.

★ Associate with each process the length of its next CPU
burst. Use these lengths to schedule the process with the
shortest burst time.

★ Also knows as Shortest Process Next (SPN) scheduling.

★ Also known as Shortest job next (SJN) scheduling.

★ SJF is optimal – gives minimum average waiting time for
a given set of processes.

Source: https://en.wikibooks.org/wiki/Operating_System_Design/Scheduling_Processes/SPN 2016-02-02

https://en.wikipedia.org/wiki/Shortest_job_next 2016-02-02

The difficulty is knowing the length of the next CPU burst.

https://en.wikibooks.org/wiki/Operating_System_Design/Scheduling_Processes/SPN
https://en.wikipedia.org/wiki/Shortest_job_next

Burst from the future?

Can the the length
of the next CPU

burst be determined
dynamically?

Exponential
averaging

Can only estimate the length of the next CPU
burst. Estimation can be done by using the

length of previous CPU bursts, using exponential
averaging.

α = 0 ⇒ τn+1 = τn
Recent history does not affect the estimate.

α =1 ⇒ τn+1 = α tn
Only the actual last CPU burst affect the estimate.

Analysis: what happens when α → 0 or when α → 1 ?

Exponential averaging

τ0 = 10, α = 0.5
= 0.5*(previous burst + previous estimate)

8 6 6 5 9 1110

τ1 = 0.5*(t0 + τ0) = 0.5*(6 + 10) = 8

0 1 2 3 4 5 6 7

4 6 4 13 13 136

Time

12

13

Exponential averaging example

13

8

13

Exponential averaging

If we expand the formula for Tn+1
by substituting for Tn we get:

Since both α and (1 - α) are less than or equal to 1, each

successive term has less weight than its predecessor.

ready queue
ready queue CPU

I/O queueI/O event I/O request

process
termination

fork a child

SJF

Can use exponential averaging to estimate the next CPU
burst for each process.

Shortest Job First (SJF)

Gantt Chart for the SJF schedule

Average waiting time

(3 + 16 + 9 + 0)/4 = 28/4 = 7

PID P4 P3 P2 P1

CPU burst
time 3 7 8 6

P4 P1 P3 P2

0 3 9 16 24

Processes in the ready
queue.

Process Waiting
time

P1 3
P2 16
P3 9
P4 0

Estimated values of CPU bursts

ready queue
ready queue CPU

I/O queueI/O event I/O request

process
termination

fork a child

SJF

But does all processes arrive at the
same time to the ready queue?

Arrival time
Must keep track of when a

process arrives to the ready
queue.

Ready queue

Process Arrival
time

Burst
Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

Example of SJF

P1

0
P3

7
P2

8
P4

12 16

Time Action

0 Only P1 ready to execute

7
When P1 finish, the process in the ready queue with the
shortest burst time is selected for dispatch, in this
example P3.

8
When P3 finish, both P2 and P4 have burst time 4. Use
FIFO to break ties. In this example P2 arrives before P4,
hence P2 is selected for execution

12 When P2 finish, only P4 remains in the ready queue.

16 The ready queue is now empty, all processes done.

Gantt Chart for the SJF schedule

Ready queue SJF

Process Arrival
time

Burst
Time Tdispatch - Tarrival = Waiting

time

P1 0 7 0 - 0 = 0

P2 2 4 8 - 2 = 6

P3 4 1 7 - 4 = 3

P4 5 4 12 - 5 = 7

Example of SJF - Average waiting time

Average waiting time
(0 + 6 + 3 + 7)/4 = 16/4 = 4

P1

0
P3

7
P2

8
P4

12 16

Gantt Chart for the SJF schedule

ready queue
ready queue CPU

I/O queueI/O event I/O request

process
termination

fork a child

?

When a process with a shorter burst time compared to the
currently scheduled process arrives to the ready queue ...

... wouldn’t it be more optimal (minimising the average waiting
time) to preempt the running process and switch to newly
arrived process?

A

P

A

P

ready running terminated

waiting

new

Preemption
A process may get preempted , i.e., forced off the CPU
and put back in the ready queue before completing its CPU
burst.

P

P

PSJF
Preemptive Shortest Job

First

ready queue
ready queue CPU

I/O queueI/O event I/O request

process
termination

fork a child

PSJFA

P

An extension of SJF where the currently running process is
preempted if the CPU burst of a process arriving to the ready
queue is shorted than the remaining CPU burst of the currently
running process.

Preemptive Shortest Job First (PSJF)
P

A

Preemptive Shortest Job First (PSJF)
The currently running process is preempted if the CPU burst of a
process arriving to the ready queue is shorted than the remaining
CPU burst of the currently running process.

★ Also known as shortest remaining time first (SRTF).

★ The currently executing process will always run until completion
or until a new process is added to the ready queue that requires
a smaller amount of time to complete.

★ Shortest remaining time is advantageous because short
processes are handled very quickly.

★ Requires very little overhead since a decision is made only
when a process completes or a new process is added, and
when a new process is added the algorithm only needs to
compare the currently executing process with the new process,
ignoring all other processes currently in the ready queue.

Source: https://en.wikipedia.org/wiki/Shortest_remaining_time 2016-02-02

https://en.wikipedia.org/wiki/Shortest_remaining_time

SJF: The currently running process is allowed to continue
to execute.

PSJF: The currently running process is preempted if the
CPU burst of the newly arrived process is shorter than the
remaining CPU burst of the currently running process.

ready running terminated

new
1

5

waiting

SJV vs PSJF

1 5&

Ready queue

Process Arrival
time

Burst
time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

Example of PSJF

P1

0

P2

2

P3

4

P2

5

P1

11 16

T Action
0 P1 is the only process ready to run.

2 When P2 arrives, P1 is preempted since the burst time of P2 (4)
is smaller than the remaining burst time of P1 (5).

4 When P3 arrives, P2 is preempted since the burst time of P3 (1)
is smaller than the remaining burst time of P1 (5) and P2 (2).

5
P3 is done and P4 (4) arrives to the ready queue where P1 (5)
and P2 (2) already waits. P2 has the smallest remaining burst
time and is selected to run next.

7 P2 is done. P1 (5) and P4 (4) waits in the ready queue. P4 (4)
has the smallest remaining burst time and is selected to run next.

11 P4 is done. Only P1 (5) waits in the ready queue and is selected
to run next.

16 The ready queue is now empty, all processes done.

Gantt Chart for the PSJF schedule

P4

7

P

P

P1

0

P2

2

P3

4

P2

5

P1

11 16

Gantt Chart for the PSJF schedule

P4

7

READY QUEUE PSJF

Process Arrival
time

Burst
time Tdispatch - Tarrival = Waiting

time

P1 0 7
0 - 0 = 0
11 - 2 = 9

P2 2 4
2 - 2 = 0
5 - 4 = 1

P3 4 1 4 - 4 = 0
P4 5 4 7 - 5 = 2

Processes may
have to wait in
the ready queue
more than once.

Average waiting time
(9 + 1 + 0 + 2)/4 = 12/4 = 3

Average waiting time

SJF vs PSJF SJF, average waiting time = 4

READY QUEUE

Process Arrival
time

Burst
Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

PSJF, average waiting time = 3

SJF gives the optimal average waiting time for a given set
of processes currently in the ready queue.

PSJF aims at decreasing the average waiting time by
allowing a newly arriving process to preempt the currently
running process if the CPU burst of the new process is
shorter than what remains of the currently running
process.

P1

0

P3

7

P2

8

P4

12 16

P1

0

P2

2

P3

4

P2

5

P1

11 16

P4

7

Priority
Scheduling

A priority number (integer) is associated with each process.
The CPU is allocated to the process with the highest priority
(smallest integer = highest priority).

★ Preemption – should a higher priority process be
allowed to preempt a running process with lower priority?

★ Starvation – low priority processes may never execute.

★ Ageing – ensure that jobs with lower priority will
eventually complete their execution. Ageing can be
implemented by increasing the priority of a process as
time progresses.

★ SJF is a priority scheduling algorithm where priority is
the predicted next CPU burst time.

Priority scheduling

RR
Round Robin

Robin = Rödhake in Swedish

In general, round-robin refers to a pattern or
ordering whereby items are encountered or
processed sequentially, often beginning again at the
start in a circular manner.

Source: https://en.wikipedia.org/wiki/Round-robin 2016-01-31

Round Robin is one of the simplest CPU scheduling
algorithms that also prevents starvation.

Etymology
The phrase round-robin actually has nothing
whatever to do with a bird, robin or any other kind.

Source: https://en.wikipedia.org/wiki/Round-robin_(document) 2016-02-02

★ The term round-robin dates from the 17th-century French
ruban rond (round ribbon).

★ Originally, round-robin is a document signed by multiple
parties in a circle..

★ Round-robin described the practice of signatories to
petitions against authority (usually Government officials
petitioning the Crown) appending their names on a
document in a non-hierarchical circle or ribbon pattern (and
so disguising the order in which they have signed) so that
none may be identified as a ringleader.

ready queue
ready queue

I/O queueI/O event I/O request

process
termination

fork a child

RR

Round Robin (RR) is a scheduling algorithm where time slices
are assigned to each process in equal portions and in circular
order.

Round Robin (RR)

CPU

T

time slice

Metric Description

Performance A context dependent metric. What do we mean
by performance?

Waiting time Amount of time a process has been waiting in
the ready queue.

Turn around time Amount of time to execute a particular process.

Response time Amount of time it takes from when a request
was submitted until the first response is
produced.

Characteristics of CPU scheduling algorithms

Each process gets a small unit of CPU time (time quantum),
usually 10-100 milliseconds. After this time has elapsed, the
process is preempted and added to the end of the ready
queue.

If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time in
chunks of at most q time units at once.

Round Robin (RR)

Response time and extreme
behaviours (RR)
A nice property of RR is that there is an upper bound
the response time.

Upper bound for response time: (n - 1)q time units.

Extreme behaviours

★ q large ⇒

★ q small ⇒ q must be large with respect to
context switch, otherwise the
overhead is too high.

FCFS/FIFO

The Gantt chart
READY QUEUE

Process Burst Time

P1 24
P2 3
P3 3

Example of RR with Time Quantum = 4

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

Turnaround time

Amount of time to execute a
particular process.

Response time

Amount of time it takes from
when a request was
submitted until the first
response is produced.

preemption

Round Robin typically
have higher average
turnaround times
than SJF, but better
response times.

Time Quantum and Context Switch Time
The RR time quantum (q) affects the number of context switches for
a process.

Average Turnaround Time = (13 + 6 + 7 + 17)/4 = 10.75

q = 3 P1 P2 P3 P4 P1 P4 P4

0 3 6 7 10 13 16 17

q = 7 P1 P2 P3 P4

0 6 9 10 17

Average Turnaround Time = (6 + 9 + 10 + 17)/4 = 10.5

Average Turnaround Time = (15 + 8 + 9 + 17)/4 = 12.25

q = 5 P1 P2 P3 P4 P1 P4

0 5 8 9 14 15 17

Turnaround time varies with the time quantum
Turnaround time = amount of time to execute a particular process.
When using Round Robin scheduling, the average turnaround
time will depend on the time quantum (q).

Foreground
and

background
processes

Foreground and background
processes

Sometimes process can easily be classified into two groups,
one set of processes that interacts with users and one set
that doesn’t.

Background process (batch)

A process that don’t interacts with any user is called a
background process or a batch process.

Foreground process (interactive)

A process that interacts with users is callad a foreground
process or an interactive process.

Multilevel
queue

scheduling

General classification of processes:

★ foreground (interactive)

★ background (batch)

In a multi-level queue scheduling algorithm, there will be n number
of queues, where n is the number of groups the processes are
classified into.

★ Each queue will be assigned a priority and will have its own
scheduling algorithm like Round-robin scheduling or FCFS.

Multilevel queue scheduling (1)
A multi-level queue scheduling algorithm is used in scenarios where
the processes can be classified into groups based on properties like
process type, CPU time, IO access, memory size, etc

Source: https://en.wikipedia.org/wiki/Multilevel_queue 2016-02-02

Each queue has its own
scheduling algorithm.

There must be scheduling
among the queues.

For example, the foreground queue may have absolute priority over the
background queue. If an interactive process enters the ready queue while a
batch process is running, the batch process will be preempted.

Multilevel queue scheduling (2)
Use several ready queues. A process is permanently assigned to
one queue, generally based on some property of the process, such
as memory size, process priority, or process type.

Ready queue is partitioned into separate queues:

★ foreground (interactive)

★ background (batch)

Each queue has its own scheduling algorithm

★ foreground – RR

★ background – FCFS

Multilevel queue scheduling (3)
How to select scheduling algorithms for the various queues?

★ Fixed priority scheduling; (i.e., serve all from
foreground then from background). Possibility of
starvation.

★ Time slice – each queue gets a certain amount of
CPU time which it can schedule amongst its
processes.

Multilevel queue scheduling (4)
Scheduling must be done between the queues.

CPU time

80 %
Round Robin (RR)

Foreground processes

20 %
First Come First Served (FCFS)

Background processes

Multilevel queue scheduling (5)
Example of time slicing among multilevel queues. Foreground
process are given 80 % of the CPU time for RR scheduling and
background processes are given 20 % of the CPU time for FCFC
scheduling.

Multilevel
feedback queue

scheduling
The idea is to separate processes according
to the characteristics of their CPU bursts. If
a process uses too much CPU time it will be

moved to a lower-priority queue.

Design objectives
Multilevel feedback queue scheduling design objectives.

★ Give preference to short CPU bursts.

★ Give preference to I/O bound processes.

★ Separate processes into categories based on
their need for the CPU.

Source: https://en.wikipedia.org/wiki/Multilevel_feedback_queue 2018-02-07

Q0 - RR, q = 8 ms

Q1 - RR, q = 16 ms

Q2 - FCFS

Priorities

• The scheduler first executes all
processes in Q0.

• Only when Q0 is empty will it
execute processes in Q1.

• Similarly, processes in Q2 will only
be executed if Q0 and Q1 are
empty.

Preemption

• A process that arrives at Q1 will
preempt a process in Q2.

• A process in Q1 will in turn be
preempted by a process arriving at
Q0.

Example
Q0 - RR, q = 8 ms

Q1 - RR, q = 16 ms

Q2 - FCFS

1

A new job enters queue Q0 which is served FCFS. Each job gets at most 8
milliseconds of CPU time.

1

2

If it does not finish in 8 milliseconds, the job is moved to queue Q1.2

If it still does not complete, it is preempted and moved to queue Q2.4

4
3

At Q1 the job is again served FCFS and receives 16 additional milliseconds.3

5

Once in Q2, processes are scheduled using FCFS but are run only when Q0 and
Q1 are empty.

5

Indefinite
blocking

(starvation)

In computer science, starvation is a problem encountered in
multitasking where a process is perpetually denied necessary
resources. Without those resources, the program can never finish
its task.

Problem with any sort of priority scheduling?

A process that is ready to run but waiting for the CPU can be
considered blocked.

A priority scheduling algorithm can leave some low-priority
processes waiting indefinitely.

A steady stream of higher-priority processes can prevent a low-
priority process from ever getting the CPU.

Indefinite blocking (starvation)

Ageing
Ageing is a scheduling technique

used to avoid starvation.

Ageing is used to ensure that jobs with lower priority will eventually
complete their execution.

★ Ageing can be implemented by increasing the priority of a
process as time progresses.

Ageing

A process can move between the
various queues.
★ Ageing can be implemented

this way.

Q0 - RR, q = 8 ms

Q1 - RR, q = 16 ms

Q2 - FCFS

Multilevel feedback queue
scheduling

Source: https://en.wikipedia.org/wiki/Aging_(scheduling) 2016-02-05

https://en.wikipedia.org/wiki/Aging_(scheduling)

