
198 Chapter 5 CPU Scheduling

system and many guest operating systems. The host operating system creates
and manages the virtual machines, and each virtual machine has a guest
operating system installed and applications running within that guest. Each
guest operating system may be fine-tuned for specific use cases, applications,
and users, including time sharing or even real-time operation.

Any guest operating-system scheduling algorithm that assumes a certain
amount of progress in a given amount of time will be negatively impacted by
virtualization. Consider a time-sharing operating system that tries to allot 100
milliseconds to each time slice to give users a reasonable response time. Within
a virtual machine, this operating system is at the mercy of the virtualization
system as to what CPU resources it actually receives. A given 100-millisecond
time slice may take much more than 100 milliseconds of virtual CPU time.
Depending on how busy the system is, the time slice may take a second or more,
resulting in very poor response times for users logged into that virtual machine.
The effect on a real-time operating system would be even more catastrophic.

The net effect of such scheduling layering is that individual virtualized
operating systems receive only a portion of the available CPU cycles, even
though they believe they are receiving all of the cycles and indeed that they
are scheduling all of those cycles. Commonly, the time-of-day clocks in virtual
machines are incorrect because timers take longer to trigger than they would on
dedicated CPUs. Virtualization can thus undo the good scheduling-algorithm
efforts of the operating systems within virtual machines.

5.6 Operating System Examples

We turn next to a description of the scheduling policies of the Solaris,
Windows, and Linux operating systems. It is important to remember that we
are describing the scheduling of kernel threads with Solaris and Windows.
Recall that Linux does not distinguish between processes and threads; thus,
we use the term task when discussing the Linux scheduler.

5.6.1 Example: Solaris Scheduling

Solaris uses priority-based thread scheduling where each thread belongs to
one of six classes:

1. Time sharing (TS)

2. Interactive (IA)

3. Real time (RT)

4. System (SYS)

5. Fair share (FSS)

6. Fixed priority (FP)

Within each class there are different priorities and different scheduling algo-
rithms.

The default scheduling class for a process is time sharing. The scheduling
policy for the time-sharing class dynamically alters priorities and assigns



5.6 Operating System Examples 199

time
quantumpriority

return
from 
sleep

time
quantum
expired

0

5

10

15

20

25

30

35

40

45

50

55

59

200

200

160

160

120

120

80

80

40

40

40

40

20

0

0

0

5

10

15

20

25

30

35

40

45

49

50

50

51

51

52

52

53

54

55

56

58

58

59

Figure 5.12 Solaris dispatch table for time-sharing and interactive threads.

time slices of different lengths using a multilevel feedback queue. By default,
there is an inverse relationship between priorities and time slices. The higher
the priority, the smaller the time slice; the lower the priority, the larger the
time slice. Interactive processes typically have a higher priority, CPU-bound
processes, a lower priority. This scheduling policy gives good response time
for interactive processes and good throughput for CPU-bound processes. The
interactive class uses the same scheduling policy as the time-sharing class, but
it gives windowing applications—such as those created by the KDE or GNOME
window managers—a higher priority for better performance.

Figure 5.12 shows the dispatch table for scheduling time-sharing and
interactive threads. These two scheduling classes include 60 priority levels,
but for brevity, we display only a handful. The dispatch table shown in Figure
5.12 contains the following fields:

• Priority. The class-dependent priority for the time-sharing and interactive
classes. A higher number indicates a higher priority.

• Time quantum. The time quantum for the associated priority. This illus-
trates the inverse relationship between priorities and time quanta: the
lowest priority (priority 0) has the highest time quantum (200 millisec-
onds), and the highest priority (priority 59) has the lowest time quantum
(20 milliseconds).

• Time quantum expired. The new priority of a thread that has used
its entire time quantum without blocking. Such threads are considered



200 Chapter 5 CPU Scheduling

CPU-intensive. As shown in the table, these threads have their priorities
lowered.

• Return from sleep. The priority of a thread that is returning from sleeping
(such as waiting for I/O). As the table illustrates, when I/O is available
for a waiting thread, its priority is boosted to between 50 and 59, thus
supporting the scheduling policy of providing good response time for
interactive processes.

Threads in the real-time class are given the highest priority. This assignment
allows a real-time process to have a guaranteed response from the system
within a bounded period of time. A real-time process will run before a process
in any other class. In general, however, few processes belong to the real-time
class.

Solaris uses the system class to run kernel threads, such as the scheduler
and paging daemon. Once established, the priority of a system thread does not
change. The system class is reserved for kernel use (user processes running in
kernel mode are not in the system class).

The fixed-priority and fair-share classes were introduced with Solaris 9.
Threads in the fixed-priority class have the same priority range as those in
the time-sharing class; however, their priorities are not dynamically adjusted.
The fair-share scheduling class uses CPU shares instead of priorities to
make scheduling decisions. CPU shares indicate entitlement to available CPU
resources and are allocated to a set of processes (known as a project).

Each scheduling class includes a set of priorities. However, the scheduler
converts the class-specific priorities into global priorities and selects the thread
with the highest global priority to run. The selected thread runs on the CPU
until it (1) blocks, (2) uses its time slice, or (3) is preempted by a higher-priority
thread. If there are multiple threads with the same priority, the scheduler uses
a round-robin queue. Figure 5.13 illustrates how the six scheduling classes
relate to one another and how they map to global priorities. Notice that the
kernel maintains 10 threads for servicing interrupts. These threads do not
belong to any scheduling class and execute at the highest priority (160–169).
As mentioned, Solaris has traditionally used the many-to-many model (Section
4.2.3) but switched to the one-to-one model (Section 4.2.2) beginning with
Solaris 9.

5.6.2 Example: Windows Scheduling

Windows schedules threads using a priority-based preemptive scheduling
algorithm. The Windows scheduler ensures that the highest-priority thread
will always run. The portion of the Windows kernel that handles scheduling
is called the dispatcher. A thread selected to run by the dispatcher will run
until it is preempted by a higher-priority thread, until it terminates, until its
time quantum ends, or until it calls a blocking system call, such as for I/O. If a
higher-priority real-time thread becomes ready while a lower-priority thread
is running, the lower-priority thread will be preempted. This preemption gives
a real-time thread preferential access to the CPU when the thread needs such
access.

The dispatcher uses a 32-level priority scheme to determine the order of
thread execution. Priorities are divided into two classes. The variable class



5.6 Operating System Examples 201

interrupt threads

169
highest

lowest

first

scheduling
order

global
priority

last

160
159

100

60
59

0

99

realtime (RT) threads

system (SYS) threads

fair share (FSS) threads

fixed priority (FX) threads

timeshare (TS) threads

interactive (IA) threads

Figure 5.13 Solaris scheduling.

contains threads having priorities from 1 to 15, and the real-time class contains
threads with priorities ranging from 16 to 31. (There is also a thread running at
priority 0 that is used for memory management.) The dispatcher uses a queue
for each scheduling priority and traverses the set of queues from highest to
lowest until it finds a thread that is ready to run. If no ready thread is found,
the dispatcher will execute a special thread called the idle thread.

There is a relationship between the numeric priorities of the Windows
kernel and the Win32 API. The Win32 API identifies several priority classes to
which a process can belong. These include:

• REALTIME PRIORITY CLASS

• HIGH PRIORITY CLASS

• ABOVE NORMAL PRIORITY CLASS

• NORMAL PRIORITY CLASS



202 Chapter 5 CPU Scheduling

high above
normal normal below

normal
idle
priority

time-critical

real-
time

31

26

25

24

23

22

16

15

15

14

13

12

11

1

15

12

11

10

9

8

1

15

10

9

8

7

6

1

15

8

7

6

5

4

1

15

6

5

4

3

2

1

highest

above normal

normal

lowest

idle

below normal

Figure 5.14 Windows XP priorities.

• BELOW NORMAL PRIORITY CLASS

• IDLE PRIORITY CLASS

Priorities in all classes except the REALTIME PRIORITY CLASS are variable,
meaning that the priority of a thread belonging to one of these classes can
change.

A thread within a given priority classes also has a relative priority. The
values for relative priorities include:

• TIME CRITICAL

• HIGHEST

• ABOVE NORMAL

• NORMAL

• BELOW NORMAL

• LOWEST

• IDLE

The priority of each thread is based on both the priority class it belongs to and its
relative priority within that class. This relationship is shown in Figure 5.14. The
values of the priority classes appear in the top row. The left column contains the
values for the relative priorities. For example, if the relative priority of a thread
in the ABOVE NORMAL PRIORITY CLASS is NORMAL, the numeric priority of
that thread is 10.

Furthermore, each thread has a base priority representing a value in the
priority range for the class the thread belongs to. By default, the base priority
is the value of the NORMAL relative priority for that class. The base priorities
for each priority class are:

• REALTIME PRIORITY CLASS—24

• HIGH PRIORITY CLASS—13



5.6 Operating System Examples 203

• ABOVE NORMAL PRIORITY CLASS—10

• NORMAL PRIORITY CLASS—8

• BELOW NORMAL PRIORITY CLASS—6

• IDLE PRIORITY CLASS—4

Processes are typically members of the NORMAL PRIORITY CLASS. A pro-
cess belongs to this class unless the parent of the process was of the
IDLE PRIORITY CLASS or unless another class was specified when the process
was created. The initial priority of a thread is typically the base priority of the
process the thread belongs to.

When a thread’s time quantum runs out, that thread is interrupted; if the
thread is in the variable-priority class, its priority is lowered. The priority is
never lowered below the base priority, however. Lowering the priority tends
to limit the CPU consumption of compute-bound threads. When a variable-
priority thread is released from a wait operation, the dispatcher boosts the
priority. The amount of the boost depends on what the thread was waiting
for; for example, a thread that was waiting for keyboard I/O would get a large
increase, whereas a thread waiting for a disk operation would get a moderate
one. This strategy tends to give good response times to interactive threads that
are using the mouse and windows. It also enables I/O-bound threads to keep
the I/O devices busy while permitting compute-bound threads to use spare
CPU cycles in the background. This strategy is used by several time-sharing
operating systems, including UNIX. In addition, the window with which the
user is currently interacting receives a priority boost to enhance its response
time.

When a user is running an interactive program, the system needs to provide
especially good performance. For this reason, Windows has a special schedul-
ing rule for processes in the NORMAL PRIORITY CLASS. Windows distinguishes
between the foreground process that is currently selected on the screen and the
background processes that are not currently selected. When a process moves into
the foreground, Windows increases the scheduling quantum by some factor—
typically by 3. This increase gives the foreground process three times longer to
run before a time-sharing preemption occurs.

5.6.3 Example: Linux Scheduling

Prior to Version 2.5, the Linux kernel ran a variation of the traditional UNIX
scheduling algorithm. Two problems with the traditional UNIX scheduler are
that it does not provide adequate support for SMP systems and that it does
not scale well as the number of tasks on the system grows. With Version 2.5,
the scheduler was overhauled, and the kernel now provides a scheduling
algorithm that runs in constant time—known as O(1)—regardless of the
number of tasks on the system. The new scheduler also provides increased
support for SMP, including processor affinity and load balancing, as well as
providing fairness and support for interactive tasks.

The Linux scheduler is a preemptive, priority-based algorithm with two
separate priority ranges: a real-time range from 0 to 99 and a nice value ranging
from 100 to 140. These two ranges map into a global priority scheme wherein
numerically lower values indicate higher priorities.



204 Chapter 5 CPU Scheduling

numeric
priority

relative
priority

time
quantum

0
•
•
•

99
100

•
•
•

139

highest

lowest

200 ms

10 ms

real-time
tasks

other
tasks

Figure 5.15 The relationship between priorities and time-slice length.

Unlike schedulers for many other systems, including Solaris (Section 5.6.1)
and Windows (Section 5.6.2), Linux assigns higher-priority tasks longer time
quanta and lower-priority tasks shorter time quanta. The relationship between
priorities and time-slice length is shown in Figure 5.15.

A runnable task is considered eligible for execution on the CPU as long
as it has time remaining in its time slice. When a task has exhausted its time
slice, it is considered expired and is not eligible for execution again until all
other tasks have also exhausted their time quanta. The kernel maintains a list
of all runnable tasks in a runqueue data structure. Because of its support for
SMP, each processor maintains its own runqueue and schedules itself indepen-
dently. Each runqueue contains two priority arrays: active and expired. The
active array contains all tasks with time remaining in their time slices, and the
expired array contains all expired tasks. Each of these priority arrays contains a
list of tasks indexed according to priority (Figure 5.16). The scheduler chooses
the task with the highest priority from the active array for execution on the
CPU. On multiprocessor machines, this means that each processor is scheduling
the highest-priority task from its own runqueue structure. When all tasks have
exhausted their time slices (that is, the active array is empty), the two priority
arrays are exchanged: the expired array becomes the active array, and vice
versa.

Linux implements real-time scheduling as defined by POSIX.1b, which is
described in Section 5.4.2. Real-time tasks are assigned static priorities. All

active
array

priority
[0]
[1]
•
•
•

[140]

task lists

 
•
•
•

expired
array

priority
[0]
[1]
•
•
•

[140]

task lists

 
•
•
•

Figure 5.16 List of tasks indexed according to priority.



5.7 Algorithm Evaluation 205

other tasks have dynamic priorities that are based on their nice values plus or
minus the value 5. The interactivity of a task determines whether the value
5 will be added to or subtracted from the nice value. A task’s interactivity is
determined by how long it has been sleeping while waiting for I/O. Tasks that
are more interactive typically have longer sleep times and therefore are more
likely to have adjustments closer to −5, as the scheduler favors interactive
tasks. The result of such adjustments will be higher priorities for these tasks.
Conversely, tasks with shorter sleep times are often more CPU-bound and thus
will have their priorities lowered.

A task’s dynamic priority is recalculated when the task has exhausted its
time quantum and is to be moved to the expired array. Thus, when the two
arrays are exchanged, all tasks in the new active array have been assigned new
priorities and corresponding time slices.

5.7 Algorithm Evaluation

How do we select a CPU-scheduling algorithm for a particular system? As we
saw in Section 5.3, there are many scheduling algorithms, each with its own
parameters. As a result, selecting an algorithm can be difficult.

The first problem is defining the criteria to be used in selecting an algorithm.
As we saw in Section 5.2, criteria are often defined in terms of CPU utilization,
response time, or throughput. To select an algorithm, we must first define
the relative importance of these elements. Our criteria may include several
measures, such as:

• Maximizing CPU utilization under the constraint that the maximum
response time is 1 second

• Maximizing throughput such that turnaround time is (on average) linearly
proportional to total execution time

Once the selection criteria have been defined, we want to evaluate the
algorithms under consideration. We next describe the various evaluation
methods we can use.

5.7.1 Deterministic Modeling

One major class of evaluation methods is analytic evaluation. Analytic
evaluation uses the given algorithm and the system workload to produce a
formula or number that evaluates the performance of the algorithm for that
workload.

Deterministic modeling is one type of analytic evaluation. This method
takes a particular predetermined workload and defines the performance of each
algorithm for that workload. For example, assume that we have the workload
shown below. All five processes arrive at time 0, in the order given, with the
length of the CPU burst given in milliseconds:


