
192 CHAPTER 5 Processor Management

A common notion of what an operating system does is that it manages resources — it determines

who or what is to have which resource when. Processor time is apportioned to threads. Primary

memory is apportioned to processes. Disk space is apportioned to users. On some data-processing

systems, I/O bandwidth is apportioned to jobs or subsystems.

Our concern in this section is the sharing of processors, a task that’s usually referred to

as scheduling (though certain aspects of memory management in some Unix systems are called

5.3

SCHEDULING

5.3

SCHEDULING

FIGURE 5 .14 On

return from the signal

handler, the thread’s

instruction pointer

points to the sigreturn

instruction.

IP sigreturn

func(int a1, int a2) {

int i,j = 2;

for (i=a1; i<a2; i++) {

j = j*2;

j = j/127;

...

}

}

User code

Previous

frames

func frame

sigframe

User stack

signalhandler(int sig) {
…

}

IP

func(int a1, int a2) {

int i, j = 2;

for (i=a1; i<a2; i++) {

j = j*2;

j = j/127;

...

}

}

Main line

Handler

Previous

frames

func frame

User stack

signalhandler(int sig) {
…

}

IP

FIGURE 5 .15 Finally,

the thread executes

the sigreturn system

call, causing the kernel

to restore the thread’s

original registers and

unblock the signal.

5.3 Scheduling 193

“memory scheduling”). The common use of the term schedule is that it’s something that’s pre-

pared ahead of time — we have a schedule for the use of a classroom or conference room; an

airline has a fl ight schedule. Such static schedules make sense if we know or can predict the

demands in advance. But the sort of scheduling we’re primarily interested in here is dynamic:

responding to demands for immediate use of processor time. At any one moment we might have

a static schedule for at least the order in which threads wait for processor time, but this schedule

changes in response to additional threads becoming runnable and other system events.

A lot goes into determining schedules. At the strategic level, we are trying to make a “good”

decision based on some sort of optimization criteria. Are we trying to give good response to

interactive threads? Are we trying to give deterministic (and good) response to real-time threads?

Are we trying to maximize the number of jobs per hour? Are we trying to do all of the above?

At the tactical level, we need to organize our list of runnable threads so as to fi nd the next

thread to run quickly. On multiprocessor systems we need to take into account the benefi ts of

caching: a thread runs best on a processor whose cache contains much of what that thread is

using. Furthermore, we must consider the cost of synchronization and organize our data structures

to minimize such costs.

5.3.1 STRATEGY

How the processor is shared depends upon what the system as a whole is supposed to do. Listed

below are fi ve representative types of systems along with brief descriptions of the sort of sharing

desired.

Simple batch systems. These probably don’t exist anymore, but they were common into the

1960s. Programs (jobs) were submitted and ran without any interaction with humans, except

for possible instructions to the operator to mount tapes and disks. Only one job ran at a time.

The basic model is shown in Figure 5.16: a queue of jobs waiting to be run on the processor. The

responsibility of the scheduler was to decide which job should run next when the current one

fi nished. There were two concerns: the system throughput, i.e., the number of jobs per unit

time, and the average wait time, i.e., how long it took from when a job was submitted to the

system until it completed.

Multiprogrammed batch systems. These are identical to simple batch systems except that

multiple jobs are run concurrently. Two sorts of scheduling decisions have to be made: how

many and which jobs should be running, and how the processor is apportioned among the

running jobs.

Time-sharing systems. Here we get away from the problem of how many and which jobs

should be running and think more in terms of apportioning the processor to the threads that are

ready to execute. The primary concern is wait time, here called response time — the time from

when a command is given to when it is completed. Short requests should be handled quickly.

Shared servers. This is the modern version of the multiprogrammed batch system. A single

computer is used concurrently by a number of clients, each getting its fair share. For example,

a large data-processing computer might be running a number of different online systems each

•

•

•

•

Processor

Job queue

FIGURE 5 .16 A simple batch system.

194 CHAPTER 5 Processor Management

of which must be guaranteed a certain capacity or performance level — we might want to

guarantee each at least 10% of available processing time. A web-hosting service might want

to give each of its clients the same fraction of total processor time, regardless of the number

of threads employed.

Real-time systems. These have a range of requirements, ranging from what’s known as “soft”

real-time to “hard” real-time. An example of the former is a system to play back streaming

audio or video. It’s really important that most of the data be processed in a timely fashion, but

it’s not a disaster if occasionally some data isn’t processed on time (or at all). An example of

the latter is a system controlling a nuclear reactor. It’s not good enough for it to handle most

of the data in a timely fashion; it must handle all the data in a timely fashion or there will be

a disaster.

5.3.1.1 Simple Batch Systems

Much of the early work on scheduling dealt with the notion of jobs — work to be done, usually

by a single-threaded program, whose running time was known. In this sort of situation one could

conceivably come up with an optimal static schedule.

On a simple batch system (as described above) you might think we can do no better than

fi rst-in-fi rst-out (FIFO) scheduling, i.e., a simple queue. However, if our sole criterion for goodness

of our scheduler is the number of jobs completed per hour, this strategy could get us into trouble:

if the fi rst job takes a week (168 hours) to complete, but the following 168 jobs each take an hour,

our completion statistics aren’t going to look very good, at least not until towards the end of the

second week (see Figure 5.17).

From the point of view of the people who submitted the jobs, a relevant measure of “goodness”

might be the average amount of time the submitters had to wait between submitting their job and

its completion. If all jobs were submitted at roughly the same time, but the long one was submitted

fi rst, the average waiting time is 252 hours: the submitter of the fi rst job waited 168 hours, the

submitter of the second 169 hours, the submitter of the third 170 hours, and so forth. Summing

up these wait times and dividing by the number of jobs (169) yields 252.

A better strategy might be shortest-job-fi rst (SJF) (Figure 5.18): whenever we must choose

which job to run next, we choose the one requiring the least running time. Thus in the example of

the previous paragraph, rather than having to report 0 jobs/hour completed during the fi rst week,

we can report 1 job/hour. With both approaches the fi gure at the end of the second week is .503

jobs/hour. However, the average wait time is now down to 86 hours. Of course, if we continue to

get more of these one-hour jobs, the one-week job might never be handled, but if our concern is

solely throughput, we don’t care.

•

0.5

0

Time (hours)

168 336

J
o

b
s
/h

o
u
r

FIGURE 5 .17 FIFO scheduling applied to our sample workload.

5.3 Scheduling 195

5.3.1.2 Multiprogrammed Batch Systems

Suppose a multiprogrammed batch system runs two jobs concurrently, using two FIFO queues.

In one queue are placed long-running jobs and in the other short-running jobs. So, continuing

with our example, the 168-hour job is placed in the fi rst queue and the one-hour jobs in the other.

When two jobs share the processor, their execution is time-sliced: each runs for a certain period

of time, known as the time quantum, then is preempted in favor of the other.

As with the simple batch systems, the throughput after two weeks is .503 jobs/hour.

Computing the average wait time given the time quantum is a bit cumbersome, but consider what

happens as the quantum approaches zero: each job experiences a processor that’s effectively half

its normal speed. Thus the 168-hour job takes two weeks to complete and each of the one-hour

jobs takes two hours. The short jobs have an average wait time of 169 hours, while the overall

average wait time is 169.99 hours. This is not as good as what we obtained with SJF, but it’s better

than FIFO and the long job makes progress even if we have a large number of short jobs.

5.3.1.3 Time-Sharing Systems

On time-sharing systems the primary scheduling concern is that the system appear responsive to

interactive users. This means that operations that should be quick really are. Users aren’t overly

annoyed if something that normally takes 2 minutes to run, such as building a large system, takes

5 minutes. But if something that normally seems instantaneous, such as adding a line to a fi le

when running an editor, starts taking more than a second, interactive response is considered poor.

Thus in a time-sharing system we want a scheduling strategy that favors short operations at the

possible expense of longer ones.

A simple time-sharing scheduler might be time-sliced and employ a single round-robin run

queue: a running thread that completes its time slice is put on the end of the run queue and the

thread at the front gets to run (see Figure 5.19). To give favored treatment to interactive threads

— those that are performing the short operations of interactive users — we might somehow

assign them high priorities and modify our queue so that high-priority threads are chosen before

FIGURE 5 .18 SJF scheduling applied to our sample workload.

0.5

0

Time (hours)

168 336

J
o

b
s
/h

o
u
r

1

FIGURE 5 .19 A round-robin queue.

196 CHAPTER 5 Processor Management

FIGURE 5 .20 Round-

robin queues of

multiple priorities.

low-priority ones. This could be done by ordering the queue according to priority, or by having

multiple queues, one for each priority level (Figure 5.20).

Of course, if computer users are asked to assign the priorities themselves, every thread will

be of the highest priority. Thus we need some means for automatically determining “interactiveness”

and assigning appropriate priorities. Since threads requiring short bursts of processor time are

more likely to be considered interactive than ones requiring long bursts, it makes sense to give

the former higher priorities. But how can we determine in advance how big a burst is required?

We probably can’t, without relying on the honesty of users.

Instead, let’s reduce the priority of a thread as it uses more and more time quanta. All

threads run at a high priority for the fi rst time quantum of any burst of computation. After each

quantum ends, if more processor time is required, the priority gets worse. This can be implemented

using a multilevel feedback queue, as shown in Figure 5.21. A thread becoming runnable starts

at the highest priority and waits on the top-priority queue. Each time it completes a time slice it

rejoins the multilevel feedback queue at the next lower queue. Threads in lower queues are not

allowed to run unless there are no threads in higher queues.

This general approach makes sense, but it requires a bit more work to be usable. It’s based

on the implicit assumption that our threads are idle for appreciable periods between bursts of

computation. But a thread that we’d like to consider non-interactive might have a large number

of relatively brief bursts of computation interspersed with short waits for disk access. Thus the

length of the bursts of computation should not be the sole factor in the equation; we need to

consider the time between bursts as well.

So, let’s modify the multilevel feedback queue by having threads enter the queue at a

priority that depends upon what they were doing since they last were in the queue. The priority

might be proportional to how long the thread was waiting (for example, for an I/O operation to

complete) before returning to the run queue. This approach is conceptually simple and can be

FIGURE 5 .21 Multi-

level feedback queue.

5.3 Scheduling 197

roughly summed up by saying that a thread’s priority gets worse while it’s running and better

while it’s not. This is the basis of pretty much all thread schedulers employed on today’s personal-

computer and workstation operating systems, in particular Unix and Windows.

At this point we step back and note that we’re using the term “priority” in a rather narrow

sense. A thread’s priority relates to when it will be scheduled on the processor for its next burst of

execution. This is probably not what you have in mind, though, when you use the term “priority.”

What you probably mean relates to importance: a high-priority task is more important than, and thus,

everything else being equal, should be completed before a lower-priority task. Thus even in the nar-

row context of describing operating-system schedulers, a high-priority thread should be given prefer-

ential access to resources over lower-priority threads, not just for its next request but at all times.

The user documentation of many operating systems uses this latter sense (importance)

when describing thread priorities as seen by user applications, but uses the former sense (short-term

scheduling order) when discussing internal priorities. Unix systems provide the nice command

to modify the importance of a thread, so called because it’s generally used to reduce the impor-

tance of a thread or process — thus one uses it to be “nice” to everyone else on the system. On

Windows, one runs a thread at one of six base priorities, defi ning its importance. These base

priorities are a major, but not the sole factor in determining short-term scheduling order.

5.3.1.4 Shared Servers

A problem with the time-sharing approach to scheduling is that the more threads a computation

uses, the greater the fraction of available processor time it gets. This is not a big deal on a personal

computer, but it is a big deal on a server. Suppose that you and four friends each contribute $1000

to buy a server. You’d probably feel that you own one-fi fth of that server and thus when you run a

program on it, you should get (at least) one-fi fth of the processor’s time. However, with the time-

sharing schedulers discussed above, if you’re running a single-threaded application and each of

your friends are running fi ve-threaded applications, their applications will get 20/21 of the processor’s

time and you will get 1/21 of it. What you (though not necessarily your friends) would like is a

partitioned server in which each of you is guaranteed 20% of the server’s processing time.

To accomplish such partitioning, we must account for time in terms of the user or application

rather than the thread. The general concept is known as proportional-share scheduling —

everyone gets their fair share of the computer. One interesting approach for this is lottery sched-
uling (Waldspurger and Weihl 1994), in which each user is given a certain number of lottery

tickets, depending on the size of her or his share of the computer. In our example, you and each

of your friends would be given one-fi fth of the lottery tickets. You would give these tickets to

your single thread; your friends would distribute their tickets among all their threads. Whenever

the scheduler must make a scheduling decision, it essentially runs a lottery in which one lottery

ticket is chosen randomly and the thread holding that ticket gets to run. Thus your thread, holding

one-fi fth of the tickets, is fi ve times as likely to win as any of your friends’ threads, which each

hold one-twenty-fi fth of the tickets.

A deterministic approach with properties similar to those of lottery scheduling is stride
scheduling (Waldspurger and Weihl 1995). We explain it here, using somewhat different termi-

nology. (Waldspurger and Weihl 1995) use stride to mean what we call the meter rate below. We

start by assuming that we are giving fair treatment to individual threads, and that all threads are

equal. Furthermore, let’s assume that all threads are created when the system starts, no threads

terminate, and no threads block for any reason. We’ll relax all these assumptions soon.

To ensure that each thread gets its fair share of the processor, we give each thread a processor

meter (rather like an electric meter) that runs, measuring processor time, only when the thread is

in the run state — i.e., the thread is running. Time is measured in arbitrary units that we simply

call quanta. The scheduler is driven by clock interrupts, which occur every quantum. The interrupt

handler chooses the next thread to run, which is the thread with the smallest processor time on its

meter. In case of tie, the thread with the lowest ID wins.

198 CHAPTER 5 Processor Management

No thread will get i�1 quanta of time on its meter until all other threads have i quanta on

their meters. Thus with respect to the size of the quantum, the scheduler is as fair as is possible.

Let’s now allow some threads to be more important than others. To become important, a

thread pays a bribe to have its processor meter “fi xed.” To facilitate such bribes, the provider of

meters has established the ticket as the bribery unit. It costs one ticket to obtain a “fair” meter

— one that accurately measures processor time. If a thread pays two tickets, it gets a meter that

measures processor time at half the rate that a fair meter does. If a thread pays three tickets, it gets

a meter that measures processor time at one-third the rate of a fair meter, and so forth. Thus the

rate at which a thread’s meter measures processor time is inversely proportional to the number of

tickets used to purchase the meter.

We make no changes to the scheduling algorithm, other than allowing threads to purchase

crooked meters. Thus it is still the case that no thread will get i�1 quanta of time on its meter

until all other threads have i quanta on their meters, but some threads will consume more actual

processor time than others. If two threads’ meters have the same value, but one thread has paid n

tickets for its meter and the other has paid one ticket, then the fi rst thread will have consumed n

times more processor time than the other.7

Figure 5.22 shows some of the details of slide scheduling in terms of C code. We store

with each thread the bribe it has paid (in units of tickets), the meter rate induced by this bribe

(meter_rate), and the current meter reading (metered_time). The meter is initialized with the

reciprocal of the bribe, which is the amount added to the meter after each quantum of execution

time. The fi gure also shows how the meter is updated at the end of each quantum, when the next

thread is selected for execution. Note that a real implementation of the scheduler would probably

use scaled-integer arithmetic, not fl oating-point arithmetic.

We don’t show the implementation of the run queue in Figure 5.22, but it is clearly critical.

If it is a balanced searched tree, where the threads are sorted by metered_time, then the operations

of InsertQueue and PullSmallestThreadFromQueue are done in O(log(n)) time, where n is the

number of runnable threads. Though, as discussed in Section 5.3.3, many schedulers have run

queues with linear-time operations, this is certainly acceptable, particularly since the number of

runnable threads is not likely to be large.

7 Rather than normal threads paying one ticket for their meters, it is more useful for normal threads to pay, say, ten tickets for their

meters. This allows not only smaller jumps in processor shares but also provides a means for giving some threads less than the

normal processor share.

typedef struct {
 ...

float bribe, meter_rate, metered_time;
} thread_t;

void thread_init(thread_t *t, float bribe) {
...
if (bribe < 1)

 abort();
 t->bribe = bribe;
 t->meter_rate = t->metered_time = 1/bribe;

InsertQueue(t);
}

void OnClockTick() {
thread_t *NextThread;

 CurrentThread->metered_time +=
CurrentThread->meter_rate;

InsertQueue(CurrentThread);
NextThread = PullSmallestThreadFromQueue();
if (NextThread != CurrentThread)
 SwitchTo(NextThread);

}

FIGURE 5 .22 C code

showing the slide-

scheduler initialization

required for each thread,

as well as how the

current thread’s meter

is updated at the end

of a time quantum.

5.3 Scheduling 199

An example of the scheduler in operation, adapted from (Waldspurger and Weihl 1995), is

shown in Figure 5.23, where we are scheduling three threads that have paid three, two, and one tickets,

respectively. Note that the threads’ meters can differ from one another by up to one quantum.

Suppose a new thread is created. It pays its bribe and gets a meter, but to what value should

the meter be initialized? If it’s set to zero, then the new thread gets all the processor time until its

meter catches up with the others’ meters.

To deal with this problem, we fi gure out what value the new thread’s meter would have had

if the thread had been runnable or running since the beginning of time, then set the meter to this

value. Thus the thread would join the run queue with no advantage (or disadvantage) over others.

How do we determine this meter value? We could look at the meter of some other thread,

but its meter could differ from the desired value by up to an entire quantum. Instead, let’s hypoth-

esize a fi ctitious additional processor as well as a fi ctitious additional thread that runs only on

the additional processor. This thread has as many tickets as all the (real) runnable and running

threads put together and, of course, a meter that measures time in steps that are the reciprocal of

this total number of tickets. It gets all the processor time of the fi ctitious processor, but its meter

advances at the same average rate as that of any real thread that has been runnable or running

since the beginning of time on the real processor. Since its meter advances more smoothly than

those of the real threads, the meters of new threads are set to its value upon creation.

Implementing the fi ctitious thread’s meter is easy — just one additional line of clock-tick

code is required, as shown in Figure 5.24.

Now suppose a thread blocks, say for I/O or to wait on a semaphore. When it resumes

execution, unless we make some adjustments, its meter will have the same value it had when the

thread stopped execution. So, like new threads, it sets its meter to the current value of the fi cti-

tious thread’s meter (though see Exercise 13).

An artifact of stride scheduling, as discussed above, is that processor time is not smoothly

distributed among threads that have a large imbalance of tickets. For example, suppose thread 1

has one hundred tickets, and threads 2 through 101 each have one ticket. Thread 1 will execute

for one hundred quanta, then each of the other threads will execute for one quantum each, and

then the cycle repeats. Though this behavior is not necessarily bad, in some situations (as when

some of the one-ticket threads are handling interactive requests) it is. A better schedule might be

for thread 1’s execution to alternate with each of the other threads in turn, so that thread 1 runs

1 2 3 4 5 6 7 8

1

2

Time (quanta)

M
e
te

r
v
a
lu

e
 (
q

u
a
n
ta

)

FIGURE 5 .23 The execution of three threads using stride scheduling. Thread

1 (a triangle) has paid a bribe of three tickets. Thread 2 (a circle) has paid two

tickets, and thread 3 (a square) has paid only one ticket. The solid thick lines

indicate when a thread is running. Their slopes are proportional to the meter

rates (inversely proportional to the bribe).

200 CHAPTER 5 Processor Management

for one quantum, then thread 2 runs for a quantum, then thread 1 runs for a quantum, then thread

3 runs for a quantum, and so forth.

Such scheduling is performed using a variant of stride scheduling called hierarchical stride
scheduling. Threads are organized into groups. In our example, thread 1 would form one group

and threads 2 through 101 would form another. Each group is represented by a balanced binary

search tree, with the threads as leaves. Each interior node has a meter whose rate is based on the

total number of tickets held by the threads at the leaves of the subtree it is a root of. Thus, for our

example, the group of one-ticket threads would be represented by a tree whose root has a meter

running at 1/100 speed. The singleton group for the 100-ticket thread would also be represented

by a (one-node) tree whose root has a meter running at 1/100 speed.

At the end of a quantum, the group whose root has the least time on its meter is selected

to run. Within the group, the thread (leaf) with the smallest time on its meter is selected and

removed from the tree (this requires rebalancing and updating the meters of each of the interior

nodes on the path back to the root). When the quantum of execution for the selected thread

completes, it is reinserted into its tree and the meters of its new tree ancestors are updated.

In hierarchical stride scheduling, adding another thread to a group reduces the shares of

the processor given to members of other groups. In some situations this might not be desirable.

For example, we might want to partition a processor into n groups, with each group getting some

fi xed percentage of processor time regardless of how many threads are in it. Thus adding a new

thread to a group changes the share of processor time given to threads of that group, but doesn’t

affect threads of other groups. We take this up in Exercise 14.

5.3.1.5 Real-Time Systems

Scheduling for real-time systems must be dependable. On a time-sharing system or personal

computer, it’s fi ne if interactive response is occasionally slow as long as most of the time it’s

very fast. On real-time systems, though, prolonged periods of faster-than-necessary response do

not make up for any period of slower-than-necessary response. In a soft real-time application

such as playing music, the faster-than-necessary response doesn’t make the music sound any

better, while the slower-than-necessary response produces some annoying noises. For a hard

real-time application such as running a nuclear reactor, a slower-than-necessary response might

necessitate a wide-area evacuation in which earlier quick responses become irrelevant and later

quick responses become impossible.

Both Unix and Windows provide real-time scheduling support that both (rightly) characterize

as insuffi cient for hard real-time applications. The approach taken is to extend time-sharing sched-

uling by adding some very high real-time-only priorities. Runnable real-time threads always

void OnClockTick() {
 thread_t *NextThread;

 FictitiousMeter += 1/TotalBribe;
 CurrentThread->metered_time +=
 CurrentThread->meter_rate;
 InsertQueue(CurrentThread);
 NextThread = PullSmallestThreadFromQueue();
 if (NextThread != CurrentThread)
 SwitchTo(NextThread);
}

FIGURE 5 .24 Updated clock-tick code that maintains the

meter of a fi ctitious thread that has paid a bribe of the sum

of all the bribes paid by the real threads. This meter is used

to initialize the meters of new threads and to update the

meters of newly awoken threads.

5.3 Scheduling 201

preempt the execution of other threads, even those performing important system functions such

as network protocol processing and mouse and keyboard handling. This clearly provides fast

response, but, as we explain below, not necessarily dependable response.

We shouldn’t undervalue fast response — it’s defi nitely important for many applications.

So, before we discuss hard real time, what else can be done to improve response times and make

them more dependable? Let’s start our answer by listing some things that either slow response or

make it less dependable.

Interrupt processing. Even though real-time threads have the highest priority, interrupt handling

still preempts their execution.

Caching and paging. These techniques serve to make execution normally fast except for

occasions when what is needed is not in the cache or in memory.

Resource acquisition. Real-time threads must acquire kernel resources such as memory, buffers,

etc., just like any other thread. If a mutex must be locked that’s currently held by a lower-priority

thread, the waiting thread must wait for the low-priority thread to make progress. This situation

is known as priority inversion: the high-priority thread, while waiting, is essentially at the

other thread’s priority.

What can we do about these problems? To minimize the effects of interrupt processing,

systems take advantage of the deferred-work techniques we discussed in Section 5.2.2. Where

possible, much work that would ordinarily take place within interrupt handlers is deferred and

done in contexts that can be preempted by real-time threads.

In general, caching in its various forms is considered so benefi cial to overall speed that

even systems supporting soft real-time applications use it. However, some hard real-time systems

eschew hardware caches so as to insure that performance is uniform. To avoid delays due to

paging (see Chapter 7), many systems (including Unix and Windows) allow applications to pin

portions of their address spaces into primary memory. This means that these portions are kept in

primary memory accessed without delays due to page faults, etc. Of course, doing this reduces

the amount of memory available for others.

Priority inversion has a straightforward solution — priority inheritance. If a real-time

thread is waiting to lock a mutex held by a lower-priority thread, the latter’s priority is set to that

of the real-time thread until the mutex is unlocked. Thus the lower-priority thread runs at the

priority of the waiting real-time thread until the real-time thread acquires the lock on the mutex.

If the lower-priority thread is itself waiting to lock another mutex, the priority of the holder of

that mutex must be raised as well. This is known as cascading inheritance.

Let’s now look at hard real-time systems. This is an important area of its own and we just

scratch the surface here by examining two simple scheduling approaches. Say we have a number

of chores to complete, each with a deadline and a known running time. A simple, intuitive approach

is earliest deadline fi rst: always complete the chore whose deadline is soonest. This certainly

makes sense in everyday life. If you have a number of things to do, all else equal you should

complete those things fi rst that must be done fi rst. You can work on longer-term projects when

time permits, that is when you don’t have an imminent deadline for some other project. Of course,

this might well mean that your long-term projects get done at the last minute, but at least you

meet your deadlines. If you don’t end up having time to complete your long-term project, it’s not

because of poor scheduling, it’s because you took on too many projects. In other words, if a suc-

cessful schedule is at all possible, an earliest-deadline-fi rst schedule will work.

However, things are not so simple if we have multiple processors, or, in the everyday case,

if you are managing multiple people who do your work for you. The general multiprocessor

scheduling problem is NP-complete. There is a vast literature on effi cient algorithms for special

cases and approximate algorithms for more general cases; we don’t discuss them here, but see,

for example, (Garey and Johnson 1975).

•

•

•

202 CHAPTER 5 Processor Management

An interesting and useful single-processor case is when a number of chores must be per-

formed periodically. Suppose we have a set of n chores such that each chore i must be completed

every P
i
 seconds and requires T

i
 processing time. Of course, T

i
 must be less than or equal to P

i
.

Furthermore, the sum of the chores’ duty cycles must be less than or equal to one: a chore’s duty

cycle is the time required for each instance divided by the length of its period — it’s the fraction of

the total time that must be devoted to handling this chore. If the sum of all duty cycles is greater

than one, then we clearly can’t do them all — there’s not enough time.

If the sum of the duty cycles is less than or equal to one, then the chores can be success-

fully scheduled using earliest-deadline-fi rst. However, particularly if we have a large number of

chores, this scheduling algorithm is, in general, rather expensive to run: each scheduling decision

requires evaluating the current status of all chores. If instead we can assign fi xed priorities to the

threads running the chores and use a simple preemptive priority-based scheduler, scheduling will

be quick and effi cient.

An intuitively attractive approach is to give threads whose chores have short periods higher

priority than threads whose chores have long periods. Thus if thread T
i
 is handling chore i, its

priority is 1/P
i
. The high-frequency (short-period) threads have more frequent deadlines than the

low-frequency (long-period) ones and thus would seem to need the processor more often. This

approach is known as rate-monotonic scheduling and is particularly attractive because most

general-purpose operating systems provide schedulers that can handle it.

The example of this approach in Figure 5.25 shows the schedule for the fi rst 9.5 seconds.

During this period, all chores are scheduled before their deadlines. But will this continue to be

so if we look beyond the fi rst 9.5 seconds? If all chores start in phase, that is, all periods start at

the same time, the answer is yes, in fact, we could have stopped after 2.5 seconds — the period

of the longest-period chore. In other words, if a chore will ever fail to meet its deadline, it will

fail in its fi rst period.

To see this, consider the following. The highest-frequency (and thus highest-priority)

chore runs whenever it’s ready. Thus if its duty cycle is less than one, it will be successfully

scheduled. The second-highest-frequency chore runs whenever both it is ready and the highest-

frequency chore is not running. It’s of course necessary that the sum of its duty cycle and that

of the fi rst chore be less than or equal to one, but it is not suffi cient — the fi rst chore, because of

1

0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6.5 7 7.5 8 8.5 9.596

1 1 1

2 2

3

1 1 1

2

3 3 3

1 3 1 2 3 1 3 2 1 1 1 13 3 2

3

1

FIGURE 5 .25 A successful application of rate-monotonic scheduling. The top three rows

show three cyclic chores. The fi rst occurs every 1.5 seconds and requires .5 seconds. The second

occurs every 4 seconds and requires .5 seconds. The third occurs every 2.5 seconds and requires

1 second. The fourth row shows the schedule obtained using rate-monotonic scheduling.

5.3 Scheduling 203

its priority, might preempt the second at a time when the second must run to meet its deadline

but the fi rst chore could wait and still meet its deadline. This would happen if, during one period

of the second chore, the fi rst used up so much time that there was not suffi cient time left for the

second. So, if we start the schedule so that the fi rst chore uses the largest fraction it will ever use

of the second’s period, and if the second, nevertheless, is able to meet its deadline, then it will

certainly be able to meet its deadline in all subsequent periods. We maximize this fraction by

starting both periods at the same moment.

By applying this argument to the third-highest-frequency chore, to the fourth, and so forth,

it becomes clear that all we have to consider is an initial time duration equal to the period of the

lowest-frequency chore. Thus, in Figure 5.25, it’s suffi cient to show just the fi rst 2.5 seconds

— the period of the lowest-frequency chore.

Note that the above argument applies only if the chores’ periods start in phase. As shown in

Figure 5.26, it might be possible, if they don’t start in phase, to apply rate-monotonic scheduling

successfully, even though it would fail otherwise.

Does rate-monotonic scheduling always work in the cases where the sums of the duty

cycles are less than one? Figure 5.27 shows a counterexample. We add one more cyclic chore to

the example of Figure 5.25, this one with a period of 4.5 seconds. With rate-monotonic scheduling,

we see that the new chore cannot meet its deadline. However, as shown in the bottom line of the

fi gure, with earliest-deadline-fi rst scheduling all deadlines are met.

Rate-monotonic scheduling has been studied extensively in the literature, and it’s been

shown that no algorithm using statically assigned priorities can do better than it (Lehoczky, Sha,

et al. 1989). It’s also been shown (see (Lehoczky, Sha, et al. 1989) for details) that if the sum of

the duty cycles is less than n(21/n–1), where n is the number of chores, then rate-monotonic sched-

uling is guaranteed to work. As n gets large, this value approaches ln 2 (the natural logarithm of

2, roughly .69314718). However, this is a suffi cient but not necessary condition — in Figure 5.25

the sum of the chores’ duty cycles exceeds the value given by the formula, but rate-monotonic

scheduling still works.

1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3

1 1 1 1 1

2 2 2 2 2 2 2

3

3

3 3

2 1 2

2 1 2 1 2

1 2 2 1 3

3

31 23 1 2 1

0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6.5 7 7.5 8 8.5 9.59 10 11 126

FIGURE 5 .26 The effect of phase on rate-monotonic scheduling. The top three rows show

three chores. The fi rst requires 1 second every 3 seconds, the second requires 1 second every

2 seconds, and the third requires .5 seconds every 4 seconds. The fourth row shows what happens

when rate-monotonic scheduling is used: the third chore can’t make its deadline even once. In

the bottom half of the fi gure, we’ve started the fi rst chore a half-second after the others. The last

row shows the rate-monotonic schedule: all three chores consistently meet their deadlines.

204 CHAPTER 5 Processor Management

1

0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6.5 7 7.5 8 8.5 9.596

1 1 1

2 2

3

4 4

1 1 1

2

3 3 3

1 3 1 2 3 1 3 2 1 1 1 13 3 2

4

1 3 1 2 4 31 1 3 1 2 4 1 3 1

3

2

1

FIGURE 5 .27 Rate-monotonic scheduling doesn’t work, but earliest-deadline-fi rst does.

We’ve added one more cyclic chore to the example in Figure 5.22, this one requiring

.5 seconds every 4.5 seconds. The fi fth row is the beginning of a schedule using rate-

monotonic scheduling: we can’t complete the new chore within its period. However, with

earliest deadline fi rst, we can meet the deadline, as shown in the bottom row.

5.3.2 TACTICS

In a few special situations, techniques are needed to circumvent the scheduler’s normal actions

in order to make certain that certain threads run. These situations include using local RPC

(Section 4.2.2) for fast interprocess communication, synchronization on multiprocessors, and

partitioning multiprocessors. We cover each of these in turn.

5.3.2.1 Handoff Scheduling

In local RPC, a thread in one process places a call to a procedure residing in another process.

From the application’s point of view, the effect is as if the calling thread actually crosses the process

boundary and executes code in the called process. In reality, as implemented in most operating

systems, threads can do no such thing; they are restricted to executing within one process. So, two

threads must be employed — one in the calling process and one in the called process.

A typical approach is that processes supplying remote procedures for others to call provide

one or more threads to execute the remote procedures in response to such calls. This sounds

straightforward enough: such threads wait on a queue and are woken up in response to incoming

calls. The calling thread then sleeps until the called thread returns.

The problem is the scheduling latency. We’d like the time required to execute a local RPC

to be not much worse than the time required to execute a strictly local procedure call. Two things

are done in the RPC case that are not done in local procedure calls:

transferring arguments and results between processes

waking up and scheduling fi rst the called thread at the beginning of the RPC, then the calling

thread on return

We cover the former issue in Chapter 9. The problem with the latter is the time lag between when,

for example, the calling thread wakes up the called thread and when the called thread is actually

chosen by the scheduler to run. To eliminate this lag, we must somehow circumvent the normal

actions of the scheduler and get the called thread to run immediately.

The circumvention method is called handoff scheduling (Black 1990a). The calling thread

invokes the scheduler, passing the ID of the called thread. The calling thread blocks and the

•

•

5.3 Scheduling 205

called thread starts running immediately, using the processor originally assigned to the calling

thread. For this to be reasonably fair to the other threads of the system, the scheduling state of

the calling thread might also be transferred to the called thread. For example, the called thread’s

initial time slice is set to be whatever remains of the calling thread’s time slice.

5.3.2.2 Preemption Control

Does it make sense to use spin locks to synchronize user threads? It certainly does not on a unipro-

cessor, so let’s assume we are dealing with a multiprocessor. If one thread is holding a spin lock while

another is waiting for it, we want to ensure that the thread holding the lock is making progress. The

worst thing that could happen is for the thread holding the lock to be preempted by the thread waiting

for the lock. And this is entirely possible if the time slice of the lock-holding thread expires.

The solution is somehow to convince the scheduler not to end the time slice of a thread

that is holding a spin lock. In principle, this is not diffi cult. A thread could simply set a bit in its

control structure to extend its time. This has two diffi culties:

 1. All threads might set this bit and never clear it. Thus the bit has no real effect.

 2. The reason for using a spin lock rather than a blocking lock is performance. If setting a bit

in a control structure is expensive (because the control structure belongs to the operating

system), this might negate the performance benefi ts of using a spin lock.

To deal with the fi rst problem, we must provide an incentive not to set the bit for longer than

absolutely necessary. To deal with the second, the implementation must be extremely fast. Sun’s

Solaris operating system provides a mechanism that does both. If a thread executes for longer

than its time slice, its scheduling priority becomes correspondingly worse. The system call that

implements the operation is in the “fast track,” meaning that threads calling it go into and out of

the kernel with minimal overhead.

5.3.2.3 Multiprocessor Issues

How should the processors of a multiprocessor system be scheduled? Assuming a symmetric

multiprocessor (SMP) system, in which all processors can access all memory, an obvious

approach is to have a single queue of runnable threads feeding all processors. Thus whenever a

processor becomes idle and needs work, it takes the fi rst thread in the queue.

This approach has been used in a number of systems but, unfortunately, suffers from two

serious problems. The fi rst is contention for the queue itself, which processors must lock before

accessing. The more processors a system has, the greater the potential delay in dispatching a

thread to a processor.

The second problem has to do with the caching of memory in the processors. If a thread

that was running on a processor becomes runnable again, there is a good chance not only that

some of the memory referenced by that thread is still in the original processor’s cache, but also

that the thread will reference this memory again soon. Thus it makes sense to run the thread on

the same processor on which it ran previously. What a thread has brought into a processor’s cache

is known as its cache footprint. The size of the cache footprint will certainly get smaller with time

while other threads are running on the processor, but as long as it still exists, there is a potential

advantage to a thread’s running on its most recent processor.

To deal with both these problems it makes sense to have multiple run queues, one for each

processor. Thus, since each processor uses only its own queue, there is no lock contention. If

a thread, when made runnable, is always put on the queue of its most recent processor, it will

always take advantage of whatever cache footprint remains.

This might seem to solve all our problems, except that we need to make certain that all

processors are kept reasonably busy. When a thread is created, on which processor should it run?

If some processors have longer queues than others, should we attempt to balance the load?

206 CHAPTER 5 Processor Management

Load balancing will defi nitely cause some contention when one processor either pulls

threads from or gives threads to another’s run queue, but, assuming such operations are infre-

quent, the cost is small. The more diffi cult issue is the strategy for load balancing, which must

take into account not only cache footprints, but also the likelihood of threads’ sharing memory

and how the processors and caches are organized.

In our usual model of a shared-memory multiprocessor system, any thread may run on any

processor. This makes a lot of sense for most personal computers and many servers. But in many

circumstances it makes sense to restrict the use of some or all of the processors. For example, a

virtual-machine monitor might want to dedicate certain processors to certain virtual machines.

A real-time system might need to shelter some applications from the effects of interrupt handling,

so it might run their threads on processors that don’t handle device interrupts.

A technique for doing this sort of partitioning, pioneered in the Mach microkernel (Black

1990b), involves the use of processor sets. Each such set is a collection of processors and threads.

The processors may run only those threads in their set; the threads may run on only those processors

in their set (see Figure 5.28). Thus for the virtual-machine example mentioned above, a virtual

machine, and hence all its threads, might be assigned a processor set that’s supplied by the VMM

— the processors would be made available for that virtual machine. For the real-time system,

critical applications might have their threads put in processor sets that include only those

processors not involved with interrupt handling.

Processor sets are explicitly supported by Solaris. Windows has a similar concept that it

calls affi nity masks.

5.3.3 CASE STUDIES

In this section we examine how scheduling is done in two systems: Linux and Windows. Each has

to deal with the following concerns and each does so differently.

Effi ciency and scaling. Scheduling decisions — which thread to run next — are made often

and thus must be done effi ciently. What might be practical for a personal computer with rarely

more than two runnable threads doesn’t necessarily work well for a busy server with many

tens of runnable threads.

Multiprocessor issues. It matters which processor a thread runs on. Processors have caches

and if a thread has run recently on a processor, it may make sense for the thread to run on that

processor again to take advantage of its “cache footprint” — those storage items it needs to

use that might still be in the cache and thus accessed quickly. Another issue is that multiple

•

•

FIGURE 5 .28 A system with two processor sets, contained in the ovals. The leftmost

contains two processors and four threads; the other contains one processor and three threads.

The remaining processors and threads effectively form their own set.

5.3 Scheduling 207

processors might cause contention on mutexes used to protect run queues and other scheduler

data structures, thus slowing down scheduling.

Who’s next? Both systems must somehow determine which threads should be the ones that

are running at any particular moment. This must take into account the relative importance of

individual threads, the resources tied up by threads, and I/O performance.

5.3.3.1 Scheduling in Linux

Until early 2003, Linux employed a rather simple but unscalable approach to scheduling. This

was replaced by a new scheduler that was not only more scalable but also more suitable for

multiprocessors. The new scheduler was itself replaced in 2007 by an even newer scheduler

based on stride scheduling (see Section 5.3.1.4). The general approach in the fi rst two schedulers

is to divide time into variable-length cycles and give runnable threads time on the processor each

cycle roughly in proportion to their priority and in inverse proportion to how long they’ve been

running recently. Real-time threads, however, compete only with each other on a strict priority

basis: lower-priority real-time threads run only when no higher-priority threads are runnable.

Any one thread is governed by one of three scheduling policies, settable by user code. The

SCHED_FIFO policy provides soft-real-time scheduling with high priorities and no time slicing:

threads run until they terminate, block for some reason, or are preempted by a thread of even higher

priority. The SCHED_RR policy provides soft-real-time scheduling that is just like SCHED_FIFO

except time slicing is done using user-adjustable time quanta. The imaginatively named

SCHED_OTHER policy provides normal time-sharing scheduling and is used by most threads.

In the old scheduler, each thread is assigned a priority as an indication of its importance.

For time-sharing threads this priority is based on the thread’s “nice” value (see Section 5.3.1.3).

For real-time threads it’s the thread’s priority relative to other real-time threads, but higher than

that of any time-sharing thread. For time-sharing threads, this priority is used to initialize the

thread’s counter, a variable that measures how much processor use the thread has had recently

and also indicates how much of the processor it should get soon. The next thread to run depends

on the result of a per-thread “goodness” computation: for real-time threads, this goodness value

is based on its priority, and for time-shared threads it’s the thread’s counter value.

Every 10 milliseconds a clock interrupt occurs and the value of the counter for the currently

running thread is decremented by one. When a (time-sharing) thread’s counter becomes zero, its

time slice is over and it goes back to the run queue. Thus the length of the scheduling cycle is

the sum of the counters of all the runnable threads. At the end of a scheduling cycle, when there

are no runnable real-time threads and all runnable time-sharing threads have zero counters, the

counters of all time-sharing threads, not just the runnable ones, are set as follows:

counter � counter/2 � priority;

Thus the counters for the runnable threads are reset to the threads’ priorities (“nice” values),

while those of sleeping threads increase to a maximum of twice the threads’ priorities. Threads

that have been sleeping for a while end up with a large share of the scheduling cycle the next

time they run. Since such sleeping threads are likely to be interactive threads — they may have

been sleeping or waiting for the next keystroke or mouse click — interactive threads get favored

treatment for their next burst of processor usage.

What’s wrong with this old scheduler? Why was it replaced? There are a number of problems.

Determining the next thread to run requires computing the goodness value for all threads on the

run queue — it’s the fi rst one encountered with the highest goodness value. Thus performance

suffers with larger run queues. What’s equally bad, if not worse, is that the counter values of all

time-sharing threads, not just all runnable ones, must be recomputed at the end of each scheduling

cycle. For a server with thousands of threads, this can be time-consuming.

•

208 CHAPTER 5 Processor Management

In addition, there is no explicit support for multiprocessors. On such a system, the one run

queue serves all processors; a thread is equally likely to run on any processor from one execution

to the next. Furthermore, with a single run queue there is contention for the mutex protecting it.

The new scheduler, known as the O(1) scheduler for reasons explained below, has a roughly

similar effect to the old one in determining which thread runs when, but does so more effi ciently

and takes cache footprints into account when scheduling for multiprocessors.

Each processor has a separate run queue — actually a separate pair of run queues labeled

active and expired (see Figure 5.29). Each run queue is itself an array of queues, one for each pri-

ority level, of which there are 140. Attached to each run queue is a bit vector indicating which of

the queues are non-empty. Finding the highest-priority runnable thread involves searching the bit

vector for the fi rst non-empty queue, then taking the fi rst thread from that queue. Thus scheduling

decisions are made in constant time, as opposed to the linear time required by the old scheduler

— thus explaining the name of the scheduler.

A processor’s active queue provides it with threads to run. When one is needed, the thread

from the front of the highest-priority non-empty queue is chosen and runs with a time slice that

depends on its priority. When a thread’s time slice is over, what happens next also depends on its

priority. Real-time threads (necessarily SCHED_RR since SCHED_FIFO threads aren’t time-sliced)

go back to the active queue at their priority. A time-sharing thread’s priority is reduced; if it’s

still above an interactive-priority threshold, it goes back to the active queue at its new priority.

Otherwise it goes to the expired queue. However, if threads have been waiting in the expired

queue for too long (how long depends on how many there are), then all time-sharing threads go

to the expired queue when their time slice is over.

If there are no threads in the active queue, which means there are no runnable real-time

threads, then the active and expired queues are switched. The threads that were on the expired

queue now compete for the processor.

When a thread that has been sleeping wakes up, it’s assigned a priority that depends both on how

long it was sleeping and what it was waiting for. The longer the sleep, the better its priority becomes.

If it was waiting on a hardware event such as a keystroke or a mouse click, its priority becomes even

better. The assumption is that long-term sleepers or those who had been waiting for such events are the

most likely to be interactive threads. Newly awoken threads go on the active queue.

The effect of all this is that real-time threads run to the exclusion of all other threads.

Threads determined to be interactive get favored treatment over non-interactive threads.

As we’ve mentioned, each processor has its own set of queues. Threads typically run on the

same processor all the time, thus taking advantage of their cache footprints. Of course, we also

need a means for sharing the workload among all processors — the benefi ts of using the cache

footprint do not outweigh those of using multiple processors.

Processor

0 struct runqueue
Processor

1 struct runqueue

active expired

bitmap bitmap

active expired

bitmap bitmap

FIGURE 5 .29 The run queues of the O(1) Linux scheduler.

5.3 Scheduling 209

What the O(1) scheduler does is to have a clock interrupt on each processor every millisecond.

If the interrupt handler sees the processor’s run queues are empty, it fi nds the processor with the

largest load and steals threads from it (assuming not all processors are idle). Every 250 milliseconds

the interrupt handler checks for a load imbalance — if its processor’s run queue is much smaller than

others, it also steals threads from the others.

The result of all this is threefold:

Threads rarely migrate from one processor to another — thus advantage is taken of cache

footprints.

Queues remain in balance over the long term.

Processors rarely access one another’s queues and thus lock contention is rare.

The Completely Fair Scheduler Despite the improvements gained with the O(1) scheduler,

the Linux developers decided, apparently because of a few examples of anomalous behav-

ior, to replace it with a scheduler based on stride scheduling (see Section 5.3.1.4) and called

the completely fair scheduler (CFS). (The CFS approach was apparently developed without

knowledge of the prior work on stride scheduling, which was described twelve years earlier

(Waldspurger and Weihl 1995) — there is no mention of stride scheduling in any of the CFS

documentation. Since stride scheduling requires logarithmic time, CFS might be called the

O(log(n)) scheduler.)

In support of CFS, the scheduler architecture was changed to allow the use of a number

of scheduling policies. Standard Linux supplies two: a real-time policy supporting the POSIX

SCHED_RR and SCHED_FIFO classes and a fair policy (stride scheduling) supporting the other

POSIX scheduling classes. The policies are ordered so that no runnable threads in a lower policy

are scheduled if there are any runnable threads in a higher policy. Thus when the scheduler

makes a decision, it fi rst invokes the real-time policy to select a thread; then, if no real-time

threads are available to run, it invokes the fair policy. The real-time policy is implemented much

as it was in the O(1) scheduler, but without the expired queue.

Threads of all scheduling policies are assigned to individual processors and scheduling is

done separately for each processor. Just as in the O(1) scheduler, load balancing is done to even

out the number of threads assigned to each processor.

5.3.3.2 Scheduling in Windows

The Windows scheduler is essentially round-robin with multiple priorities, but with a few twists.

Its basic strategy is straightforward. Threads are assigned priorities ranging from 0 through

31, with 0 reserved for special idle threads. Priorities of normal threads must be less than 16

and greater than 0; “real-time” threads have priorities from 16 through 31. Normal threads are

assigned a fi xed base priority, but their effective priority is “boosted” when they wake up after

sleeping and is reduced while they are running. The priorities of real-time threads are fi xed. Users

assign base priorities to threads according to their importance.

Another scheduling parameter is the length of a thread’s time quantum — how long it runs

until preempted by a thread of equal priority. Normal threads are assigned a default quantum

whose value depends on the type of system. Servers typically have longer quanta than interactive

computers. But subsystems external to the actual scheduler can change the quanta of individual

threads while they are running. In particular, the Win-32 subsystem, which manages windows on

the display, increases the quanta of foreground threads — threads belonging to the process of the

foreground window. The effect of doing this is to make sure that these threads get a greater portion

of the processor’s time than do threads of equal priority belonging to background processes. Note

that simply assigning such threads a higher priority might prevent background threads from running

at all — if that is what is desired, then the user can give such threads a lower base priority.

•

•

•

210 CHAPTER 5 Processor Management

The base priorities assigned to threads are typically from the middle of ranges labeled

high, above normal, normal, below normal, and low, as shown in Figure 5.30. Real-time threads

are typically assigned priorities from the range labeled real time, though their priorities do not

change. A normal thread’s effective priority is some value equal to or greater than its base. When

waking up from a sleep, a thread’s effective priority is set to their base priority plus some wait-

specifi c value (usually in the range 1 to 6, depending on what sort of event it was waiting for).

A thread’s effective priority is decremented by one, but to no less than the base, each time a

quantum expires on it.

The effect of all this is that threads of the same range share the processor with one another, but

threads of lower ranges cannot run at all unless there are no runnable threads in higher ranges.

As described so far, the Windows scheduler handles typical interactive computing and

servers reasonably well, but, despite its real-time priorities, it doesn’t handle many real-time

chores very well. One issue is priority inversion, as described in Section 5.3.1.5. Rather than

attempt to detect instances of priority inversion, Windows makes sure that all runnable processes

eventually make progress (though threads running at real-time priorities can prevent other threads

from running). A system thread known as the balance set manager, whose primary job is to assist

in managing virtual memory, periodically checks for threads that have been runnable for a certain

period of time, but have not actually been running. It increases their priority to 15, the maximum

value for normal threads. Once such a thread has run for its time quantum, its priority goes back

to what it was.

Another issue is handling applications, such as audio and video, that have rather stringent

performance requirements and, if given high real-time priorities, could monopolize the proces-

sors. A system running only such applications can be scheduled using rate-monotonic scheduling

(Section 5.3.1.5), but such scheduling doesn’t take into account the requirements of non-periodic

“normal” applications.

Windows, beginning with Windows Vista, handles this with an approach called the multi-
media class scheduler service (MMCSS) in which thread priorities are dynamically adjusted so

that they can meet their constraints without monopolizing the processors. Threads needing this

service are called multimedia threads. They register for the service by indicating at what real-time

priority they should run and how much processor time should be reserved for other (normal)

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

24

Real time

13

High
10

Above

normal

8

Normal

6

Below

normal

4

Low

FIGURE 5 .30 Priority ranges in Windows.

5.3 Scheduling 211

activity — by default, 20%. The service is provided by user threads, running at a high real-time

priority (27), that monitor the multimedia threads and boost their priority to the desired range

for (by default) 80% of the time, but lower their priorities to the low normal range for 20% of

the time. Thus, over a 10-millisecond period, their priorities are in the real-time range for

8 milliseconds, but drop to low values for 2 milliseconds.8

Unfortunately, this by itself is not quite enough to guarantee that the multimedia threads get

80% of processor time. Recall that Windows uses deferred procedure calls (Section 5.2.2) to cope

with such potentially time-consuming activity as handling network traffi c. Since this work takes

place in the interrupt context, it preempts the execution of threads, even real-time threads. Thus,

despite MMCSS, the multimedia threads may suffer because of network activity. This could

perhaps be dealt with by doing network-protocol processing by kernel threads rather than DPCs

(though see Exercise 17); Windows handles it by having MMCSS direct the network-protocol

code (running as DPCs) to “throttle back” and thus reduce the rate at which network packets are

handled.

The Windows scheduler is implemented using an elaborate set of states (Figure 5.31) and

queues. Associated with each processor is a set of ready queues, one per scheduling priority level.

These queues contain threads that are to run on the given processor. In addition, each processor

has a deferred ready queue, containing runnable threads that have not yet been assigned to a

particular processor. There are any number of queues of threads waiting for some sort of event

to occur.

To see how this works, let’s follow the life of a thread. When it’s created and fi rst made

runnable, its creator (running in kernel mode) puts it in the deferred ready state and enqueues it

in the deferred ready queue associated with the current processor. It’s also randomly assigned an

ideal processor, on which it will be scheduled if available. This helps with load balancing. Its

creator (or, later, the thread itself) may also give it an affi nity mask (Section 5.3.2.3) indicating

the set of processors on which it may run.

8 This description is based on http://technet.microsoft.com/en-us/magazine/cc162494.aspx.

Running

Standby

Ready
Deferred

ready
Waiting

Unwait

Wait

Select processor

Change affinity

Schedule

Switch

Schedule

Preempt

Preempt

FIGURE 5 .31 Scheduler states in Windows.

http://technet.microsoft.com/en-us/magazine/cc162494.aspx

212 CHAPTER 5 Processor Management

Each processor, each time it completes the handling of the pending DPC requests,

checks its deferred ready queue. If there are any threads in it, it processes them, assigning

them to processors. This works as follows. The DPC handler fi rst checks to see if there are any

idle processors that the thread can run on (if it has an affi nity mask, then it can run only on

the indicated processors). If there are any acceptable idle processors, preference is given fi rst

to the thread’s ideal processor, then to the last processor on which it ran (to take advantage of

the thread’s cache footprint (Section 5.3.2.3)). The thread is then put in the standby state and

given to the selected processor as its next thread. The processor would be currently running its

idle thread, which repeatedly checks for a standby thread. Once found, the processor switches

to the standby thread.

If there are no acceptable idle processors, then the thread is assigned to its ideal processor.

The DPC handler checks to see if the thread has a higher priority than what’s running on that

processor. If so, it puts the thread in the standby state, and sends the processor an interrupt. When

the processor returns from its interrupt handler it will notice the higher-priority thread in standby

state and switch to it, after fi rst putting its current thread on its deferred ready list. Otherwise, the

DPC handler puts the thread in the ready state and puts it in one of the ideal processor’s ready

queues according to the thread’s priority.

When a thread completes its time quantum (which, as discussed in Section 5.2.2, is dealt

with by a DPC), the processor searches its ready queues for a thread of equal or higher priority

and switches to it, if it fi nds one. Otherwise it continues with the current thread.

An executing thread might perform some sort of blocking operation, putting itself in a wait

queue. Its processor then searches its ready queues for the next thread to run.

When a thread is made runnable after it has been in the wait state, it’s put into the

deferred ready queue of the processor on which the thread doing the unwait operation was

running.

Other operations shown in Figure 5.31 include preempting a thread that’s in the state (possible,

though unlikely) and changing the affi nity mask of a thread that’s already been assigned a processor,

making the current processor selection unacceptable.

Processor management entails multiplexing the available processors to handle all the activities

taking place in a computer system — almost everything involves the use of one or more pro-

cessors. We started our discussion by looking at implementation strategies for threads. From

an application’s point of view, a thread is the processor; everything having to do with threads

is essential to performance. Interrupt processing, though hidden from applications, also has

a performance role. By their nature, interrupts displace other activity. Thus we need careful

control over when they can occur. In many cases it is important to do only what is absolutely

necessary within interrupt handlers, relegating work to other contexts so it can be done with

minimal disruption.

Scheduling is a topic unto itself. We briefl y examined its theory, in terms of the basic

strategies employed in computer systems. In practice, at least for interactive systems, a fair amount

of attention is paid to determining which threads are indeed interactive, giving them favored

treatment. But a major theme in all the operating systems we have looked at is scalability — the

scheduler must perform well, with low overhead, on large, busy systems.

 1. Suppose you are designing a server that requires many thousands of concurrent threads.

Which approach would be the most suitable: the one-level model or the two-level model

with multiple kernel threads? Explain.

5.4

CONCLUSIONS

5.4

CONCLUSIONS

5.5

EXERCISES

5.5

EXERCISES

5.5 Exercises 213

* 2. Implementing POSIX threads on Linux was made diffi cult because of Linux’s use of variable-

weight processes. Changes had to be made to the process model to make possible the more

effi cient NTPL implementation.

a. One problem was that, since Linux “threads” were actually processes, the only way to

wait for the termination of a thread was via the wait family of system calls. Explain why

this was a problem. (Hint: consider how pthread_join can be used.)

b. This problem was overcome in a rather creative but not terribly effi cient way. How might

you handle this problem if you were implementing POSIX threads?

 3. An upcall is a mechanism by which kernel code can place a call into user code — it is

essentially the reverse of a system call. Explain how it might be implemented. (Hint: consider

what resources must be available in the user process.)

* 4. The following code is an alternative to the implementation of mutexes given in Section

5.1.2. Does it work? Explain why or why not.

kmutex_lock(mutex_t *mut) {

if (mut->locked) {

enqueue(mut->wait_queue, CurrentThread);

thread_switch();

}

mut->locked � 1;

}

kmutex_unlock(mutex_t *mut) {

mut->locked � 0;

if (!queue_empty(mut->wait_queue))

enqueue(RunQueue, dequeue(mut->wait_queue));

}

 5. The simple implementation of thread_switch in Section 5.1.2 doesn’t deal with the case

of the run queue’s being empty. Assuming that threads are either runnable or waiting on a

mutex, what can you say about the system if there are no threads in the run queue?

* 6. The fi nal implementation of blocking_lock on page 174 requires some changes to thread_
switch. Show how thread_switch must be modifi ed.

* 7. Show how to implement semaphores in terms of futexes. Be sure to give the implementations

of both the P and V operations.

* 8. We have a new architecture for interrupt handling. There are n possible sources of interrupts.

A bit vector is used to mask them: if bit i is 1, then interrupt source i is masked. The operating

system employs n threads to handle interrupts, one per interrupt source. When interrupt i
occurs, thread i handles it and interrupt source i is automatically masked. When the thread

completes handling of the interrupt, interrupt source i is unmasked. Thus if interrupt source

i attempts to send an interrupt while a previous interrupt from i is being handled, the new

interrupt is masked until the handling of the previous one is completed. In other words, each

interrupt thread handles one interrupt at a time.

 Threads are scheduled using a simple priority-based scheduler. It maintains a list of

runnable threads (the exact data structure is not important for this problem). There’s a global

variable CurrentThread that refers to the currently running thread.

214 CHAPTER 5 Processor Management

a. When an interrupt occurs, on which stack should the registers of the interrupted thread be

saved? Explain. (Hint: there are two possibilities: the stack of the interrupted thread and

the stack of the interrupt-handling thread.)

b. After the registers are saved, what further actions are necessary so that the interrupt-handling

thread and the interrupted thread can be handled by the scheduler? (Hint: consider the

scheduler’s data structures.)

c. Recall that Windows employs DPCs (deferred procedure calls) so that interrupt handlers

may have work done when there is no other interrupt handling to be done. How could this

be done in the new architecture? (Hint: it’s easily handled.)

d. If there are multiple threads at the same priority, we’d like their execution to be time-sliced

— each runs for a certain period of time, then yields to the next. In Windows, this is done

by the clock interrupt handler’s requesting a DPC, which forces the current thread to yield

the processor. Explain how such time-slicing can be done on the new architecture.

 9. Consider the implementation of DPCs given in Section 5.2.2. The intent of the DPC mecha-

nism is to deal with chores generated by interrupt handlers at a lower priority level and thus

not interfere with higher-priority interrupts. This mechanism works well; however, if there

are a lot of these chores, it could prevent equally important threads from running.

a. Describe the existing mechanism that ensures that DPC requests are handled in prefer-

ence to threads. (Hint: this is easy.)

b. Describe (i.e., invent) a mechanism to solve this problem. That is, how can we limit the

number of DPC requests that are processed in preference to normal thread execution such

that the remaining DPC requests are processed on an equal basis with normal threads?

(Hint: this is slightly less easy.)

 10. Explain why Windows deferred procedure calls (DPCs) may not access user memory, but

asynchronous procedure calls (APCs) may.

* 11. An operating system has a simple round-robin scheduler used in conjunction with time slic-

ing: when a thread’s time slice is over, it goes to the end of the run queue and the next thread

runs. The run queue is implemented as a singly linked list of threads, with pointers to the fi rst

and last threads in the queue. Assume for parts a and b that we have a uniprocessor system.

a. The system has a mix of long-running compute threads that rarely block and interactive

threads that spend most of their time blocked, waiting for keyboard input, then have very

brief bursts of using the processor. Assuming we want the system to have good interactive

response, explain what is wrong with the scheduler.

b. How might the scheduler be improved to provide good interactive response? (Hint: a

simple improvement is suffi cient.)

c. We add three more processors to our system and add the appropriate synchronization (spin

locks) to our scheduler data structures. Describe the performance problems that will arise.

d. Describe what might be done to alleviate these performance problems, yet still have

reasonable parallelism.

* 12. Explain why the APC interrupt priority level must be lower than that of a DPC.

* 13. Figure 5.24 shows how threads’ meters are updated after each clock tick under stride

scheduling. FictitiousMeter is used to initialize the meters of new threads and of threads

rejoining the run queue after having been sleeping. However, when a thread blocks, its

meter’s value probably is not the same as that of FictitiousMeter.

5.6 References 215

a. Explain why this is so.

b. Why might it be reasonable to keep track of this difference between the thread’s meter

value and that of FictitiousMeter and to add this difference to the current value of

FictitiousMeter when the thread rejoins the run queue?

* 14. In hierarchical stride scheduling, whenever a new thread joins a group, the total number of

tickets held by the group increases and thus so does that group’s collective share of proces-

sor time. A better approach might be to give each group a fi xed number of tickets to be

evenly distributed among all its members. However, it might be a bit time-consuming to

readjust each member thread’s bribe whenever a new thread joins the group. Describe how

we might modify hierarchical stride scheduling so that each group’s share of processor time

remains constant despite the addition or deletion of group members, and that such addition

and deletion is done in constant time (not counting the time to update the balanced tree).

 15. Suppose, in the scheduling scenario in Figure 5.25, each cyclic chore is handled by a

thread — one thread per cyclic chore. Show how the scheduling constraints can be satisfi ed

on either Unix or Windows. Note that there are actually two constraints: each chore must

fi nish exactly once per cycle and each chore must start exactly once per cycle. The fi rst

constraint is handled by the scheduler, the second by the thread itself (perhaps by waiting

on a timer).

 16. Why does the Linux O(1) scheduler maintain two queues per processor — the active queue

and the expired queue? (Hint: consider load balancing and cache footprints.)

* 17. Windows performs network-protocol processing in the interrupt context using DPCs. As

explained in Section 5.3.3.2, this can cause interference with multimedia applications that,

despite running at real-time priorities, are preempted by network-protocol processing. An

alternative approach might be to have special kernel threads handle the network-protocol

processing and thus do it under the control of the scheduler, which could then give favored

treatment to multimedia applications. Explain what the disadvantage of this approach would

be. (Hint: consider things from the point of view of network performance, even without

multimedia applications.)

 18. Explain why the Windows scheduler has the standby state, rather than simply having a

processor run the highest priority thread in its ready queues.

Anderson, T. E., B. N. Bershad, E. Lazowska, H. M. Levy

(1992). Scheduler Activations: Effective Kernel Support

for the User-Level Management of Parallelism. ACM
Transactions on Computer Systems 10(1): 53–79.

Aral, Z., J. Bloom, T.W. Doeppner, I. Gertner, A. Langerman,

G. Schaffer (1989). Variable-Weight Processes with

Flexible Shared Resources. Proceedings of the Winter
1989 USENIX Technical Conference.

Black, D. L. (1990a). Scheduling Support for Concurrency
and Parallelism in the Mach Operating System. IEEE

Computer 23(5): 35–43.

Black, D. L. (1990b). Scheduling and Resource
Management Techniques for Multiprocessors. School

of Computer Science, Carnegie Mellon University

CMU Thesis CMU-CS-90-152.

Doeppner, T. W. (1987). Threads: A System for the
Support of Concurrent Programming, Brown

University, at http://www.cs.brown.edu/~twd/Threads

Paper.pdf

Garey, M. R. and D. S. Johnson (1975). Complexity

Results for Multiprocessor Scheduling Under Resource

Constraints. SIAM Journal of Computing 4(4):

392–411.

Kleiman, S. R. and J. Eykholt (1995). Interrupts as

Threads. ACM SIGOPS Operating Systems Review

29(2): 21–26.

Lehoczky, J., L. Sha, Y. Ding (1989). The Rate Monotonic

Scheduling Algorithm: Exact Characterization and

Average Case Behavior. Proceedings of the Real-Time
Systems Symposium, 166–171.

5.6

REFERENCES

5.6

REFERENCES

http://www.cs.brown.edu/~twd/Threads

216 CHAPTER 5 Processor Management

Von Behren, R., Jeremy Condit, Feng Zhou, George C.

Necula, and Eric Brewer (2003). Capriccio: Scalable

Threads for Internet Services. Nineteenth Symposium
on Operating Systems Principles. Lake George, NY,

ACM.

Waldspurger, C. A. and W. E. Weihl (1994). Lottery

Scheduling: Flexible Proportional-Share Resource

Management. Proceedings of the First Symposium
on Operating Systems Design and Implementation.

Monterey, USENIX.

Waldspurger, C. A. and W. E. Weihl (1995). Stride

Scheduling: Deterministic Proportional-Share Resource

Management. Massachusetts Institute of Technology

Technical Memorandum LCS/TM-528.

