
Operating systems 2018
1DT044 and 1DT096

February 2018 karl.marklund@it.uu.se Uppsala University

Solaris and Linux
scheduling

 Self study material

Module 3

mailto:karl.marklund@it.uu.se

Solaris is a Unix operating system originally developed by Sun Microsystems.
It superseded their earlier SunOS in 1993. Oracle Solaris, as it is now known,
has been owned by Oracle Corporation since Oracle's acquisition of Sun in
January 2010

Source: http://en.wikipedia.org/wiki/Solaris_(operating_system) Accessed 2015-02-09

Scheduling

http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Sun_Microsystems
http://en.wikipedia.org/wiki/SunOS
http://en.wikipedia.org/wiki/Oracle_Corporation
http://en.wikipedia.org/wiki/Sun_acquisition_by_Oracle
http://en.wikipedia.org/wiki/Solaris_(operating_system

Multi-level feedback queue
★ Each process has a dynamic priority, an integer value.

★ Uses a multi-level feedback queue scheduler.

๏ The queues in the system are ranked according to priority.
Processes waiting in higher priority queues are always
scheduled over those in lower priority queues.

๏ Processes at the same priority are usually scheduled in a
round-robin fashion.

๏ Whenever the CPU is free, the scheduler dispatches the
processes at the head of the highest-priority nonempty
ready queue.

★ A dispatch table is used to dynamically compute and update
the priority of a process.

Multi-level feedback queue
★ A process begins at priority 29.

★ CPU bound processes then filter down to the lower
priorities, where they are scheduled less frequently
(but for longer time-slices).

★ Interactive processes propagate to the higher
priorities (where they are scheduled whenever they
have work to perform, on the assumption that they
will soon relinquish the processor again).

★ The priority of a process is lowered after it consumes
its allocated time-slice. Its priority is raised if it has not
consumed its time-slice before requesting I/O.

Solaris dispatch
table
By default, there is an
inverse relationship
between priorities and
time slices. The higher
the priority, the
smaller the time slice.

Interactive processes
typically have a higher
priority: CPU-bound
processes, a lower priority.

This scheduling policy give good response times for interactive processes
and good throughput for CPU-bound processes.

low
priority

higher
priority

New priority when returning from sleep,
such as waiting for I/O.

New priority when time quantum expires.

Schedulers

Linux 2.6 scheduling
In versions of the Linux kernel 2.6 prior to 2.6.23, the
scheduler used is an O(1) scheduler by Ingo Molnár.

The scheduler used thereafter is the Completely Fair
Scheduler, also by Ingo Molnár.

• Runs in O(log N) time where N is the number of
tasks in the runqueue.

• Choosing a task can be done in constant time, but
reinserting a task after it has run requires O(log N)
operations, because the runqueue is implemented
as a red-black tree.

• A red–black tree is a type of self-balancing binary
search tree data structure.

http://en.wikipedia.org/wiki/Linux_kernel
http://en.wikipedia.org/wiki/Ingo_Moln%C3%A1r
http://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://en.wikipedia.org/wiki/Completely_Fair_Scheduler

O(1) Scheduler
kernel 2.6 (2003-12-17) — kernel 2.6.22 (2007-07-08)

Linux O(1) scheduler (prior to 2.6.23)

★ Implement fully O(1) scheduling. Every algorithm in the new scheduler
completes in constant-time, regardless of the number of running processes.

★ Implement perfect SMP scalability. Each processor has its own locking and
individual runqueue.

★ Implement improved SMP affinity. Attempt to group tasks to a specific CPU
and continue to run them there. Only migrate tasks from one CPU to another to
resolve imbalances in runqueue sizes.

★ Provide good interactive performance. Even during considerable system
load, the system should react and schedule interactive tasks immediately.

★ Provide fairness. No process should find itself starved of timeslice for any
reasonable amount of time. Likewise, no process should receive an unfairly
high amount of timeslice.

★ Optimize for the common case of only one or two runnable processes, yet
scale well to multiple processors, each with many processes.

Goals of the O(1) scheduler
Maximise overall CPU utilisation while also maximising interactive performance.

Priority levels and values

High
priority
level

Low
priority
value

High
priority
value

Low
priority
level

Interactivity heuristic
A task’s interactivity is determined by how long it
has been suspended waiting for I/O.

Dynamic priority
A task’s priority is recalculated when the task has
exhausted its time quantum.

Interactivity and dynamic priority
The Linux scheduler favours interactive processes.

Rewarding I/O bound processes
To prevent tasks from hogging the CPU and thus starving other tasks that need
CPU access, the Linux 2.6 scheduler can dynamically alter a task's priority.

Source: http://www.ibm.com/developerworks/linux/library/l-scheduler

Because I/O-bound tasks are viewed as
altruistic for CPU access they are
rewarded by having their priority level
raised by up to five steps.

CPU-bound tasks are punished by having
their priority level lowered by up to five
steps.

I/O-bound tasks commonly use the CPU to set up I/O and
then sleep awaiting the completion of the I/O. This type of
behaviour gives other tasks access to the CPU.

O(1) runqueue data structure
In order to support SMP, each processor maintains its runqueue and schedules itself independently. Each
runqueue contains two priority arrays: active and expired.

Both arrays are indexed according to priority value (0 - 139).

When the set of active processes becomes empty, the expired set becomes
the new active set and vice versa.

high priority

low priority

These runnable processes have not
yet exhausted their time quantum
and are thus allowed to run.

139

These runnable processes have exhausted
their time quantum and are thus forbidden
to run until all active processes expire.

high priority

low priority
139

Source: Understanding the Linux kernel, 3rd edition.

Active Expired

Heuristic Scheduler action

1

1 The scheduler tries to boost the
performance of interactive processes.

An active batch process that finishes its
time quantum always becomes expired.

2

2 An active interactive process that finishes
its time quantum usually remains active.

The scheduler refills its time quantum and
leaves it in the set of active processes.

3

3
If the eldest expired process has already
waited for a long time, or if an expired
process has higher static priority (lower
nice value) than the interactive process.

The scheduler moves an interactive
process that finished its time quantum
into the set of expired processes

As a consequence, the set of active processes will eventually become empty and the
expired processes will have a chance to run.

Swapping active and expired
Periodically, the role of the active and expired data changes: the active
processes suddenly become the expired processes, and the expired processes
become the active ones.

Image: Understanding the Linux kernel, 3rd edition, page 268.

Swaping the active and expired process sets is simple, only swap the pointers
active and expired.

Choose a task to run as fast at possible
The job of the scheduler is simple, choose the task on the highest priority list to execute.

Task bitmap

32 bit word 32 bit word 32 bit word 32 bit word 32 bit word

Priority
 Highest priority Lowest priority
0 1 2 3 ... 31 32 33 34 ... 63 64 65 66 ... 95 96 97 98 ... 127 128 129 130 ... 139

Bit value 1 1 0 0 ... 0 0 1 1 ... 1 0 0 0 ... 1 0 1 0 ... 0 0 1 0 ... 1

If there are tasks in a task list with priority X, bit number X is set to 1 in the task
bit map, otherwise the bit is set to 0.

On most architectures, a find-first-bit-set instruction is used to find the
highest priority bit set in one of five 32-bit words (for the 140 priorities).

The time it takes to find a task to execute depends not on the
number of active tasks but instead on the number of priorities.
This makes the 2.6 scheduler an O(1) process because the time to schedule is
both fixed and deterministic regardless of the number of active tasks.

O(1)

To make it fast to find the next process to execute, a bitmap is used to keep track
of the existence or not of tasks for all priority lists.

Completely Fair
O(log n) Scheduler

Default scheduler since kernel 2.6.23 (2007-10-09)

Completely Fair Scheduler (CFS)
The Completely Fair Scheduler (CFS) is the name of a
process scheduler which was merged into the 2.6.23 release
of the Linux kernel and is the default scheduler.

Instead of the run queues used in the O(1) scheduler, a
single red-black tree is used to track all processes which
are in a runnable state.

The process which pops up at the leftmost node of the tree is
the one which is most entitled to run at any given time.

Because of this simple design, CFS no longer uses active and
expired arrays and dispensed with sophisticated heuristics to
mark tasks as interactive versus non-interactive.

Source: http://lwn.net/Articles/230574/ Accessed 2014-02-01

http://lwn.net/Articles/184495/

Self-balancing time-ordered red-black-tree (1)
CFS maintains a time-ordered red-black tree using virtual
runtime as keys.

Source: http://www.ibm.com/developerworks/library/l-completely-fair-scheduler/ Accessed 2014-02-01

Each runnable task chases the other to maintain a balance of virtual
execution time across the set of runnable tasks in the tree.

A red-black tree is a tree with a couple of interesting and
useful properties.

First, it's self-balancing, which means that no path in the
tree will ever be more than twice as long as any other.

Second, operations on the tree occur in O(log n) time
(where n is the number of nodes in the tree).

This means that you can insert or delete a task quickly and
efficiently.

Self-balancing red-black-tree

Source: http://www.ibm.com/developerworks/library/l-completely-fair-scheduler/ Accessed 2014-02-01

Virtual runtime
To balance the black-red-tree, CFS maintains the
amount of time provided to a given task in what's
called the virtual runtime.

The smaller a task's virtual runtime,

meaning the smaller amount of
time a task has been permitted
access to the processor

, the higher its need for the processor.

Source: http://www.ibm.com/developerworks/library/l-completely-fair-scheduler/ Accessed 2014-02-01

Sleeper fairness
Like the old O(1) scheduler, CFS uses a concept called
sleeper fairness, which considers sleeping or waiting
tasks equivalent to those on the runqueue.

★ Interactive tasks which spend most of their time waiting
for user input or other events get a comparable share of
CPU time when they need it.

★ If a task spends a lot of its time sleeping, then its virtual
runtime value is low and it automatically gets a priority
boost when it finally needs it. Hence such tasks do not
get less processor time than the tasks that are
constantly running.

Source: http://en.wikipedia.org/wiki/Completely_Fair_Scheduler Accessed 2014-02-01

Self-balancing time-ordered red-black-tree (2)
Tasks on the left side of the tree are given time to execute,
and the tasks in the tree migrate from the right to the
left to maintain fairness.

Source: http://www.ibm.com/developerworks/library/l-completely-fair-scheduler/ Accessed 2014-02-01

Each runnable task
chases the other taks to
maintain a balance of
execution across the set
of runnable tasks in the
tree.

Self-balancing time-ordered red-black-tree (3)
Choosing a task can be done in constant time O(1) but
inserting a task back into the tree if runnable is O(log n).

Source: http://www.ibm.com/developerworks/library/l-completely-fair-scheduler/ Accessed 2014-02-01

O(log n)
A task accounts for
its use of the CPU by
adding its
execution time to
the virtual
runtime and is then
inserted back into
the tree if runnable.

O(1)
The scheduler, to be
fair, picks the left-
most node of the
red-black tree to
schedule next to
maintain fairness.
Choosing a task can
be done in constant
time.

