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A common notion of what an operating system does is that it manages resources — it determines 

who or what is to have which resource when. Processor time is apportioned to threads. Primary 

memory is apportioned to processes. Disk space is apportioned to users. On some data-processing 

systems, I/O bandwidth is apportioned to jobs or subsystems.

Our concern in this section is the sharing of processors, a task that’s usually referred to 

as scheduling (though certain aspects of memory management in some Unix systems are called 
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“memory scheduling”). The common use of the term schedule is that it’s something that’s pre-

pared ahead of time — we have a schedule for the use of a classroom or conference room; an 

airline has a fl ight schedule. Such static schedules make sense if we know or can predict the 

demands in advance. But the sort of scheduling we’re primarily interested in here is dynamic: 

responding to demands for immediate use of processor time. At any one moment we might have 

a static schedule for at least the order in which threads wait for processor time, but this schedule 

changes in response to additional threads becoming runnable and other system events.

A lot goes into determining schedules. At the strategic level, we are trying to make a “good” 

decision based on some sort of optimization criteria. Are we trying to give good response to 

interactive threads? Are we trying to give deterministic (and good) response to real-time threads? 

Are we trying to maximize the number of jobs per hour? Are we trying to do all of the above?

At the tactical level, we need to organize our list of runnable threads so as to fi nd the next 

thread to run quickly. On multiprocessor systems we need to take into account the benefi ts of 

caching: a thread runs best on a processor whose cache contains much of what that thread is 

using. Furthermore, we must consider the cost of synchronization and organize our data structures 

to minimize such costs.

5.3.1 STRATEGY

How the processor is shared depends upon what the system as a whole is supposed to do. Listed 

below are fi ve representative types of systems along with brief descriptions of the sort of sharing 

desired.

Simple batch systems. These probably don’t exist anymore, but they were common into the 

1960s. Programs (jobs) were submitted and ran without any interaction with humans, except 

for possible instructions to the operator to mount tapes and disks. Only one job ran at a time. 

The basic model is shown in Figure 5.16: a queue of jobs waiting to be run on the processor. The 

responsibility of the scheduler was to decide which job should run next when the current one 

fi nished. There were two concerns: the system throughput, i.e., the number of jobs per unit 

time, and the average wait time, i.e., how long it took from when a job was submitted to the 

system until it completed.

Multiprogrammed batch systems. These are identical to simple batch systems except that 

multiple jobs are run concurrently. Two sorts of scheduling decisions have to be made: how 

many and which jobs should be running, and how the processor is apportioned among the 

running jobs.

Time-sharing systems. Here we get away from the problem of how many and which jobs 

should be running and think more in terms of apportioning the processor to the threads that are 

ready to execute. The primary concern is wait time, here called response time — the time from 

when a command is given to when it is completed. Short requests should be handled quickly.

Shared servers. This is the modern version of the multiprogrammed batch system. A single 

computer is used concurrently by a number of clients, each getting its fair share. For example, 

a large data-processing computer might be running a number of different online systems each 
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FIGURE 5 .16 A simple batch system.
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of which must be guaranteed a certain capacity or performance level — we might want to 

guarantee each at least 10% of available processing time. A web-hosting service might want 

to give each of its clients the same fraction of total processor time, regardless of the number 

of threads employed.

Real-time systems. These have a range of requirements, ranging from what’s known as “soft” 

real-time to “hard” real-time. An example of the former is a system to play back streaming 

audio or video. It’s really important that most of the data be processed in a timely fashion, but 

it’s not a disaster if occasionally some data isn’t processed on time (or at all). An example of 

the latter is a system controlling a nuclear reactor. It’s not good enough for it to handle most 

of the data in a timely fashion; it must handle all the data in a timely fashion or there will be 

a disaster.

5.3.1.1 Simple Batch Systems

Much of the early work on scheduling dealt with the notion of jobs — work to be done, usually 

by a single-threaded program, whose running time was known. In this sort of situation one could 

conceivably come up with an optimal static schedule.

On a simple batch system (as described above) you might think we can do no better than 

fi rst-in-fi rst-out (FIFO) scheduling, i.e., a simple queue. However, if our sole criterion for goodness 

of our scheduler is the number of jobs completed per hour, this strategy could get us into trouble: 

if the fi rst job takes a week (168 hours) to complete, but the following 168 jobs each take an hour, 

our completion statistics aren’t going to look very good, at least not until towards the end of the 

second week (see Figure 5.17).

From the point of view of the people who submitted the jobs, a relevant measure of “goodness” 

might be the average amount of time the submitters had to wait between submitting their job and 

its completion. If all jobs were submitted at roughly the same time, but the long one was submitted 

fi rst, the average waiting time is 252 hours: the submitter of the fi rst job waited 168 hours, the 

submitter of the second 169 hours, the submitter of the third 170 hours, and so forth. Summing 

up these wait times and dividing by the number of jobs (169) yields 252.

A better strategy might be shortest-job-fi rst (SJF) (Figure 5.18): whenever we must choose 

which job to run next, we choose the one requiring the least running time. Thus in the example of 

the previous paragraph, rather than having to report 0 jobs/hour completed during the fi rst week, 

we can report 1 job/hour. With both approaches the fi gure at the end of the second week is .503 

jobs/hour. However, the average wait time is now down to 86 hours. Of course, if we continue to 

get more of these one-hour jobs, the one-week job might never be handled, but if our concern is 

solely throughput, we don’t care.
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FIGURE 5 .17 FIFO scheduling applied to our sample workload.
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5.3.1.2 Multiprogrammed Batch Systems

Suppose a multiprogrammed batch system runs two jobs concurrently, using two FIFO queues. 

In one queue are placed long-running jobs and in the other short-running jobs. So, continuing 

with our example, the 168-hour job is placed in the fi rst queue and the one-hour jobs in the other. 

When two jobs share the processor, their execution is time-sliced: each runs for a certain period 

of time, known as the time quantum, then is preempted in favor of the other.

As with the simple batch systems, the throughput after two weeks is .503 jobs/hour. 

Computing the average wait time given the time quantum is a bit cumbersome, but consider what 

happens as the quantum approaches zero: each job experiences a processor that’s effectively half 

its normal speed. Thus the 168-hour job takes two weeks to complete and each of the one-hour 

jobs takes two hours. The short jobs have an average wait time of 169 hours, while the overall 

average wait time is 169.99 hours. This is not as good as what we obtained with SJF, but it’s better 

than FIFO and the long job makes progress even if we have a large number of short jobs.

5.3.1.3 Time-Sharing Systems

On time-sharing systems the primary scheduling concern is that the system appear responsive to 

interactive users. This means that operations that should be quick really are. Users aren’t overly 

annoyed if something that normally takes 2 minutes to run, such as building a large system, takes 

5 minutes. But if something that normally seems instantaneous, such as adding a line to a fi le 

when running an editor, starts taking more than a second, interactive response is considered poor. 

Thus in a time-sharing system we want a scheduling strategy that favors short operations at the 

possible expense of longer ones.

A simple time-sharing scheduler might be time-sliced and employ a single round-robin run 

queue: a running thread that completes its time slice is put on the end of the run queue and the 

thread at the front gets to run (see Figure 5.19). To give favored treatment to interactive threads 

— those that are performing the short operations of interactive users — we might somehow 

assign them high priorities and modify our queue so that high-priority threads are chosen before 

FIGURE 5 .18 SJF scheduling applied to our sample workload.
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FIGURE 5 .19 A round-robin queue.
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FIGURE 5 .20 Round-

robin queues of 

multiple priorities.

low-priority ones. This could be done by ordering the queue according to priority, or by having 

multiple queues, one for each priority level (Figure 5.20).

Of course, if computer users are asked to assign the priorities themselves, every thread will 

be of the highest priority. Thus we need some means for automatically determining “interactiveness” 

and assigning appropriate priorities. Since threads requiring short bursts of processor time are 

more likely to be considered interactive than ones requiring long bursts, it makes sense to give 

the former higher priorities. But how can we determine in advance how big a burst is required? 

We probably can’t, without relying on the honesty of users.

Instead, let’s reduce the priority of a thread as it uses more and more time quanta. All 

threads run at a high priority for the fi rst time quantum of any burst of computation. After each 

quantum ends, if more processor time is required, the priority gets worse. This can be implemented 

using a multilevel feedback queue, as shown in Figure 5.21. A thread becoming runnable starts 

at the highest priority and waits on the top-priority queue. Each time it completes a time slice it 

rejoins the multilevel feedback queue at the next lower queue. Threads in lower queues are not 

allowed to run unless there are no threads in higher queues.

This general approach makes sense, but it requires a bit more work to be usable. It’s based 

on the implicit assumption that our threads are idle for appreciable periods between bursts of 

computation. But a thread that we’d like to consider non-interactive might have a large number 

of relatively brief bursts of computation interspersed with short waits for disk access. Thus the 

length of the bursts of computation should not be the sole factor in the equation; we need to 

consider the time between bursts as well.

So, let’s modify the multilevel feedback queue by having threads enter the queue at a 

priority that depends upon what they were doing since they last were in the queue. The priority 

might be proportional to how long the thread was waiting (for example, for an I/O operation to 

complete) before returning to the run queue. This approach is conceptually simple and can be 

FIGURE 5 .21 Multi-
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roughly summed up by saying that a thread’s priority gets worse while it’s running and better 

while it’s not. This is the basis of pretty much all thread schedulers employed on today’s personal-

computer and workstation operating systems, in particular Unix and Windows.

At this point we step back and note that we’re using the term “priority” in a rather narrow 

sense. A thread’s priority relates to when it will be scheduled on the processor for its next burst of 

execution. This is probably not what you have in mind, though, when you use the term “priority.” 

What you probably mean relates to importance: a high-priority task is more important than, and thus, 

everything else being equal, should be completed before a lower-priority task. Thus even in the nar-

row context of describing operating-system schedulers, a high-priority thread should be given prefer-

ential access to resources over lower-priority threads, not just for its next request but at all times.

The user documentation of many operating systems uses this latter sense (importance) 

when describing thread priorities as seen by user applications, but uses the former sense (short-term 

scheduling order) when discussing internal priorities. Unix systems provide the nice command 

to modify the importance of a thread, so called because it’s generally used to reduce the impor-

tance of a thread or process — thus one uses it to be “nice” to everyone else on the system. On 

Windows, one runs a thread at one of six base priorities, defi ning its importance. These base 

priorities are a major, but not the sole factor in determining short-term scheduling order.

5.3.1.4 Shared Servers

A problem with the time-sharing approach to scheduling is that the more threads a computation 

uses, the greater the fraction of available processor time it gets. This is not a big deal on a personal 

computer, but it is a big deal on a server. Suppose that you and four friends each contribute $1000 

to buy a server. You’d probably feel that you own one-fi fth of that server and thus when you run a 

program on it, you should get (at least) one-fi fth of the processor’s time. However, with the time-

sharing schedulers discussed above, if you’re running a single-threaded application and each of 

your friends are running fi ve-threaded applications, their applications will get 20/21 of the processor’s 

time and you will get 1/21 of it. What you (though not necessarily your friends) would like is a 

partitioned server in which each of you is guaranteed 20% of the server’s processing time.

To accomplish such partitioning, we must account for time in terms of the user or application 

rather than the thread. The general concept is known as proportional-share scheduling — 

everyone gets their fair share of the computer. One interesting approach for this is lottery sched-
uling (Waldspurger and Weihl 1994), in which each user is given a certain number of lottery 

tickets, depending on the size of her or his share of the computer. In our example, you and each 

of your friends would be given one-fi fth of the lottery tickets. You would give these tickets to 

your single thread; your friends would distribute their tickets among all their threads. Whenever 

the scheduler must make a scheduling decision, it essentially runs a lottery in which one lottery 

ticket is chosen randomly and the thread holding that ticket gets to run. Thus your thread, holding 

one-fi fth of the tickets, is fi ve times as likely to win as any of your friends’ threads, which each 

hold one-twenty-fi fth of the tickets.

A deterministic approach with properties similar to those of lottery scheduling is stride 
scheduling (Waldspurger and Weihl 1995). We explain it here, using somewhat different termi-

nology. (Waldspurger and Weihl 1995) use stride to mean what we call the meter rate below. We 

start by assuming that we are giving fair treatment to individual threads, and that all threads are 

equal. Furthermore, let’s assume that all threads are created when the system starts, no threads 

terminate, and no threads block for any reason. We’ll relax all these assumptions soon.

To ensure that each thread gets its fair share of the processor, we give each thread a processor 

meter (rather like an electric meter) that runs, measuring processor time, only when the thread is 

in the run state — i.e., the thread is running. Time is measured in arbitrary units that we simply 

call quanta. The scheduler is driven by clock interrupts, which occur every quantum. The interrupt 

handler chooses the next thread to run, which is the thread with the smallest processor time on its 

meter. In case of tie, the thread with the lowest ID wins.
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No thread will get i�1 quanta of time on its meter until all other threads have i quanta on 

their meters. Thus with respect to the size of the quantum, the scheduler is as fair as is possible.

Let’s now allow some threads to be more important than others. To become important, a 

thread pays a bribe to have its processor meter “fi xed.” To facilitate such bribes, the provider of 

meters has established the ticket as the bribery unit. It costs one ticket to obtain a “fair” meter 

— one that accurately measures processor time. If a thread pays two tickets, it gets a meter that 

measures processor time at half the rate that a fair meter does. If a thread pays three tickets, it gets 

a meter that measures processor time at one-third the rate of a fair meter, and so forth. Thus the 

rate at which a thread’s meter measures processor time is inversely proportional to the number of 

tickets used to purchase the meter.

We make no changes to the scheduling algorithm, other than allowing threads to purchase 

crooked meters. Thus it is still the case that no thread will get i�1 quanta of time on its meter 

until all other threads have i quanta on their meters, but some threads will consume more actual 

processor time than others. If two threads’ meters have the same value, but one thread has paid n 

tickets for its meter and the other has paid one ticket, then the fi rst thread will have consumed n 

times more processor time than the other.7

Figure 5.22 shows some of the details of slide scheduling in terms of C code. We store 

with each thread the bribe it has paid (in units of tickets), the meter rate induced by this bribe 

(meter_rate), and the current meter reading (metered_time). The meter is initialized with the 

reciprocal of the bribe, which is the amount added to the meter after each quantum of execution 

time. The fi gure also shows how the meter is updated at the end of each quantum, when the next 

thread is selected for execution. Note that a real implementation of the scheduler would probably 

use scaled-integer arithmetic, not fl oating-point arithmetic.

We don’t show the implementation of the run queue in Figure 5.22, but it is clearly critical. 

If it is a balanced searched tree, where the threads are sorted by metered_time, then the operations 

of InsertQueue and PullSmallestThreadFromQueue are done in O(log(n)) time, where n is the 

number of runnable threads. Though, as discussed in Section 5.3.3, many schedulers have run 

queues with linear-time operations, this is certainly acceptable, particularly since the number of 

runnable threads is not likely to be large.

7 Rather than normal threads paying one ticket for their meters, it is more useful for normal threads to pay, say, ten tickets for their 

meters. This allows not only smaller jumps in processor shares but also provides a means for giving some threads less than the 

normal processor share.

typedef struct {
  ...

float bribe, meter_rate, metered_time;
} thread_t;

void thread_init(thread_t *t, float bribe) {
...
if (bribe < 1)

    abort();
  t->bribe = bribe;
  t->meter_rate = t->metered_time = 1/bribe;

InsertQueue(t);
}

void OnClockTick() {
thread_t *NextThread;

  CurrentThread->metered_time +=
CurrentThread->meter_rate;

InsertQueue(CurrentThread);
NextThread = PullSmallestThreadFromQueue();
if (NextThread != CurrentThread)
  SwitchTo(NextThread);

}

FIGURE 5 .22 C code 
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An example of the scheduler in operation, adapted from (Waldspurger and Weihl 1995), is 

shown in Figure 5.23, where we are scheduling three threads that have paid three, two, and one tickets, 

respectively. Note that the threads’ meters can differ from one another by up to one quantum.

Suppose a new thread is created. It pays its bribe and gets a meter, but to what value should 

the meter be initialized? If it’s set to zero, then the new thread gets all the processor time until its 

meter catches up with the others’ meters.

To deal with this problem, we fi gure out what value the new thread’s meter would have had 

if the thread had been runnable or running since the beginning of time, then set the meter to this 

value. Thus the thread would join the run queue with no advantage (or disadvantage) over others.

How do we determine this meter value? We could look at the meter of some other thread, 

but its meter could differ from the desired value by up to an entire quantum. Instead, let’s hypoth-

esize a fi ctitious additional processor as well as a fi ctitious additional thread that runs only on 

the additional processor. This thread has as many tickets as all the (real) runnable and running 

threads put together and, of course, a meter that measures time in steps that are the reciprocal of 

this total number of tickets. It gets all the processor time of the fi ctitious processor, but its meter 

advances at the same average rate as that of any real thread that has been runnable or running 

since the beginning of time on the real processor. Since its meter advances more smoothly than 

those of the real threads, the meters of new threads are set to its value upon creation.

Implementing the fi ctitious thread’s meter is easy — just one additional line of clock-tick 

code is required, as shown in Figure 5.24.

Now suppose a thread blocks, say for I/O or to wait on a semaphore. When it resumes 

execution, unless we make some adjustments, its meter will have the same value it had when the 

thread stopped execution. So, like new threads, it sets its meter to the current value of the fi cti-

tious thread’s meter (though see Exercise 13).

An artifact of stride scheduling, as discussed above, is that processor time is not smoothly 

distributed among threads that have a large imbalance of tickets. For example, suppose thread 1 

has one hundred tickets, and threads 2 through 101 each have one ticket. Thread 1 will execute 

for one hundred quanta, then each of the other threads will execute for one quantum each, and 

then the cycle repeats. Though this behavior is not necessarily bad, in some situations (as when 

some of the one-ticket threads are handling interactive requests) it is. A better schedule might be 

for thread 1’s execution to alternate with each of the other threads in turn, so that thread 1 runs 
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FIGURE 5 .23 The execution of three threads using stride scheduling. Thread 

1 (a triangle) has paid a bribe of three tickets. Thread 2 (a circle) has paid two 
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for one quantum, then thread 2 runs for a quantum, then thread 1 runs for a quantum, then thread 

3 runs for a quantum, and so forth.

Such scheduling is performed using a variant of stride scheduling called hierarchical stride 
scheduling. Threads are organized into groups. In our example, thread 1 would form one group 

and threads 2 through 101 would form another. Each group is represented by a balanced binary 

search tree, with the threads as leaves. Each interior node has a meter whose rate is based on the 

total number of tickets held by the threads at the leaves of the subtree it is a root of. Thus, for our 

example, the group of one-ticket threads would be represented by a tree whose root has a meter 

running at 1/100 speed. The singleton group for the 100-ticket thread would also be represented 

by a (one-node) tree whose root has a meter running at 1/100 speed.

At the end of a quantum, the group whose root has the least time on its meter is selected 

to run. Within the group, the thread (leaf) with the smallest time on its meter is selected and 

removed from the tree (this requires rebalancing and updating the meters of each of the interior 

nodes on the path back to the root). When the quantum of execution for the selected thread 

completes, it is reinserted into its tree and the meters of its new tree ancestors are updated.

In hierarchical stride scheduling, adding another thread to a group reduces the shares of 

the processor given to members of other groups. In some situations this might not be desirable. 

For example, we might want to partition a processor into n groups, with each group getting some 

fi xed percentage of processor time regardless of how many threads are in it. Thus adding a new 

thread to a group changes the share of processor time given to threads of that group, but doesn’t 

affect threads of other groups. We take this up in Exercise 14.

5.3.1.5 Real-Time Systems

Scheduling for real-time systems must be dependable. On a time-sharing system or personal 

computer, it’s fi ne if interactive response is occasionally slow as long as most of the time it’s 

very fast. On real-time systems, though, prolonged periods of faster-than-necessary response do 

not make up for any period of slower-than-necessary response. In a soft real-time application 

such as playing music, the faster-than-necessary response doesn’t make the music sound any 

better, while the slower-than-necessary response produces some annoying noises. For a hard 

real-time application such as running a nuclear reactor, a slower-than-necessary response might 

necessitate a wide-area evacuation in which earlier quick responses become irrelevant and later 

quick responses become impossible.

Both Unix and Windows provide real-time scheduling support that both (rightly) characterize 

as insuffi cient for hard real-time applications. The approach taken is to extend time-sharing sched-

uling by adding some very high real-time-only priorities. Runnable real-time threads always 

void OnClockTick() {
  thread_t *NextThread;

  FictitiousMeter += 1/TotalBribe;
  CurrentThread->metered_time +=
     CurrentThread->meter_rate;
  InsertQueue(CurrentThread);
  NextThread = PullSmallestThreadFromQueue();
  if (NextThread != CurrentThread)
    SwitchTo(NextThread);
}

FIGURE 5 .24 Updated clock-tick code that maintains the 

meter of a fi ctitious thread that has paid a bribe of the sum 

of all the bribes paid by the real threads. This meter is used 

to initialize the meters of new threads and to update the 

meters of newly awoken threads.
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preempt the execution of other threads, even those performing important system functions such 

as network protocol processing and mouse and keyboard handling. This clearly provides fast 

response, but, as we explain below, not necessarily dependable response.

We shouldn’t undervalue fast response — it’s defi nitely important for many applications. 

So, before we discuss hard real time, what else can be done to improve response times and make 

them more dependable? Let’s start our answer by listing some things that either slow response or 

make it less dependable.

Interrupt processing. Even though real-time threads have the highest priority, interrupt handling 

still preempts their execution.

Caching and paging. These techniques serve to make execution normally fast except for 

occasions when what is needed is not in the cache or in memory.

Resource acquisition. Real-time threads must acquire kernel resources such as memory, buffers, 

etc., just like any other thread. If a mutex must be locked that’s currently held by a lower-priority 

thread, the waiting thread must wait for the low-priority thread to make progress. This situation 

is known as priority inversion: the high-priority thread, while waiting, is essentially at the 

other thread’s priority.

What can we do about these problems? To minimize the effects of interrupt processing, 

systems take advantage of the deferred-work techniques we discussed in Section 5.2.2. Where 

possible, much work that would ordinarily take place within interrupt handlers is deferred and 

done in contexts that can be preempted by real-time threads.

In general, caching in its various forms is considered so benefi cial to overall speed that 

even systems supporting soft real-time applications use it. However, some hard real-time systems 

eschew hardware caches so as to insure that performance is uniform. To avoid delays due to 

paging (see Chapter 7), many systems (including Unix and Windows) allow applications to pin 

portions of their address spaces into primary memory. This means that these portions are kept in 

primary memory accessed without delays due to page faults, etc. Of course, doing this reduces 

the amount of memory available for others.

Priority inversion has a straightforward solution — priority inheritance. If a real-time 

thread is waiting to lock a mutex held by a lower-priority thread, the latter’s priority is set to that 

of the real-time thread until the mutex is unlocked. Thus the lower-priority thread runs at the 

priority of the waiting real-time thread until the real-time thread acquires the lock on the mutex. 

If the lower-priority thread is itself waiting to lock another mutex, the priority of the holder of 

that mutex must be raised as well. This is known as cascading inheritance.

Let’s now look at hard real-time systems. This is an important area of its own and we just 

scratch the surface here by examining two simple scheduling approaches. Say we have a number 

of chores to complete, each with a deadline and a known running time. A simple, intuitive approach 

is earliest deadline fi rst: always complete the chore whose deadline is soonest. This certainly 

makes sense in everyday life. If you have a number of things to do, all else equal you should 

complete those things fi rst that must be done fi rst. You can work on longer-term projects when 

time permits, that is when you don’t have an imminent deadline for some other project. Of course, 

this might well mean that your long-term projects get done at the last minute, but at least you 

meet your deadlines. If you don’t end up having time to complete your long-term project, it’s not 

because of poor scheduling, it’s because you took on too many projects. In other words, if a suc-

cessful schedule is at all possible, an earliest-deadline-fi rst schedule will work.

However, things are not so simple if we have multiple processors, or, in the everyday case, 

if you are managing multiple people who do your work for you. The general multiprocessor 

scheduling problem is NP-complete. There is a vast literature on effi cient algorithms for special 

cases and approximate algorithms for more general cases; we don’t discuss them here, but see, 

for example, (Garey and Johnson 1975).

•
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•
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An interesting and useful single-processor case is when a number of chores must be per-

formed periodically. Suppose we have a set of n chores such that each chore i must be completed 

every P
i
 seconds and requires T

i
 processing time. Of course, T

i
 must be less than or equal to P

i
. 

Furthermore, the sum of the chores’ duty cycles must be less than or equal to one: a chore’s duty 

cycle is the time required for each instance divided by the length of its period — it’s the fraction of 

the total time that must be devoted to handling this chore. If the sum of all duty cycles is greater 

than one, then we clearly can’t do them all — there’s not enough time.

If the sum of the duty cycles is less than or equal to one, then the chores can be success-

fully scheduled using earliest-deadline-fi rst. However, particularly if we have a large number of 

chores, this scheduling algorithm is, in general, rather expensive to run: each scheduling decision 

requires evaluating the current status of all chores. If instead we can assign fi xed priorities to the 

threads running the chores and use a simple preemptive priority-based scheduler, scheduling will 

be quick and effi cient.

An intuitively attractive approach is to give threads whose chores have short periods higher 

priority than threads whose chores have long periods. Thus if thread T
i
 is handling chore i, its 

priority is 1/P
i
. The high-frequency (short-period) threads have more frequent deadlines than the 

low-frequency (long-period) ones and thus would seem to need the processor more often. This 

approach is known as rate-monotonic scheduling and is particularly attractive because most 

general-purpose operating systems provide schedulers that can handle it.

The example of this approach in Figure 5.25 shows the schedule for the fi rst 9.5 seconds. 

During this period, all chores are scheduled before their deadlines. But will this continue to be 

so if we look beyond the fi rst 9.5 seconds? If all chores start in phase, that is, all periods start at 

the same time, the answer is yes, in fact, we could have stopped after 2.5 seconds — the period 

of the longest-period chore. In other words, if a chore will ever fail to meet its deadline, it will 

fail in its fi rst period.

To see this, consider the following. The highest-frequency (and thus highest-priority) 

chore runs whenever it’s ready. Thus if its duty cycle is less than one, it will be successfully 

scheduled. The second-highest-frequency chore runs whenever both it is ready and the highest-

frequency chore is not running. It’s of course necessary that the sum of its duty cycle and that 

of the fi rst chore be less than or equal to one, but it is not suffi cient — the fi rst chore, because of 
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FIGURE 5 .25 A successful application of rate-monotonic scheduling. The top three rows 

show three cyclic chores. The fi rst occurs every 1.5 seconds and requires .5 seconds. The second 

occurs every 4 seconds and requires .5 seconds. The third occurs every 2.5 seconds and requires 

1 second. The fourth row shows the schedule obtained using rate-monotonic scheduling.
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its priority, might preempt the second at a time when the second must run to meet its deadline 

but the fi rst chore could wait and still meet its deadline. This would happen if, during one period 

of the second chore, the fi rst used up so much time that there was not suffi cient time left for the 

second. So, if we start the schedule so that the fi rst chore uses the largest fraction it will ever use 

of the second’s period, and if the second, nevertheless, is able to meet its deadline, then it will 

certainly be able to meet its deadline in all subsequent periods. We maximize this fraction by 

starting both periods at the same moment.

By applying this argument to the third-highest-frequency chore, to the fourth, and so forth, 

it becomes clear that all we have to consider is an initial time duration equal to the period of the 

lowest-frequency chore. Thus, in Figure 5.25, it’s suffi cient to show just the fi rst 2.5 seconds 

— the period of the lowest-frequency chore.

Note that the above argument applies only if the chores’ periods start in phase. As shown in 

Figure 5.26, it might be possible, if they don’t start in phase, to apply rate-monotonic scheduling 

successfully, even though it would fail otherwise.

Does rate-monotonic scheduling always work in the cases where the sums of the duty 

cycles are less than one? Figure 5.27 shows a counterexample. We add one more cyclic chore to 

the example of Figure 5.25, this one with a period of 4.5 seconds. With rate-monotonic scheduling, 

we see that the new chore cannot meet its deadline. However, as shown in the bottom line of the 

fi gure, with earliest-deadline-fi rst scheduling all deadlines are met.

Rate-monotonic scheduling has been studied extensively in the literature, and it’s been 

shown that no algorithm using statically assigned priorities can do better than it (Lehoczky, Sha, 

et al. 1989). It’s also been shown (see (Lehoczky, Sha, et al. 1989) for details) that if the sum of 

the duty cycles is less than n(21/n–1), where n is the number of chores, then rate-monotonic sched-

uling is guaranteed to work. As n gets large, this value approaches ln 2 (the natural logarithm of 

2, roughly .69314718). However, this is a suffi cient but not necessary condition — in Figure 5.25 

the sum of the chores’ duty cycles exceeds the value given by the formula, but rate-monotonic 

scheduling still works.

1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3

1 1 1 1 1

2 2 2 2 2 2 2

3

3

3 3

2 1 2

2 1 2 1 2

1 2 2 1 3
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31 23 1 2 1

0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6.5 7 7.5 8 8.5 9.59 10 11 126

FIGURE 5 .26 The effect of phase on rate-monotonic scheduling. The top three rows show 

three chores. The fi rst requires 1 second every 3 seconds, the second requires 1 second every 

2 seconds, and the third requires .5 seconds every 4 seconds. The fourth row shows what happens 

when rate-monotonic scheduling is used: the third chore can’t make its deadline even once. In 

the bottom half of the fi gure, we’ve started the fi rst chore a half-second after the others. The last 

row shows the rate-monotonic schedule: all three chores consistently meet their deadlines.
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FIGURE 5 .27 Rate-monotonic scheduling doesn’t work, but earliest-deadline-fi rst does. 

We’ve added one more cyclic chore to the example in Figure 5.22, this one requiring 

.5 seconds every 4.5 seconds. The fi fth row is the beginning of a schedule using rate-

monotonic scheduling: we can’t complete the new chore within its period. However, with 

earliest deadline fi rst, we can meet the deadline, as shown in the bottom row.

5.3.2 TACTICS

In a few special situations, techniques are needed to circumvent the scheduler’s normal actions 

in order to make certain that certain threads run. These situations include using local RPC 

(Section 4.2.2) for fast interprocess communication, synchronization on multiprocessors, and 

partitioning multiprocessors. We cover each of these in turn.

5.3.2.1 Handoff Scheduling

In local RPC, a thread in one process places a call to a procedure residing in another process. 

From the application’s point of view, the effect is as if the calling thread actually crosses the process 

boundary and executes code in the called process. In reality, as implemented in most operating 

systems, threads can do no such thing; they are restricted to executing within one process. So, two 

threads must be employed — one in the calling process and one in the called process.

A typical approach is that processes supplying remote procedures for others to call provide 

one or more threads to execute the remote procedures in response to such calls. This sounds 

straightforward enough: such threads wait on a queue and are woken up in response to incoming 

calls. The calling thread then sleeps until the called thread returns.

The problem is the scheduling latency. We’d like the time required to execute a local RPC 

to be not much worse than the time required to execute a strictly local procedure call. Two things 

are done in the RPC case that are not done in local procedure calls:

transferring arguments and results between processes

waking up and scheduling fi rst the called thread at the beginning of the RPC, then the calling 

thread on return

We cover the former issue in Chapter 9. The problem with the latter is the time lag between when, 

for example, the calling thread wakes up the called thread and when the called thread is actually 

chosen by the scheduler to run. To eliminate this lag, we must somehow circumvent the normal 

actions of the scheduler and get the called thread to run immediately.

The circumvention method is called handoff scheduling (Black 1990a). The calling thread 

invokes the scheduler, passing the ID of the called thread. The calling thread blocks and the 

•

•
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called thread starts running immediately, using the processor originally assigned to the calling 

thread. For this to be reasonably fair to the other threads of the system, the scheduling state of 

the calling thread might also be transferred to the called thread. For example, the called thread’s 

initial time slice is set to be whatever remains of the calling thread’s time slice.

5.3.2.2 Preemption Control

Does it make sense to use spin locks to synchronize user threads? It certainly does not on a unipro-

cessor, so let’s assume we are dealing with a multiprocessor. If one thread is holding a spin lock while 

another is waiting for it, we want to ensure that the thread holding the lock is making progress. The 

worst thing that could happen is for the thread holding the lock to be preempted by the thread waiting 

for the lock. And this is entirely possible if the time slice of the lock-holding thread expires.

The solution is somehow to convince the scheduler not to end the time slice of a thread 

that is holding a spin lock. In principle, this is not diffi cult. A thread could simply set a bit in its 

control structure to extend its time. This has two diffi culties:

 1. All threads might set this bit and never clear it. Thus the bit has no real effect.

 2. The reason for using a spin lock rather than a blocking lock is performance. If setting a bit 

in a control structure is expensive (because the control structure belongs to the operating 

system), this might negate the performance benefi ts of using a spin lock.

To deal with the fi rst problem, we must provide an incentive not to set the bit for longer than 

absolutely necessary. To deal with the second, the implementation must be extremely fast. Sun’s 

Solaris operating system provides a mechanism that does both. If a thread executes for longer 

than its time slice, its scheduling priority becomes correspondingly worse. The system call that 

implements the operation is in the “fast track,” meaning that threads calling it go into and out of 

the kernel with minimal overhead.

5.3.2.3 Multiprocessor Issues

How should the processors of a multiprocessor system be scheduled? Assuming a symmetric 

multiprocessor (SMP) system, in which all processors can access all memory, an obvious 

approach is to have a single queue of runnable threads feeding all processors. Thus whenever a 

processor becomes idle and needs work, it takes the fi rst thread in the queue.

This approach has been used in a number of systems but, unfortunately, suffers from two 

serious problems. The fi rst is contention for the queue itself, which processors must lock before 

accessing. The more processors a system has, the greater the potential delay in dispatching a 

thread to a processor.

The second problem has to do with the caching of memory in the processors. If a thread 

that was running on a processor becomes runnable again, there is a good chance not only that 

some of the memory referenced by that thread is still in the original processor’s cache, but also 

that the thread will reference this memory again soon. Thus it makes sense to run the thread on 

the same processor on which it ran previously. What a thread has brought into a processor’s cache 

is known as its cache footprint. The size of the cache footprint will certainly get smaller with time 

while other threads are running on the processor, but as long as it still exists, there is a potential 

advantage to a thread’s running on its most recent processor.

To deal with both these problems it makes sense to have multiple run queues, one for each 

processor. Thus, since each processor uses only its own queue, there is no lock contention. If 

a thread, when made runnable, is always put on the queue of its most recent processor, it will 

always take advantage of whatever cache footprint remains.

This might seem to solve all our problems, except that we need to make certain that all 

processors are kept reasonably busy. When a thread is created, on which processor should it run? 

If some processors have longer queues than others, should we attempt to balance the load?
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Load balancing will defi nitely cause some contention when one processor either pulls 

threads from or gives threads to another’s run queue, but, assuming such operations are infre-

quent, the cost is small. The more diffi cult issue is the strategy for load balancing, which must 

take into account not only cache footprints, but also the likelihood of threads’ sharing memory 

and how the processors and caches are organized.

In our usual model of a shared-memory multiprocessor system, any thread may run on any 

processor. This makes a lot of sense for most personal computers and many servers. But in many 

circumstances it makes sense to restrict the use of some or all of the processors. For example, a 

virtual-machine monitor might want to dedicate certain processors to certain virtual machines. 

A real-time system might need to shelter some applications from the effects of interrupt handling, 

so it might run their threads on processors that don’t handle device interrupts.

A technique for doing this sort of partitioning, pioneered in the Mach microkernel (Black 

1990b), involves the use of processor sets. Each such set is a collection of processors and threads. 

The processors may run only those threads in their set; the threads may run on only those processors 

in their set (see Figure 5.28). Thus for the virtual-machine example mentioned above, a virtual 

machine, and hence all its threads, might be assigned a processor set that’s supplied by the VMM 

— the processors would be made available for that virtual machine. For the real-time system, 

critical applications might have their threads put in processor sets that include only those 

processors not involved with interrupt handling.

Processor sets are explicitly supported by Solaris. Windows has a similar concept that it 

calls affi nity masks.

5.3.3 CASE STUDIES

In this section we examine how scheduling is done in two systems: Linux and Windows. Each has 

to deal with the following concerns and each does so differently.

Effi ciency and scaling. Scheduling decisions — which thread to run next — are made often 

and thus must be done effi ciently. What might be practical for a personal computer with rarely 

more than two runnable threads doesn’t necessarily work well for a busy server with many 

tens of runnable threads.

Multiprocessor issues. It matters which processor a thread runs on. Processors have caches 

and if a thread has run recently on a processor, it may make sense for the thread to run on that 

processor again to take advantage of its “cache footprint” — those storage items it needs to 

use that might still be in the cache and thus accessed quickly. Another issue is that multiple 

•

•

FIGURE 5 .28 A system with two processor sets, contained in the ovals. The leftmost 

contains two processors and four threads; the other contains one processor and three threads. 

The remaining processors and threads effectively form their own set.
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processors might cause contention on mutexes used to protect run queues and other scheduler 

data structures, thus slowing down scheduling.

Who’s next? Both systems must somehow determine which threads should be the ones that 

are running at any particular moment. This must take into account the relative importance of 

individual threads, the resources tied up by threads, and I/O performance.

5.3.3.1 Scheduling in Linux

Until early 2003, Linux employed a rather simple but unscalable approach to scheduling. This 

was replaced by a new scheduler that was not only more scalable but also more suitable for 

multiprocessors. The new scheduler was itself replaced in 2007 by an even newer scheduler 

based on stride scheduling (see Section 5.3.1.4). The general approach in the fi rst two schedulers 

is to divide time into variable-length cycles and give runnable threads time on the processor each 

cycle roughly in proportion to their priority and in inverse proportion to how long they’ve been 

running recently. Real-time threads, however, compete only with each other on a strict priority 

basis: lower-priority real-time threads run only when no higher-priority threads are runnable.

Any one thread is governed by one of three scheduling policies, settable by user code. The 

SCHED_FIFO policy provides soft-real-time scheduling with high priorities and no time slicing: 

threads run until they terminate, block for some reason, or are preempted by a thread of even higher 

priority. The SCHED_RR policy provides soft-real-time scheduling that is just like SCHED_FIFO 

except time slicing is done using user-adjustable time quanta. The imaginatively named 

SCHED_OTHER policy provides normal time-sharing scheduling and is used by most threads.

In the old scheduler, each thread is assigned a priority as an indication of its importance. 

For time-sharing threads this priority is based on the thread’s “nice” value (see Section 5.3.1.3). 

For real-time threads it’s the thread’s priority relative to other real-time threads, but higher than 

that of any time-sharing thread. For time-sharing threads, this priority is used to initialize the 

thread’s counter, a variable that measures how much processor use the thread has had recently 

and also indicates how much of the processor it should get soon. The next thread to run depends 

on the result of a per-thread “goodness” computation: for real-time threads, this goodness value 

is based on its priority, and for time-shared threads it’s the thread’s counter value.

Every 10 milliseconds a clock interrupt occurs and the value of the counter for the currently 

running thread is decremented by one. When a (time-sharing) thread’s counter becomes zero, its 

time slice is over and it goes back to the run queue. Thus the length of the scheduling cycle is 

the sum of the counters of all the runnable threads. At the end of a scheduling cycle, when there 

are no runnable real-time threads and all runnable time-sharing threads have zero counters, the 

counters of all time-sharing threads, not just the runnable ones, are set as follows:

counter � counter/2 � priority;

Thus the counters for the runnable threads are reset to the threads’ priorities (“nice” values), 

while those of sleeping threads increase to a maximum of twice the threads’ priorities. Threads 

that have been sleeping for a while end up with a large share of the scheduling cycle the next 

time they run. Since such sleeping threads are likely to be interactive threads — they may have 

been sleeping or waiting for the next keystroke or mouse click — interactive threads get favored 

treatment for their next burst of processor usage.

What’s wrong with this old scheduler? Why was it replaced? There are a number of problems. 

Determining the next thread to run requires computing the goodness value for all threads on the 

run queue — it’s the fi rst one encountered with the highest goodness value. Thus performance 

suffers with larger run queues. What’s equally bad, if not worse, is that the counter values of all 

time-sharing threads, not just all runnable ones, must be recomputed at the end of each scheduling 

cycle. For a server with thousands of threads, this can be time-consuming.

•
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In addition, there is no explicit support for multiprocessors. On such a system, the one run 

queue serves all processors; a thread is equally likely to run on any processor from one execution 

to the next. Furthermore, with a single run queue there is contention for the mutex protecting it.

The new scheduler, known as the O(1) scheduler for reasons explained below, has a roughly 

similar effect to the old one in determining which thread runs when, but does so more effi ciently 

and takes cache footprints into account when scheduling for multiprocessors.

Each processor has a separate run queue — actually a separate pair of run queues labeled 

active and expired (see Figure 5.29). Each run queue is itself an array of queues, one for each pri-

ority level, of which there are 140. Attached to each run queue is a bit vector indicating which of 

the queues are non-empty. Finding the highest-priority runnable thread involves searching the bit 

vector for the fi rst non-empty queue, then taking the fi rst thread from that queue. Thus scheduling 

decisions are made in constant time, as opposed to the linear time required by the old scheduler 

— thus explaining the name of the scheduler.

A processor’s active queue provides it with threads to run. When one is needed, the thread 

from the front of the highest-priority non-empty queue is chosen and runs with a time slice that 

depends on its priority. When a thread’s time slice is over, what happens next also depends on its 

priority. Real-time threads (necessarily SCHED_RR since SCHED_FIFO threads aren’t time-sliced) 

go back to the active queue at their priority. A time-sharing thread’s priority is reduced; if it’s 

still above an interactive-priority threshold, it goes back to the active queue at its new priority. 

Otherwise it goes to the expired queue. However, if threads have been waiting in the expired 

queue for too long (how long depends on how many there are), then all time-sharing threads go 

to the expired queue when their time slice is over.

If there are no threads in the active queue, which means there are no runnable real-time 

threads, then the active and expired queues are switched. The threads that were on the expired 

queue now compete for the processor.

When a thread that has been sleeping wakes up, it’s assigned a priority that depends both on how 

long it was sleeping and what it was waiting for. The longer the sleep, the better its priority becomes. 

If it was waiting on a hardware event such as a keystroke or a mouse click, its priority becomes even 

better. The assumption is that long-term sleepers or those who had been waiting for such events are the 

most likely to be interactive threads. Newly awoken threads go on the active queue.

The effect of all this is that real-time threads run to the exclusion of all other threads. 

Threads determined to be interactive get favored treatment over non-interactive threads.

As we’ve mentioned, each processor has its own set of queues. Threads typically run on the 

same processor all the time, thus taking advantage of their cache footprints. Of course, we also 

need a means for sharing the workload among all processors — the benefi ts of using the cache 

footprint do not outweigh those of using multiple processors.

Processor

0 struct runqueue
Processor

1 struct runqueue

active expired

bitmap bitmap

active expired

bitmap bitmap

FIGURE 5 .29 The run queues of the O(1) Linux scheduler.
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What the O(1) scheduler does is to have a clock interrupt on each processor every millisecond. 

If the interrupt handler sees the processor’s run queues are empty, it fi nds the processor with the 

largest load and steals threads from it (assuming not all processors are idle). Every 250 milliseconds 

the interrupt handler checks for a load imbalance — if its processor’s run queue is much smaller than 

others, it also steals threads from the others.

The result of all this is threefold:

Threads rarely migrate from one processor to another — thus advantage is taken of cache 

footprints.

Queues remain in balance over the long term.

Processors rarely access one another’s queues and thus lock contention is rare.

The Completely Fair Scheduler Despite the improvements gained with the O(1) scheduler, 

the Linux developers decided, apparently because of a few examples of anomalous behav-

ior, to replace it with a scheduler based on stride scheduling (see Section 5.3.1.4) and called 

the completely fair scheduler (CFS). (The CFS approach was apparently developed without 

knowledge of the prior work on stride scheduling, which was described twelve years earlier 

(Waldspurger and Weihl 1995) — there is no mention of stride scheduling in any of the CFS 

documentation. Since stride scheduling requires logarithmic time, CFS might be called the 

O(log(n)) scheduler.)

In support of CFS, the scheduler architecture was changed to allow the use of a number 

of scheduling policies. Standard Linux supplies two: a real-time policy supporting the POSIX 

SCHED_RR and SCHED_FIFO classes and a fair policy (stride scheduling) supporting the other 

POSIX scheduling classes. The policies are ordered so that no runnable threads in a lower policy 

are scheduled if there are any runnable threads in a higher policy. Thus when the scheduler 

makes a decision, it fi rst invokes the real-time policy to select a thread; then, if no real-time 

threads are available to run, it invokes the fair policy. The real-time policy is implemented much 

as it was in the O(1) scheduler, but without the expired queue.

Threads of all scheduling policies are assigned to individual processors and scheduling is 

done separately for each processor. Just as in the O(1) scheduler, load balancing is done to even 

out the number of threads assigned to each processor.

5.3.3.2 Scheduling in Windows

The Windows scheduler is essentially round-robin with multiple priorities, but with a few twists. 

Its basic strategy is straightforward. Threads are assigned priorities ranging from 0 through 

31, with 0 reserved for special idle threads. Priorities of normal threads must be less than 16 

and greater than 0; “real-time” threads have priorities from 16 through 31. Normal threads are 

assigned a fi xed base priority, but their effective priority is “boosted” when they wake up after 

sleeping and is reduced while they are running. The priorities of real-time threads are fi xed. Users 

assign base priorities to threads according to their importance.

Another scheduling parameter is the length of a thread’s time quantum — how long it runs 

until preempted by a thread of equal priority. Normal threads are assigned a default quantum 

whose value depends on the type of system. Servers typically have longer quanta than interactive 

computers. But subsystems external to the actual scheduler can change the quanta of individual 

threads while they are running. In particular, the Win-32 subsystem, which manages windows on 

the display, increases the quanta of foreground threads — threads belonging to the process of the 

foreground window. The effect of doing this is to make sure that these threads get a greater portion 

of the processor’s time than do threads of equal priority belonging to background processes. Note 

that simply assigning such threads a higher priority might prevent background threads from running 

at all — if that is what is desired, then the user can give such threads a lower base priority.

•

•

•
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The base priorities assigned to threads are typically from the middle of ranges labeled 

high, above normal, normal, below normal, and low, as shown in Figure 5.30. Real-time threads 

are typically assigned priorities from the range labeled real time, though their priorities do not 

change. A normal thread’s effective priority is some value equal to or greater than its base. When 

waking up from a sleep, a thread’s effective priority is set to their base priority plus some wait-

specifi c value (usually in the range 1 to 6, depending on what sort of event it was waiting for). 

A thread’s effective priority is decremented by one, but to no less than the base, each time a 

quantum expires on it.

The effect of all this is that threads of the same range share the processor with one another, but 

threads of lower ranges cannot run at all unless there are no runnable threads in higher ranges.

As described so far, the Windows scheduler handles typical interactive computing and 

servers reasonably well, but, despite its real-time priorities, it doesn’t handle many real-time 

chores very well. One issue is priority inversion, as described in Section 5.3.1.5. Rather than 

attempt to detect instances of priority inversion, Windows makes sure that all runnable processes 

eventually make progress (though threads running at real-time priorities can prevent other threads 

from running). A system thread known as the balance set manager, whose primary job is to assist 

in managing virtual memory, periodically checks for threads that have been runnable for a certain 

period of time, but have not actually been running. It increases their priority to 15, the maximum 

value for normal threads. Once such a thread has run for its time quantum, its priority goes back 

to what it was.

Another issue is handling applications, such as audio and video, that have rather stringent 

performance requirements and, if given high real-time priorities, could monopolize the proces-

sors. A system running only such applications can be scheduled using rate-monotonic scheduling 

(Section 5.3.1.5), but such scheduling doesn’t take into account the requirements of non-periodic 

“normal” applications.

Windows, beginning with Windows Vista, handles this with an approach called the multi-
media class scheduler service (MMCSS) in which thread priorities are dynamically adjusted so 

that they can meet their constraints without monopolizing the processors. Threads needing this 

service are called multimedia threads. They register for the service by indicating at what real-time 

priority they should run and how much processor time should be reserved for other (normal) 
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FIGURE 5 .30 Priority ranges in Windows.
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activity — by default, 20%. The service is provided by user threads, running at a high real-time 

priority (27), that monitor the multimedia threads and boost their priority to the desired range 

for (by default) 80% of the time, but lower their priorities to the low normal range for 20% of 

the time. Thus, over a 10-millisecond period, their priorities are in the real-time range for 

8 milliseconds, but drop to low values for 2 milliseconds.8

Unfortunately, this by itself is not quite enough to guarantee that the multimedia threads get 

80% of processor time. Recall that Windows uses deferred procedure calls (Section 5.2.2) to cope 

with such potentially time-consuming activity as handling network traffi c. Since this work takes 

place in the interrupt context, it preempts the execution of threads, even real-time threads. Thus, 

despite MMCSS, the multimedia threads may suffer because of network activity. This could 

perhaps be dealt with by doing network-protocol processing by kernel threads rather than DPCs 

(though see Exercise 17); Windows handles it by having MMCSS direct the network-protocol 

code (running as DPCs) to “throttle back” and thus reduce the rate at which network packets are 

handled.

The Windows scheduler is implemented using an elaborate set of states (Figure 5.31) and 

queues. Associated with each processor is a set of ready queues, one per scheduling priority level. 

These queues contain threads that are to run on the given processor. In addition, each processor 

has a deferred ready queue, containing runnable threads that have not yet been assigned to a 

particular processor. There are any number of queues of threads waiting for some sort of event 

to occur.

To see how this works, let’s follow the life of a thread. When it’s created and fi rst made 

runnable, its creator (running in kernel mode) puts it in the deferred ready state and enqueues it 

in the deferred ready queue associated with the current processor. It’s also randomly assigned an 

ideal processor, on which it will be scheduled if available. This helps with load balancing. Its 

creator (or, later, the thread itself) may also give it an affi nity mask (Section 5.3.2.3) indicating 

the set of processors on which it may run.

8 This description is based on http://technet.microsoft.com/en-us/magazine/cc162494.aspx.
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FIGURE 5 .31 Scheduler states in Windows.
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Each processor, each time it completes the handling of the pending DPC requests, 

checks its deferred ready queue. If there are any threads in it, it processes them, assigning 

them to processors. This works as follows. The DPC handler fi rst checks to see if there are any 

idle processors that the thread can run on (if it has an affi nity mask, then it can run only on 

the indicated processors). If there are any acceptable idle processors, preference is given fi rst 

to the thread’s ideal processor, then to the last processor on which it ran (to take advantage of 

the thread’s cache footprint (Section 5.3.2.3)). The thread is then put in the standby state and 

given to the selected processor as its next thread. The processor would be currently running its 

idle thread, which repeatedly checks for a standby thread. Once found, the processor switches 

to the standby thread.

If there are no acceptable idle processors, then the thread is assigned to its ideal processor. 

The DPC handler checks to see if the thread has a higher priority than what’s running on that 

processor. If so, it puts the thread in the standby state, and sends the processor an interrupt. When 

the processor returns from its interrupt handler it will notice the higher-priority thread in standby 

state and switch to it, after fi rst putting its current thread on its deferred ready list. Otherwise, the 

DPC handler puts the thread in the ready state and puts it in one of the ideal processor’s ready 

queues according to the thread’s priority.

When a thread completes its time quantum (which, as discussed in Section 5.2.2, is dealt 

with by a DPC), the processor searches its ready queues for a thread of equal or higher priority 

and switches to it, if it fi nds one. Otherwise it continues with the current thread.

An executing thread might perform some sort of blocking operation, putting itself in a wait 

queue. Its processor then searches its ready queues for the next thread to run.

When a thread is made runnable after it has been in the wait state, it’s put into the 

deferred ready queue of the processor on which the thread doing the unwait operation was 

running.

Other operations shown in Figure 5.31 include preempting a thread that’s in the state (possible, 

though unlikely) and changing the affi nity mask of a thread that’s already been assigned a processor, 

making the current processor selection unacceptable.

 

Processor management entails multiplexing the available processors to handle all the activities 

taking place in a computer system — almost everything involves the use of one or more pro-

cessors. We started our discussion by looking at implementation strategies for threads. From 

an application’s point of view, a thread is the processor; everything having to do with threads 

is essential to performance. Interrupt processing, though hidden from applications, also has 

a performance role. By their nature, interrupts displace other activity. Thus we need careful 

control over when they can occur. In many cases it is important to do only what is absolutely 

necessary within interrupt handlers, relegating work to other contexts so it can be done with 

minimal disruption.

Scheduling is a topic unto itself. We briefl y examined its theory, in terms of the basic 

strategies employed in computer systems. In practice, at least for interactive systems, a fair amount 

of attention is paid to determining which threads are indeed interactive, giving them favored 

treatment. But a major theme in all the operating systems we have looked at is scalability — the 

scheduler must perform well, with low overhead, on large, busy systems.

 

 1. Suppose you are designing a server that requires many thousands of concurrent threads. 

Which approach would be the most suitable: the one-level model or the two-level model 

with multiple kernel threads? Explain.
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* 2. Implementing POSIX threads on Linux was made diffi cult because of Linux’s use of variable-

weight processes. Changes had to be made to the process model to make possible the more 

effi cient NTPL implementation.

a. One problem was that, since Linux “threads” were actually processes, the only way to 

wait for the termination of a thread was via the wait family of system calls. Explain why 

this was a problem. (Hint: consider how pthread_join can be used.)

b. This problem was overcome in a rather creative but not terribly effi cient way. How might 

you handle this problem if you were implementing POSIX threads?

 3. An upcall is a mechanism by which kernel code can place a call into user code — it is 

essentially the reverse of a system call. Explain how it might be implemented. (Hint: consider 

what resources must be available in the user process.)

* 4. The following code is an alternative to the implementation of mutexes given in Section 

5.1.2. Does it work? Explain why or why not.

kmutex_lock(mutex_t *mut) {

if (mut->locked) {

enqueue(mut->wait_queue, CurrentThread);

thread_switch();

}

mut->locked � 1;

}

kmutex_unlock(mutex_t *mut) {

mut->locked � 0;

if (!queue_empty(mut->wait_queue))

enqueue(RunQueue, dequeue(mut->wait_queue));

}

 5. The simple implementation of thread_switch in Section 5.1.2 doesn’t deal with the case 

of the run queue’s being empty. Assuming that threads are either runnable or waiting on a 

mutex, what can you say about the system if there are no threads in the run queue?

* 6. The fi nal implementation of blocking_lock on page 174 requires some changes to thread_
switch. Show how thread_switch must be modifi ed.

* 7. Show how to implement semaphores in terms of futexes. Be sure to give the implementations 

of both the P and V operations.

* 8. We have a new architecture for interrupt handling. There are n possible sources of interrupts. 

A bit vector is used to mask them: if bit i is 1, then interrupt source i is masked. The operating 

system employs n threads to handle interrupts, one per interrupt source. When interrupt i 
occurs, thread i handles it and interrupt source i is automatically masked. When the thread 

completes handling of the interrupt, interrupt source i is unmasked. Thus if interrupt source 

i attempts to send an interrupt while a previous interrupt from i is being handled, the new 

interrupt is masked until the handling of the previous one is completed. In other words, each 

interrupt thread handles one interrupt at a time.

   Threads are scheduled using a simple priority-based scheduler. It maintains a list of 

runnable threads (the exact data structure is not important for this problem). There’s a global 

variable CurrentThread that refers to the currently running thread.
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a. When an interrupt occurs, on which stack should the registers of the interrupted thread be 

saved? Explain. (Hint: there are two possibilities: the stack of the interrupted thread and 

the stack of the interrupt-handling thread.)

b. After the registers are saved, what further actions are necessary so that the interrupt-handling 

thread and the interrupted thread can be handled by the scheduler? (Hint: consider the 

scheduler’s data structures.)

c. Recall that Windows employs DPCs (deferred procedure calls) so that interrupt handlers 

may have work done when there is no other interrupt handling to be done. How could this 

be done in the new architecture? (Hint: it’s easily handled.)

d. If there are multiple threads at the same priority, we’d like their execution to be time-sliced 

— each runs for a certain period of time, then yields to the next. In Windows, this is done 

by the clock interrupt handler’s requesting a DPC, which forces the current thread to yield 

the processor. Explain how such time-slicing can be done on the new architecture.

   9. Consider the implementation of DPCs given in Section 5.2.2. The intent of the DPC mecha-

nism is to deal with chores generated by interrupt handlers at a lower priority level and thus 

not interfere with higher-priority interrupts. This mechanism works well; however, if there 

are a lot of these chores, it could prevent equally important threads from running.

a. Describe the existing mechanism that ensures that DPC requests are handled in prefer-

ence to threads. (Hint: this is easy.)

b. Describe (i.e., invent) a mechanism to solve this problem. That is, how can we limit the 

number of DPC requests that are processed in preference to normal thread execution such 

that the remaining DPC requests are processed on an equal basis with normal threads? 

(Hint: this is slightly less easy.)

  10. Explain why Windows deferred procedure calls (DPCs) may not access user memory, but 

asynchronous procedure calls (APCs) may.

* 11. An operating system has a simple round-robin scheduler used in conjunction with time slic-

ing: when a thread’s time slice is over, it goes to the end of the run queue and the next thread 

runs. The run queue is implemented as a singly linked list of threads, with pointers to the fi rst 

and last threads in the queue. Assume for parts a and b that we have a uniprocessor system.

a. The system has a mix of long-running compute threads that rarely block and interactive 

threads that spend most of their time blocked, waiting for keyboard input, then have very 

brief bursts of using the processor. Assuming we want the system to have good interactive 

response, explain what is wrong with the scheduler.

b. How might the scheduler be improved to provide good interactive response? (Hint: a 

simple improvement is suffi cient.)

c. We add three more processors to our system and add the appropriate synchronization (spin 

locks) to our scheduler data structures. Describe the performance problems that will arise.

d. Describe what might be done to alleviate these performance problems, yet still have 

reasonable parallelism.

* 12. Explain why the APC interrupt priority level must be lower than that of a DPC.

* 13. Figure 5.24 shows how threads’ meters are updated after each clock tick under stride 

scheduling. FictitiousMeter is used to initialize the meters of new threads and of threads 

rejoining the run queue after having been sleeping. However, when a thread blocks, its 

meter’s value probably is not the same as that of FictitiousMeter.
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a. Explain why this is so.

b. Why might it be reasonable to keep track of this difference between the thread’s meter 

value and that of FictitiousMeter and to add this difference to the current value of 

FictitiousMeter when the thread rejoins the run queue?

* 14. In hierarchical stride scheduling, whenever a new thread joins a group, the total number of 

tickets held by the group increases and thus so does that group’s collective share of proces-

sor time. A better approach might be to give each group a fi xed number of tickets to be 

evenly distributed among all its members. However, it might be a bit time-consuming to 

readjust each member thread’s bribe whenever a new thread joins the group. Describe how 

we might modify hierarchical stride scheduling so that each group’s share of processor time 

remains constant despite the addition or deletion of group members, and that such addition 

and deletion is done in constant time (not counting the time to update the balanced tree).

  15. Suppose, in the scheduling scenario in Figure 5.25, each cyclic chore is handled by a 

thread — one thread per cyclic chore. Show how the scheduling constraints can be satisfi ed 

on either Unix or Windows. Note that there are actually two constraints: each chore must 

fi nish exactly once per cycle and each chore must start exactly once per cycle. The fi rst 

constraint is handled by the scheduler, the second by the thread itself (perhaps by waiting 

on a timer).

  16. Why does the Linux O(1) scheduler maintain two queues per processor — the active queue 

and the expired queue? (Hint: consider load balancing and cache footprints.)

* 17. Windows performs network-protocol processing in the interrupt context using DPCs. As 

explained in Section 5.3.3.2, this can cause interference with multimedia applications that, 

despite running at real-time priorities, are preempted by network-protocol processing. An 

alternative approach might be to have special kernel threads handle the network-protocol 

processing and thus do it under the control of the scheduler, which could then give favored 

treatment to multimedia applications. Explain what the disadvantage of this approach would 

be. (Hint: consider things from the point of view of network performance, even without 

multimedia applications.)

  18. Explain why the Windows scheduler has the standby state, rather than simply having a 

processor run the highest priority thread in its ready queues.
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