
180 Chapter 5 CPU Scheduling

output to the user. Thus, another measure is the time from the submission
of a request until the first response is produced. This measure, called
response time, is the time it takes to start responding, not the time it takes
to output the response. The turnaround time is generally limited by the
speed of the output device.

It is desirable to maximize CPU utilization and throughput and to minimize
turnaround time, waiting time, and response time. In most cases, we optimize
the average measure. However, under some circumstances, it is desirable
to optimize the minimum or maximum values rather than the average. For
example, to guarantee that all users get good service, we may want to minimize
the maximum response time.

Investigators have suggested that, for interactive systems (such as time-
sharing systems), it is more important to minimize the variance in the response
time than to minimize the average response time. A system with reasonable
and predictable response time may be considered more desirable than a system
that is faster on the average but is highly variable. However, little work has
been done on CPU-scheduling algorithms that minimize variance.

As we discuss various CPU-scheduling algorithms in the following section,
we illustrate their operation. An accurate illustration should involve many
processes, each a sequence of several hundred CPU bursts and I/O bursts.
For simplicity, though, we consider only one CPU burst (in milliseconds) per
process in our examples. Our measure of comparison is the average waiting
time. More elaborate evaluation mechanisms are discussed in Section 5.7.

5.3 Scheduling Algorithms

CPU scheduling deals with the problem of deciding which of the processes in the
ready queue is to be allocated the CPU. There are many different CPU-scheduling
algorithms. In this section, we describe several of them.

5.3.1 First-Come, First-Served Scheduling

By far the simplest CPU-scheduling algorithm is the first-come, first-served
(FCFS) scheduling algorithm. With this scheme, the process that requests the
CPU first is allocated the CPU first. The implementation of the FCFS policy is
easily managed with a FIFO queue. When a process enters the ready queue, its
PCB is linked onto the tail of the queue. When the CPU is free, it is allocated to
the process at the head of the queue. The running process is then removed from
the queue. The code for FCFS scheduling is simple to write and understand.

On the negative side, the average waiting time under the FCFS policy is
often quite long. Consider the following set of processes that arrive at time 0,
with the length of the CPU burst given in milliseconds:

Process Burst Time

P1 24
P2 3
P3 3



5.3 Scheduling Algorithms 181

If the processes arrive in the order P1, P2, P3, and are served in FCFS order,
we get the result shown in the following Gantt chart, which is a bar chart that
illustrates a particular schedule, including the start and finish times of each of
the participating processes:

P1 P2 P3

3027240

The waiting time is 0 milliseconds for process P1, 24 milliseconds for process
P2, and 27 milliseconds for process P3. Thus, the average waiting time is (0
+ 24 + 27)/3 = 17 milliseconds. If the processes arrive in the order P2, P3, P1,
however, the results will be as shown in the following Gantt chart:

P1P2 P3

300 3 6

The average waiting time is now (6 + 0 + 3)/3 = 3 milliseconds. This reduction
is substantial. Thus, the average waiting time under an FCFS policy is generally
not minimal and may vary substantially if the processes CPU burst times vary
greatly.

In addition, consider the performance of FCFS scheduling in a dynamic
situation. Assume we have one CPU-bound process and many I/O-bound
processes. As the processes flow around the system, the following scenario
may result. The CPU-bound process will get and hold the CPU. During this
time, all the other processes will finish their I/O and will move into the ready
queue, waiting for the CPU. While the processes wait in the ready queue, the
I/O devices are idle. Eventually, the CPU-bound process finishes its CPU burst
and moves to an I/O device. All the I/O-bound processes, which have short
CPU bursts, execute quickly and move back to the I/O queues. At this point,
the CPU sits idle. The CPU-bound process will then move back to the ready
queue and be allocated the CPU. Again, all the I/O processes end up waiting in
the ready queue until the CPU-bound process is done. There is a convoy effect
as all the other processes wait for the one big process to get off the CPU. This
effect results in lower CPU and device utilization than might be possible if the
shorter processes were allowed to go first.

Note also that the FCFS scheduling algorithm is nonpreemptive. Once the
CPU has been allocated to a process, that process keeps the CPU until it releases
the CPU, either by terminating or by requesting I/O. The FCFS algorithm is thus
particularly troublesome for time-sharing systems, where it is important that
each user get a share of the CPU at regular intervals. It would be disastrous to
allow one process to keep the CPU for an extended period.

5.3.2 Shortest-Job-First Scheduling

A different approach to CPU scheduling is the shortest-job-first (SJF) schedul-
ing algorithm. This algorithm associates with each process the length of the
process’s next CPU burst. When the CPU is available, it is assigned to the process



182 Chapter 5 CPU Scheduling

that has the smallest next CPU burst. If the next CPU bursts of two processes are
the same, FCFS scheduling is used to break the tie. Note that a more appropriate
term for this scheduling method would be the shortest-next-CPU-burst algorithm,
because scheduling depends on the length of the next CPU burst of a process,
rather than its total length. We use the term SJF because most people and
textbooks use this term to refer to this type of scheduling.

As an example of SJF scheduling, consider the following set of processes,
with the length of the CPU burst given in milliseconds:

Process Burst Time

P1 6
P2 8
P3 7
P4 3

Using SJF scheduling, we would schedule these processes according to the
following Gantt chart:

P3 P2P4 P1

241690 3

The waiting time is 3 milliseconds for process P1, 16 milliseconds for process
P2, 9 milliseconds for process P3, and 0 milliseconds for process P4. Thus, the
average waiting time is (3 + 16 + 9 + 0)/4 = 7 milliseconds. By comparison, if
we were using the FCFS scheduling scheme, the average waiting time would
be 10.25 milliseconds.

The SJF scheduling algorithm is provably optimal, in that it gives the
minimum average waiting time for a given set of processes. Moving a short
process before a long one decreases the waiting time of the short process more
than it increases the waiting time of the long process. Consequently, the average
waiting time decreases.

The real difficulty with the SJF algorithm is knowing the length of the next
CPU request. For long-term (job) scheduling in a batch system, we can use as
the length the process time limit that a user specifies when he submits the
job. Thus, users are motivated to estimate the process time limit accurately,
since a lower value may mean faster response. (Too low a value will cause
a time-limit-exceeded error and require resubmission.) SJF scheduling is used
frequently in long-term scheduling.

Although the SJF algorithm is optimal, it cannot be implemented at the level
of short-term CPU scheduling. With short-term scheduling, there is no way to
know the length of the next CPU burst. One approach is to try to approximate
SJF scheduling. We may not know the length of the next CPU burst, but we may
be able to predict its value. We expect that the next CPU burst will be similar
in length to the previous ones. By computing an approximation of the length
of the next CPU burst, we can pick the process with the shortest predicted CPU
burst.



5.3 Scheduling Algorithms 183

The next CPU burst is generally predicted as an exponential average of
the measured lengths of previous CPU bursts. We can define the exponential
average with the following formula. Let tn be the length of the nth CPU burst,
and let �n+1 be our predicted value for the next CPU burst. Then, for �, 0 ≤ � ≤
1, define

�n+1 = � tn + (1 − �)�n.

The value of tn contains our most recent information; �n stores the past history.
The parameter � controls the relative weight of recent and past history in
our prediction. If � = 0, then �n+1 = �n, and recent history has no effect (current
conditions are assumed to be transient). If � = 1, then �n+1 = tn, and only the most
recent CPU burst matters (history is assumed to be old and irrelevant). More
commonly, � = 1/2, so recent history and past history are equally weighted.
The initial �0 can be defined as a constant or as an overall system average.
Figure 5.3 shows an exponential average with � = 1/2 and �0 = 10.

To understand the behavior of the exponential average, we can expand the
formula for �n+1 by substituting for �n, to find

�n+1 = �tn + (1 − �)�tn−1 + · · · + (1 − �) j �tn− j + · · · + (1 − �)n+1�0.

Since both � and (1 − �) are less than or equal to 1, each successive term has
less weight than its predecessor.

The SJF algorithm can be either preemptive or nonpreemptive. The choice
arises when a new process arrives at the ready queue while a previous process is
still executing. The next CPU burst of the newly arrived process may be shorter

6 4 6 4 13 13 13 …
810 6 6 5 9 11 12 …

CPU burst (ti)

"guess" (τi)

ti

τi

2

time

4

6

8

10

12

Figure 5.3 Prediction of the length of the next CPU burst.



184 Chapter 5 CPU Scheduling

than what is left of the currently executing process. A preemptive SJF algorithm
will preempt the currently executing process, whereas a nonpreemptive SJF
algorithm will allow the currently running process to finish its CPU burst.
Preemptive SJF scheduling is sometimes called shortest-remaining-time-first
scheduling.

As an example, consider the following four processes, with the length of
the CPU burst given in milliseconds:

Process Arrival Time Burst Time

P1 0 8
P2 1 4
P3 2 9
P4 3 5

If the processes arrive at the ready queue at the times shown and need the
indicated burst times, then the resulting preemptive SJF schedule is as depicted
in the following Gantt chart:

P1 P3P1 P2 P4

2617100 1 5

Process P1 is started at time 0, since it is the only process in the queue. Process
P2 arrives at time 1. The remaining time for process P1 (7 milliseconds) is
larger than the time required by process P2 (4 milliseconds), so process P1 is
preempted, and process P2 is scheduled. The average waiting time for this
example is [(10 − 1) + (1 − 1) + (17 − 2) + (5 − 3)]/4 = 26/4 = 6.5 milliseconds.
Nonpreemptive SJF scheduling would result in an average waiting time of 7.75
milliseconds.

5.3.3 Priority Scheduling

The SJF algorithm is a special case of the general priority scheduling algorithm.
A priority is associated with each process, and the CPU is allocated to the process
with the highest priority. Equal-priority processes are scheduled in FCFS order.
An SJF algorithm is simply a priority algorithm where the priority (p) is the
inverse of the (predicted) next CPU burst. The larger the CPU burst, the lower
the priority, and vice versa.

Note that we discuss scheduling in terms of high priority and low priority.
Priorities are generally indicated by some fixed range of numbers, such as 0
to 7 or 0 to 4,095. However, there is no general agreement on whether 0 is the
highest or lowest priority. Some systems use low numbers to represent low
priority; others use low numbers for high priority. This difference can lead to
confusion. In this text, we assume that low numbers represent high priority.

As an example, consider the following set of processes, assumed to have
arrived at time 0 in the order P1, P2, · · ·, P5, with the length of the CPU burst
given in milliseconds:



5.3 Scheduling Algorithms 185

Process Burst Time Priority

P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2

Using priority scheduling, we would schedule these processes according to the
following Gantt chart:

P1 P4P3P2 P5

19181660 1

The average waiting time is 8.2 milliseconds.
Priorities can be defined either internally or externally. Internally defined

priorities use some measurable quantity or quantities to compute the priority
of a process. For example, time limits, memory requirements, the number of
open files, and the ratio of average I/O burst to average CPU burst have been
used in computing priorities. External priorities are set by criteria outside the
operating system, such as the importance of the process, the type and amount
of funds being paid for computer use, the department sponsoring the work,
and other, often political, factors.

Priority scheduling can be either preemptive or nonpreemptive. When a
process arrives at the ready queue, its priority is compared with the priority
of the currently running process. A preemptive priority scheduling algorithm
will preempt the CPU if the priority of the newly arrived process is higher
than the priority of the currently running process. A nonpreemptive priority
scheduling algorithm will simply put the new process at the head of the ready
queue.

A major problem with priority scheduling algorithms is indefinite block-
ing, or starvation. A process that is ready to run but waiting for the CPU can
be considered blocked. A priority scheduling algorithm can leave some low-
priority processes waiting indefinitely. In a heavily loaded computer system, a
steady stream of higher-priority processes can prevent a low-priority process
from ever getting the CPU. Generally, one of two things will happen. Either the
process will eventually be run (at 2 A.M. Sunday, when the system is finally
lightly loaded), or the computer system will eventually crash and lose all
unfinished low-priority processes. (Rumor has it that, when they shut down
the IBM 7094 at MIT in 1973, they found a low-priority process that had been
submitted in 1967 and had not yet been run.)

A solution to the problem of indefinite blockage of low-priority processes
is aging. Aging is a technique of gradually increasing the priority of processes
that wait in the system for a long time. For example, if priorities range from
127 (low) to 0 (high), we could increase the priority of a waiting process by
1 every 15 minutes. Eventually, even a process with an initial priority of 127
would have the highest priority in the system and would be executed. In fact,
it would take no more than 32 hours for a priority-127 process to age to a
priority-0 process.



186 Chapter 5 CPU Scheduling

5.3.4 Round-Robin Scheduling

The round-robin (RR) scheduling algorithm is designed especially for time-
sharing systems. It is similar to FCFS scheduling, but preemption is added to
enable the system to switch between processes. A small unit of time, called a
time quantum or time slice, is defined. A time quantum is generally from 10
to 100 milliseconds in length. The ready queue is treated as a circular queue.
The CPU scheduler goes around the ready queue, allocating the CPU to each
process for a time interval of up to 1 time quantum.

To implement RR scheduling, we keep the ready queue as a FIFO queue of
processes. New processes are added to the tail of the ready queue. The CPU
scheduler picks the first process from the ready queue, sets a timer to interrupt
after 1 time quantum, and dispatches the process.

One of two things will then happen. The process may have a CPU burst of
less than 1 time quantum. In this case, the process itself will release the CPU
voluntarily. The scheduler will then proceed to the next process in the ready
queue. Otherwise, if the CPU burst of the currently running process is longer
than 1 time quantum, the timer will go off and will cause an interrupt to the
operating system. A context switch will be executed, and the process will be
put at the tail of the ready queue. The CPU scheduler will then select the next
process in the ready queue.

The average waiting time under the RR policy is often long. Consider the
following set of processes that arrive at time 0, with the length of the CPU burst
given in milliseconds:

Process Burst Time

P1 24
P2 3
P3 3

If we use a time quantum of 4 milliseconds, then process P1 gets the first 4
milliseconds. Since it requires another 20 milliseconds, it is preempted after
the first time quantum, and the CPU is given to the next process in the queue,
process P2. Process P2 does not need 4 milliseconds, so it quits before its time
quantum expires. The CPU is then given to the next process, process P3. Once
each process has received 1 time quantum, the CPU is returned to process P1
for an additional time quantum. The resulting RR schedule is as follows:

P1P1 P1P1P1P1 P2

301814 26221070 4

P3

Let’s calculate the average waiting time for the above schedule. P1 waits for 6
millisconds (10 - 4), P2 waits for 4 millisconds, and P3 waits for 7 millisconds.
Thus, the average waiting time is 17/3 = 5.66 milliseconds.

In the RR scheduling algorithm, no process is allocated the CPU for more
than 1 time quantum in a row (unless it is the only runnable process). If a



5.3 Scheduling Algorithms 187

process’s CPU burst exceeds 1 time quantum, that process is preempted and is
put back in the ready queue. The RR scheduling algorithm is thus preemptive.

If there are n processes in the ready queue and the time quantum is q,
then each process gets 1/n of the CPU time in chunks of at most q time units.
Each process must wait no longer than (n − 1) × q time units until its
next time quantum. For example, with five processes and a time quantum of 20
milliseconds, each process will get up to 20 milliseconds every 100 milliseconds.

The performance of the RR algorithm depends heavily on the size of the
time quantum. At one extreme, if the time quantum is extremely large, the
RR policy is the same as the FCFS policy. In contrast, if the time quantum
is extremely small (say, 1 millisecond), the RR approach is called processor
sharing and (in theory) creates the appearance that each of n processes has its
own processor running at 1/n the speed of the real processor. This approach
was used in Control Data Corporation (CDC) hardware to implement ten
peripheral processors with only one set of hardware and ten sets of registers.
The hardware executes one instruction for one set of registers, then goes on to
the next. This cycle continues, resulting in ten slow processors rather than one
fast one. (Actually, since the processor was much faster than memory and each
instruction referenced memory, the processors were not much slower than ten
real processors would have been.)

In software, we need also to consider the effect of context switching on the
performance of RR scheduling. Assume, for example, that we have only one
process of 10 time units. If the quantum is 12 time units, the process finishes
in less than 1 time quantum, with no overhead. If the quantum is 6 time units,
however, the process requires 2 quanta, resulting in a context switch. If the
time quantum is 1 time unit, then nine context switches will occur, slowing the
execution of the process accordingly (Figure 5.4).

Thus, we want the time quantum to be large with respect to the context-
switch time. If the context-switch time is approximately 10 percent of the
time quantum, then about 10 percent of the CPU time will be spent in context
switching. In practice, most modern systems have time quanta ranging from
10 to 100 milliseconds. The time required for a context switch is typically less
than 10 microseconds; thus, the context-switch time is a small fraction of the
time quantum.

process time � 10 quantum context
switches

12 0

6 1

1 9

0 10

0 10

0 1 2 3 4 5 6 7 8 9 10

6

Figure 5.4 How a smaller time quantum increases context switches.



188 Chapter 5 CPU Scheduling

av
er

ag
e 

tu
rn

ar
ou

nd
 ti

m
e

1

12.5

12.0

11.5

11.0

10.5

10.0

9.5

9.0

2 3 4
time quantum

5 6 7

P1 

P2 

P3 

P4

6 
3 
1 
7

process time

Figure 5.5 How turnaround time varies with the time quantum.

Turnaround time also depends on the size of the time quantum. As we
can see from Figure 5.5, the average turnaround time of a set of processes
does not necessarily improve as the time-quantum size increases. In general,
the average turnaround time can be improved if most processes finish their
next CPU burst in a single time quantum. For example, given three processes
of 10 time units each and a quantum of 1 time unit, the average turnaround
time is 29. If the time quantum is 10, however, the average turnaround time
drops to 20. If context-switch time is added in, the average turnaround time
increases even more for a smaller time quantum, since more context switches
are required.

Although the time quantum should be large compared with the context-
switch time, it should not be too large. If the time quantum is too large, RR
scheduling degenerates to an FCFS policy. A rule of thumb is that 80 percent of
the CPU bursts should be shorter than the time quantum.

5.3.5 Multilevel Queue Scheduling

Another class of scheduling algorithms has been created for situations in
which processes are easily classified into different groups. For example, a
common distribution is made between foreground (interactive) processes and
background (batch) processes. These two types of processes have different
response-time requirements and so may have different scheduling needs. In
addition, foreground processes may have priority (externally defined) over
background processes.

A multilevel queue scheduling algorithm partitions the ready queue into
several separate queues (Figure 5.6). The processes are permanently assigned to
one queue, generally based on some property of the process, such as memory



5.3 Scheduling Algorithms 189

system processes

highest priority

lowest priority

interactive processes

interactive editing processes

batch processes

student processes

Figure 5.6 Multilevel queue scheduling.

size, process priority, or process type. Each queue has its own scheduling
algorithm. For example, separate queues might be used for foreground and
background processes. The foreground queue might be scheduled by an RR
algorithm, while the background queue is scheduled by an FCFS algorithm.

In addition, there must be scheduling among the queues, which is com-
monly implemented as fixed-priority preemptive scheduling. For example, the
foreground queue may have absolute priority over the background queue.

Let’s look at an example of a multilevel queue scheduling algorithm with
five queues, listed below in order of priority:

1. System processes

2. Interactive processes

3. Interactive editing processes

4. Batch processes

5. Student processes

Each queue has absolute priority over lower-priority queues. No process in the
batch queue, for example, could run unless the queues for system processes,
interactive processes, and interactive editing processes were all empty. If an
interactive editing process entered the ready queue while a batch process was
running, the batch process would be preempted.

Another possibility is to time-slice among the queues. Here, each queue gets
a certain portion of the CPU time, which it can then schedule among its various
processes. For instance, in the foreground–background queue example, the
foreground queue can be given 80 percent of the CPU time for RR scheduling
among its processes, whereas the background queue receives 20 percent of the
CPU to give to its processes on an FCFS basis.



190 Chapter 5 CPU Scheduling

5.3.6 Multilevel Feedback Queue Scheduling

Normally, when the multilevel queue scheduling algorithm is used, processes
are permanently assigned to a queue when they enter the system. If there
are separate queues for foreground and background processes, for example,
processes do not move from one queue to the other, since processes do not
change their foreground or background nature. This setup has the advantage
of low scheduling overhead, but it is inflexible.

The multilevel feedback queue scheduling algorithm, in contrast, allows
a process to move between queues. The idea is to separate processes according
to the characteristics of their CPU bursts. If a process uses too much CPU time,
it will be moved to a lower-priority queue. This scheme leaves I/O-bound and
interactive processes in the higher-priority queues. In addition, a process that
waits too long in a lower-priority queue may be moved to a higher-priority
queue. This form of aging prevents starvation.

For example, consider a multilevel feedback queue scheduler with three
queues, numbered from 0 to 2 (Figure 5.7). The scheduler first executes all
processes in queue 0. Only when queue 0 is empty will it execute processes
in queue 1. Similarly, processes in queue 2 will only be executed if queues 0
and 1 are empty. A process that arrives for queue 1 will preempt a process in
queue 2. A process in queue 1 will in turn be preempted by a process arriving
for queue 0.

A process entering the ready queue is put in queue 0. A process in queue 0
is given a time quantum of 8 milliseconds. If it does not finish within this time,
it is moved to the tail of queue 1. If queue 0 is empty, the process at the head
of queue 1 is given a quantum of 16 milliseconds. If it does not complete, it is
preempted and is put into queue 2. Processes in queue 2 are run on an FCFS
basis but are run only when queues 0 and 1 are empty.

This scheduling algorithm gives highest priority to any process with a CPU
burst of 8 milliseconds or less. Such a process will quickly get the CPU, finish
its CPU burst, and go off to its next I/O burst. Processes that need more than
8 but less than 24 milliseconds are also served quickly, although with lower
priority than shorter processes. Long processes automatically sink to queue
2 and are served in FCFS order with any CPU cycles left over from queues 0
and 1.

quantum � 8

quantum � 16

FCFS

Figure 5.7 Multilevel feedback queues.



5.4 Thread Scheduling 191

In general, a multilevel feedback queue scheduler is defined by the
following parameters:

• The number of queues

• The scheduling algorithm for each queue

• The method used to determine when to upgrade a process to a higher-
priority queue

• The method used to determine when to demote a process to a lower-
priority queue

• The method used to determine which queue a process will enter when that
process needs service

The definition of a multilevel feedback queue scheduler makes it the most
general CPU-scheduling algorithm. It can be configured to match a specific
system under design. Unfortunately, it is also the most complex algorithm,
since defining the best scheduler requires some means by which to select
values for all the parameters.

5.4 Thread Scheduling

In Chapter 4, we introduced threads to the process model, distinguishing
between user-level and kernel-level threads. On operating systems that support
them, it is kernel-level threads—not processes—that are being scheduled by
the operating system. User-level threads are managed by a thread library,
and the kernel is unaware of them. To run on a CPU, user-level threads
must ultimately be mapped to an associated kernel-level thread, although
this mapping may be indirect and may use a lightweight process (LWP). In this
section, we explore scheduling issues involving user-level and kernel-level
threads and offer specific examples of scheduling for Pthreads.

5.4.1 Contention Scope

One distinction between user-level and kernel-level threads lies in how they
are scheduled. On systems implementing the many-to-one (Section 4.2.1) and
many-to-many (Section 4.2.3) models, the thread library schedules user-level
threads to run on an available LWP, a scheme known as process-contention
scope (PCS), since competition for the CPU takes place among threads belonging
to the same process. When we say the thread library schedules user threads onto
available LWPs, we do not mean that the thread is actually running on a CPU;
this would require the operating system to schedule the kernel thread onto
a physical CPU. To decide which kernel thread to schedule onto a CPU, the
kernel uses system-contention scope (SCS). Competition for the CPU with SCS
scheduling takes place among all threads in the system. Systems using the one-
to-one model (Section 4.2.2), such as Windows, Solaris, and Linux, schedule
threads using only SCS.

Typically, PCS is done according to priority—the scheduler selects the
runnable thread with the highest priority to run. User-level thread priorities


