
CPU Scheduling

• The scheduling problem:

- Have K jobs ready to run

- Have N ≥ 1 CPUs

- Which jobs to assign to which CPU(s)

• When do we make decision?
1 / 31



CPU Scheduling
new

ready

waiting

running

terminated

I/O or event completion I/O or event wait
scheduler dispatch

interrupt exitadmitted

• Scheduling decisions may take place when a process:
1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from new/waiting to ready

4. Exits

• Non-preemptive schedules use 1 & 4 only

• Preemptive schedulers run at all four points
2 / 31



Scheduling criteria

• Why do we care?

- What goals should we have for a scheduling algorithm?

• Throughput – # of procs that complete per unit time

- Higher is better

• Turnaround time – time for each proc to complete

- Lower is better

• Response time – time from request to first response
(e.g., key press to character echo, not launch to exit)

- Lower is better

• Above criteria are affected by secondary criteria

- CPU utilization – fraction of time CPU doing productive work

- Waiting time – time each proc waits in ready queue

3 / 31



Example: FCFS Scheduling

• Run jobs in order that they arrive

- Called “First-come first-served” (FCFS)

- E.g.., Say P1 needs 24 sec, while P2 and P3 need 3.

- Say P2, P3 arrived immediately after P1, get:

• Dirt simple to implement—how good is it?

• Throughput: 3 jobs / 30 sec = 0.1 jobs/sec

• Turnaround Time: P1 : 24, P2 : 27, P3 : 30

- Average TT: (24 + 27 + 30)/3 = 27

• Can we do better?
4 / 31



FCFS continued

• Suppose we scheduled P2, P3, then P1

- Would get:

• Throughput: 3 jobs / 30 sec = 0.1 jobs/sec

• Turnaround time: P1 : 30, P2 : 3, P3 : 6

- Average TT: (30 + 3 + 6)/3 = 13 – much less than 27

• Lesson: scheduling algorithm can reduce TT

- Minimizing waiting time can improve RT and TT

• What about throughput?

5 / 31



View CPU and I/O devices the same
• CPU is one of several devices needed by users’ jobs

- CPU runs compute jobs, Disk drive runs disk jobs, etc.

- With network, part of job may run on remote CPU

• Scheduling 1-CPU system with n I/O devices like scheduling
asymmetric n + 1-CPU multiprocessor

- Result: all I/O devices + CPU busy =⇒ n+1 fold speedup!

grep

matrix multiply

running

waiting for disk

waiting in ready queue

- Overlap them just right? throughput will be almost doubled
6 / 31



Bursts of computation & I/O

• Jobs contain I/O and computation

- Bursts of computation

- Then must wait for I/O

• To Maximize throughput

- Must maximize CPU utilization

- Also maximize I/O device utilization

• How to do?

- Overlap I/O & computation from
multiple jobs

- Means response time very important
for I/O-intensive jobs: I/O device will
be idle until job gets small amount of
CPU to issue next I/O request

7 / 31



Histogram of CPU-burst times

• What does this mean for FCFS?

8 / 31



FCFS Convoy effect

• CPU bound jobs will hold CPU until exit or I/O
(but I/O rare for CPU-bound thread)

- long periods where no I/O requests issued, and CPU held

- Result: poor I/O device utilization

• Example: one CPU-bound job, many I/O bound

- CPU bound runs (I/O devices idle)

- CPU bound blocks

- I/O bound job(s) run, quickly block on I/O

- CPU bound runs again

- I/O completes

- CPU bound job continues while I/O devices idle

• Simple hack: run process whose I/O completed?

- What is a potential problem?

9 / 31



SJF Scheduling

• Shortest-job first (SJF) attempts to minimize TT

- Schedule the job whose next CPU burst is the shortest

• Two schemes:

- Non-preemptive – once CPU given to the process it cannot be
preempted until completes its CPU burst

- Preemptive – if a new process arrives with CPU burst length less
than remaining time of current executing process, preempt (Know
as the Shortest-Remaining-Time-First or SRTF)

• What does SJF optimize?

- Gives minimum average waiting time for a given set of processes

10 / 31



Examples
Process Arrival Time Burst Time

P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

• Non-preemptive

• Preemptive

• Drawbacks?
11 / 31



SJF limitations

• Doesn’t always minimize average turnaround time

- Only minimizes waiting time, which minimizes response time

- Example where turnaround time might be suboptimal?

- Overall longer job has shorter bursts

• Can lead to unfairness or starvation

• In practice, can’t actually predict the future

• But can estimate CPU burst length based on past

- Exponentially weighted average a good idea

- tn actual length of proc’s nth CPU burst

- τn+1 estimated length of proc’s n + 1st

- Choose parameter α where 0 < α ≤ 1

- Let τn+1 = αtn + (1− α)τn

12 / 31



Exp. weighted average example

13 / 31



Round robin (RR) scheduling

• Solution to fairness and starvation

- Preempt job after some time slice or quantum

- When preempted, move to back of FIFO queue

- (Most systems do some flavor of this)

• Advantages:

- Fair allocation of CPU across jobs

- Low average waiting time when job lengths vary

- Good for responsiveness if small number of jobs

• Disadvantages?

14 / 31



RR disadvantages

• Varying sized jobs are good . . . what about same-sized jobs?

• Assume 2 jobs of time=100 each:

• Even if context switches were free. . .

- What would average completion time be with RR? 199.5

- How does that compare to FCFS? 150

15 / 31



Context switch costs

• What is the cost of a context switch?

• Brute CPU time cost in kernel

- Save and restore resisters, etc.

- Switch address spaces (expensive instructions)

• Indirect costs: cache, buffer cache, & TLB misses

16 / 31



Time quantum

• How to pick quantum?

- Want much larger than context switch cost

- Majority of bursts should be less than quantum

- But not so large system reverts to FCFS

• Typical values: 10–100 msec

17 / 31



Turnaround time vs. quantum

18 / 31



Two-level scheduling

• Switching to swapped out process very expensive

- Swapped out process has most pages on disk

- Will have to fault them all in while running

- One disk access costs ∼10ms. On 1GHz machine, 10ms = 10
million cycles!

• Context-switch-cost aware scheduling

- Run in-core subset for “a while”

- Then swap some between disk and memory

• How to pick subset? How to define “a while”?

- View as scheduling memory before CPU

- Swapping in process is cost of memory “context switch”

- So want “memory quantum” much larger than swapping cost

19 / 31



Priority scheduling

• Associate a numeric priority with each process

- E.g., smaller number means higher priority (Unix/BSD)

- Or smaller number means lower priority (Pintos)

• Give CPU to the process with highest priority

- Can be done preemptively or non-preemptively

• Note SJF is a priority scheduling where priority is the
predicted next CPU burst time

• Starvation – low priority processes may never execute

• Solution?

- Aging - increase a process’s priority as it waits

20 / 31

http://www.scs.stanford.edu/14wi-cs140/pintos/pintos_2.html#SEC26


Multilevel feeedback queues (BSD)

• Every runnable process on one of 32 run queues
- Kernel runs process on highest-priority non-empty queue

- Round-robins among processes on same queue

• Process priorities dynamically computed
- Processes moved between queues to reflect priority changes

- If a process gets higher priority than running process, run it

• Idea: Favor interactive jobs that use less CPU
21 / 31



Process priority

• p nice – user-settable weighting factor

• p estcpu – per-process estimated CPU usage

- Incremented whenever timer interrupt found proc. running

- Decayed every second while process runnable

p estcpu←
(

2 · load
2 · load + 1

)
p estcpu+ p nice

- Load is sampled average of length of run queue plus short-term
sleep queue over last minute

• Run queue determined by p usrpri/4

p usrpri← 50 +
(p estcpu

4

)
+ 2 · p nice

(value clipped if over 127)

22 / 31



Sleeping process increases priority

• p estcpu not updated while asleep

- Instead p slptime keeps count of sleep time

• When process becomes runnable

p estcpu←
(

2 · load
2 · load + 1

)p slptime

× p estcpu

- Approximates decay ignoring nice and past loads

• Previous description based on [McKusick]1 (The Design and
Implementation of the 4.4BSD Operating System)

1See library.stanford.edu for off-campus access
23 / 31

http://proquest.safaribooksonline.com/9780768685275/ch04lev1sec4
http://www-sul.stanford.edu/apcproxy/


Multiprocessor scheduling issues

• Must decide on more than which processes to run

- Must decide on which CPU to run which process

• Moving between CPUs has costs

- More cache misses, depending on arch more TLB misses too

• Affinity scheduling—try to keep threads on same CPU

- But also prevent load imbalances

- Do cost-benefit analysis when deciding to migrate

27 / 31



Multiprocessor scheduling (cont)

• Want related processes scheduled together

- Good if threads access same resources (e.g., cached files)

- Even more important if threads communicate often,
otherwise must context switch to communicate

• Gang scheduling—schedule all CPUs synchronously

- With synchronized quanta, easier to schedule related
processes/threads together

28 / 31



Thread scheduling

• With thread library, have two scheduling decisions:

- Local Scheduling – Thread library decides which user thread to put
onto an available kernel thread

- Global Scheduling – Kernel decides which kernel thread to run next

• Can expose to the user

- E.g., pthread attr setscope allows two choices

- PTHREAD SCOPE SYSTEM – thread scheduled like a process
(effectively one kernel thread bound to user thread – Will return
ENOTSUP in user-level pthreads implementation)

- PTHREAD SCOPE PROCESS – thread scheduled within the current
process (may have multiple user threads multiplexed onto kernel
threads)

29 / 31



Thread dependencies

• Say H at high priority, L at low priority

- L acquires lock l.

- Scenario 1: H tries to acquire l, fails, spins. L never gets to run.

- Scenario 2: H tries to acquire l, fails, blocks. M enters system at
medium priority. L never gets to run.

- Both scenes are examples of priority inversion

• Scheduling = deciding who should make progress

- A thread’s importance should increase with the importance of
those that depend on it

- Naı̈ve priority schemes violate this

30 / 31



Priority donation

• Say higher number = higher priority (like Pintos)

• Example 1: L (prio 2), M (prio 4), H (prio 8)

- L holds lock l

- M waits on l, L’s priority raised to L1 = max(M, L) = 4

- Then H waits on l, L’s priority raised to max(H, L1) = 8

• Example 2: Same L, M, H as above

- L holds lock l, M holds lock l2
- M waits on l, L’s priority now L1 = 4 (as before)

- Then H waits on l2. M’s priority goes to M1 = max(H, M) = 8, and
L’s priority raised to max(M1, L1) = 8

• Example 3: L (prio 2), M1, . . . M1000 (all prio 4)

- L has l, and M1, . . . , M1000 all block on l. L’s priority is
max(L, M1, . . . , M1000) = 4.

31 / 31


