CS161: Operating Systems

Matt Welsh
mdw@eecs.harvard.edu

ey

1)

Lecture 8: Scheduling
February 27, 2007

© 2007 Matt We lsh - ﬂ-ﬁwanf“llniversitl_

S cheduling

Have already discussed context switching
* Have not discussed how the OS decides which thread to run next
e Context switching is the mechanism
e Scheduling is the policy

Which thread to run next?
How long does it run for (granularity)?

How to ensure every thread gets a chance to run (fairness)?

How to prevent starvation?

© 2007 Matt We lsh - ﬂﬁwanf‘tbﬁversi%

Scheduler

The scheduler is the OS component that determines which thread to
run next on the CPU

The scheduler operates on the ready queue
* Why does it not deal with the waiting thread queues?

When does the scheduler run?

* When a thread voluntarily gives up the CPU (yield)

* When a thread blocks on /O, timer, etc.

* When a thread exits

* When a thread is preempted (e.g., due to timer interrupt)

Scheduling can be preemptive or non-preemptive

e Preemptive: Timer interrupt can force context switch
* Non-preemptive: Process must yield or block voluntarily

Batch vs. Interactive Scheduling

e Batch: Non-preemptive and no other jobs run if they block
* Interactive: Preemptive and other jobs do run if they block

© 2007 Matt We lsh - ﬂﬁwanf‘tbﬁversi%

Scheduling Policy Goals

Goal of a scheduling policy is to achieve some “optimal” allocation of
CPU time in the system

e According to some definition of “optimal”

Possible goals:

[Note — Different texts use different meanings for these terms:]
Maximize CPU utilization (% of time that CPU is running threads)
Maximize CPU throughput (# jobs per second)

Minimize job turnaround time (Tjob-ends — Tjob-starts)

Minimize job response time (total time jobs spend on ready queue)
e How is this related to the “interactive response” of the system?

e Minimize job waiting time (total time jobs spend on wait queue)

e How can scheduling policy affect waiting time???

These goals often conflict!
e Batch system: Try to maximize job throughput and minimize turnaround time
* |nteractive system: Minimize response time of interactive jobs (i.e., editors, etc.)

The choice of scheduling policy has a huge impact on performance

© 2007 Matt We lsh - ﬂﬁwanf‘tbliversi%

First-Come-First-Served (FCFS)

Jobs are scheduled in the order that they arrive
e Also called First-In-First-Out (FIFO)

Used only for batch scheduling

e Implies that job runs to completion — never blocks or gets context switched out

Jobs treated equally, no starvation!
* As long as jobs eventually complete, of course

What's wrong with FCFS?

> lime
I o>

Short jobs get stuck behind long ones!

© 2007 Matt Welsh - Tﬁwanffumversi%

Round Robin (RR)
Essentially FCFS with preemption

A thread runs until it blocks or its CPU quantum expires
e How to determine the ideal CPU quantum?

> lime

ors A - e

> lime

+ [Il I B BN

Job A: 13 time units, Job B & C: 4 time units
e Turnaround time with FCFS: Job A= 13, Job B = (13+4), Job C = (13 + 4 + 4)
e Total turnaround time = 51, mean = (61/3) = 17
e Turnaround time with RR: JobA=21,JobB=11,Job C =12
e Total turnaround time = 44, mean = (44/3) = 14.667

Job A

© 2007 Matt Welsh - Tﬁwanf“llniveni%

Shortest Job First(SJF)
Schedule job with the shortest expected CPU burst

Two broad classes of processes: CPU bound and I/O bound
e CPU bound:

cpu i/o cpu i/o cpu i/o

e |/O bound:

cpu i/o cpu i/o

Examples of each kind of process?

e CPU bound: compiler, number crunching, games, MP3 encoder, etc.
* |/O bound: web browser, database engine, word processor, etc.

How to predict a process's CPU burst?
e Can get a pretty good guess by looking at the past history of the job
* Track the CPU burst each time a thread runs, track the average
e CPU bound jobs will tend to have a long burst
* //O bound jobs will tend to have a short burst

© 2007 Matt Welsh - Tﬁzwanf‘llniversi%

11

SJF Example

Job A cpu i/o

Job B Heell

Job C

Re sulting s che dule:

B i/o

Bis noton the ready queue!

C i/o

B

© 2007 Matt Welsh - Harvard Unive rsitl_

12

Shortest Job First(SJF)
Schedule job with the shortest expected CPU burst

e This policy is nonpreemptive. Job will run until it blocks for 1/O.
SJF scheduling prefers 1/0O bound processes. \Why?
|ldea: A long CPU burst “hogs” the CPU.

* Running short-CPU-burst jobs first gets them done, and out of the way.
e Allows their I/O to overlap with each other: more efficient use of the CPU
* Interactive programs often have a short CPU burst: Good to run them first

e To yield “snappy” interactive performance, e.q., for window system or shell.

We all do this. It is called “procrastination.”

* When faced with too much work, easier to do the short tasks first, get them
out of the way.

* L eave the big, hard tasks for later.

© 2007 Matt We lsh - ﬂ-ﬁwanf‘tbliversi%

13

S hortest Remaining Time First (SRTF)

SJF is a nonpreemptive policy.

Preemptive variant: Shortest Remaining Time First (SRTF)

* |f a job becomes runnable with a shorter expected CPU burst,
preempt current job and run the new job

© 2007 Matt Welsh - Harvard Unive rsitl_

14

SRTF versus RR

Say we have three jobs:

e Job A and B: both CPU-bound, will run for hours on the CPU with no I/O
e Job C: Requires a 1ms burst of CPU followed by 10ms 1/O operation

RR with 25 ms time slice:

C C
S B oA
N J
RR with 1 ms time slice: Job C's I/O
\ J
Job C's I/O
* Lots of pointless context switches between Jobs A and B!
SRTF:

e Job A runs to completion, then Job B starts
e C gets scheduled whenever it needs the CPU

© 2007 Matt Welsh - Q-ﬁrvanf“llniversi% 15

Priority Scheduling

Assign each thread a priority

* |In Linux, these range from 0 (lowest) to 99 (highest)
e UNIX “nice()” system call lets user adjust this
e But note, scale is inverted: -20 is highest priority and +20 is lowest

Priority may be set by user, OS, or some combination of the two
» User may adjust priority to bias scheduler towards a thread
e OS may adjust priority to achieve system performance goals

When scheduling, simply run the job with the highest priority

Usually implemented as separate “priority queues”
* One queue for each priority level
* Use RR scheduling within each queue
e |f a queue is empty, look in next lowest priority queue

What's the problem with this policy?

© 2007 Matt We lsh - ﬂ-ﬁwan[%bn’versi%

16

Priority Scheduling

Assign each thread a priority

* |In Linux, these range from 0 (lowest) to 99 (highest)
e UNIX “nice()” system call lets user adjust this
e But note, scale is inverted: -20 is highest priority and +20 is lowest

Priority may be set by user, OS, or some combination of the two
» User may adjust priority to bias scheduler towards a thread
e OS may adjust priority to achieve system performance goals

When scheduling, simply run the job with the highest priority

Usually implemented as separate “priority queues”
* One queue for each priority level
* Use RR scheduling within each queue
e |f a queue is empty, look in next lowest priority queue

Problem: Starvation
* High priority threads always trump low priority threads

© 2007 Matt We lsh - ﬂﬁwanf‘tbﬁversi%

17

Lottery Scheduling
A kind of randomized priority scheduling scheme!

Give each thread some number of “tickets”
* The more tickets a thread has, the higher its priority

On each scheduling interval:

e Pick a random number between 1 and total # of tickets
e Scheduling the job holding the ticket with this number

How does this avoid starvation?
* Even low priority threads have a small chance of running!

© 2007 Matt Welsh - Harvard Unive rsi%

18

Lottery scheduling example

Job A Job B Job C

Round 1 | 20

\/

Round 2 | ©65

\/

ﬁ@mcfg 92 C would win ... butitis still blocke d

Round 4 33

\/

\/

© 2007 Matt Welsh - Harvard Unive rsitl_

Multilevel Feedback Queues (MLFQ)

Observation: Want to give higher priority to 1/O-bound jobs
» They are likely to be interactive and need CPU rapidly after I/O completes
* However, jobs are not always 1/O bound or CPU-bound during execution!
o Web browser is mostly I/0 bound and interactive
e But, becomes CPU bound when running a Java applet

Basic idea: Adjust priority of a thread in response to its CPU usage
* |ncrease priority if job has a short CPU burst
e Decrease priority if job has a long CPU burst (e.g., uses up CPU quantum)
* Jobs with lower priorities get longer CPU quantum

What is the rationale for this???

e Don't want to give high priority to CPU-bound jobs...
e Because lower-priority jobs can't preempt them if they get the CPU.
e OK to give longer CPU quantum to low-priority jobs:
e |/O bound jobs with higher priority can still preempt when they become runnable.

© 2007 Matt We lsh - ﬂ-ﬁwan{%i\/eni%

High prio

Medium prio ——»

Low prio R

© 2007 Matt Welsh - Tﬁzwanffumversi%

MLFQ Implementation

P
/P 4277, 70 N

State: Re ad'L
PC

fﬁggisters /
N~—__—

PID 3202, Ti
State: Re acfl.

PC
ﬁggiswrs

PID 4301, T2
State: Re ad'l

PC

‘ﬁggistws

22

MLFQ Implementation

PID 4301, T2
State: CReac[l
High prio > PC
fﬁéﬂi‘w”s Uses entire CPU burst (preempted)
Placed into lower priority queue
PID 3202, T PID 4277, TO
State: Read’l State: CRead’l_
Medium prio ———» bc . bC
fﬁ(giswrs fﬁggisters
Low prio R

© 2007 Matt Welsh - Tﬁzwanffumversi%

23

MLFQ Implementation

NG
Rur /cﬁ@4391, ™\

Smwm&aﬁL
High prio PC

@wﬁwml//
~N—

PID 3202, T PID 4277, TO
SmwdkaﬁL Smwﬂ%aﬁL

Medium prio ———» bc . bC

ﬂwﬁwm @wﬁ%m

Low prio R

© 2007 Matt Welsh - Tﬁzwanffumversi%

MLFQ Implementation

PID 3202, T
State: Re acfl_

Preempted

PC

PID 4277, TO
State: Re ad’l_

PC

fﬁggistzzrs

fﬁggisms

High prio —>
Medium prio ———»
Low prio R

© 2007 Matt Welsh - Tﬁwan{ﬂni\/ersi%

PID 4301, T2
State: ‘Re ac[%

PC

’ﬁggiswrs

25

MLFQ Implementation

High prio —>

A

Q%m /Cﬁ’IDgzoz, Tl\ PID 4277, TO PID 4301, T2

State: Reacfl_ State: CRead’l_ State: ‘Reac[y_

Medium prio — e PC —> PC
\ fﬁggiswrs / fﬁggisters ’ﬁggiswrs

N~ —

Low prio —>

© 2007 Matt Welsh - Tﬁzwanffumversi%

MLFQ Implementation

PID3202, Ti
State: Re a(fl

PC

ﬁggiswrs

PID 4277, TO
State: Re acfl_

PC

’ﬁggistzm

High prio —»
Medium prio ———»
Low prio R

© 2007 Matt Welsh - Tﬁwanffumversi%

’f%ns with s hort CPUburst

(EQJCES on ’]/O)
PID 4391, T2
State: ‘Reacfy—

R PC

ﬁggiswrs

27

Linux Scheduling Policy (pre-2.6)
Caveat: | am eliding some details here!

Each thread has a different CPU quantum

* CPU quantum for each thread calculated after all threads have exhausted their quantum
— this is called an epoch

e |f a thread blocks before its quantum has expired, it can use the leftover quantum during
the same epoch

e Think “rollover minutes”

Threads assigned initial quantum (about 210ms)
e Can be adjusted by setting thread priority

Scan over all runnable processes and calculate “goodness” for each
e Sum of static process priority plus “dynamic priority”
e Dynamic priority increases as threads wait on 1/0O

* Give a small bonus to a thread in the same address space as the previously running
thread — why??

Schedule process with the highest “goodness” value

© 2007 Matt Welsh - ﬂ-ﬁwan[%bn’versi% 28

Linux O(1) Scheduler (post-2.6)

Original Linux scheduler did not scale well
* Had to recalculate goodness on all threads every epoch
* As the number of threads gets large, this overhead is serious!

New O(1) scheduler introduced in Linux 2.5 by Ingo Molnar
e Fancy O(1) priority queue and bitmap scheme to get highest-priority thread
* 140 separate run queues
e Update thread priority when it is descheduled

No bias for switching between threads in same addr space!

Mg

* Ingo says “no workload | know shows any sensitivity to this

*http://www.ussg.iu.edu/hypermail/linux/kernel/0201.0/0810.html

© 2007 Matt We lsh - ﬂ-ﬁwanf‘tbliversi%

29

Linux 2.6 Scheduler Details
Each task has two priorities: static priority and dynamic priority

Static priority
e Ranges from 100-139, default value is 120
* Only changed using the nice() system call — change by -20 (higher) to +19 (lower)

Dynamic priority
» Represents static priority plus a dynamic “bonus”
* This is the value actually used by the scheduler when deciding which task to run

How the "bonus” is calculated
* Bonus range is between -5 (higher priority) to +5 (lower priority)
* |/O bound tasks given boost of up to -5
e CPU bound jobs given penalty of up to +5
e Bonus calculated by taking ratio of task's “wait time” to “running time”
e |dea: Task that waits more often is probably I/0O bound

© 2007 Matt We lsh - ﬂﬁwanf‘tbﬂversi%

30

Linux 2.6 Scheduler Details

Priority Level Static priority Nice value Time quantum
Highest 100 -20 800 ms

Higher 110 -10 600 ms

Normal (default) 120 0 100 ms

Lower 130 +10 50 ms

Lowest 139 +19 5 ms

© 2007 Matt We lsh - ﬂﬁwanf‘tbliversi%

Linux 2.6 Scheduler Performance

2-way SMP system can do almost 1 million ctx switches a second!
e Older scheduler could achieve around 240,000 switches/sec

Hackbench:
Ferformance for Frocess Groups - 1 CFU

,_.
Mo
=)

| | | | | | | |
T2.4.18-37 ——

.

,_.
=
=)
I
I

.S o)
=) =)
I [

I l

Time (sec> — small is good
o 8]
))
| |
| |

| | | | | | |
40 6B B8 1@B 128 148 168 1880 209

Mumber of Frocesses

=)

Aug.
Mo
=

http://developer.osdl.org/craiger/hackbench/
© 2007 Matt We lsh - ﬂ-ﬁwan{ﬂni\/eﬁi% 32

Linux 2.6 Scheduler Performance

2-way SMP system can do almost 1 million ctx switches a second!
e Older scheduler could achieve around 240,000 switches/sec

Hackbench:
Ferformance for Frocess Groups - 8 CFUs
128 I I I I I I I |
T2.4.18-37 ——
196 —

=15

=15/

43

Auerage Time (secs

i

B | | | | | | | |
cy 4B 6B BY 1¥E 128 148 168 188 200

Mumber of Frocesses

http://developer.osdl.org/craiger/hackbench/

© 2007 Matt We lsh - ﬂ-ﬁwan{ﬂni\/eﬁi% 33

S cheduling on multiprocessor systems

Load balancing
e Want to exploit multiple CPUs efficiently
* Try to run threads on different CPUs that do not interfere with each other
e For example, threads in different processes
e Why??2?

Space sharing
* Try to run threads from the same process on different CPUs simultaneously
e Why???

CPU affinity

* Generally desirable to run a thread on the same CPU each time
e Why???

These different goals are opposing
e Difficult to implement an SMP scheduler that gets the balance right

© 2007 Matt We lsh - ﬂ-ﬁwan{%i\/eni%

34

