
© 2007 Matt We ls h – Harvard Unive rs ity 1

161 : CS Operating Systems

Matt Welsh
mdw@eecs.harvard.edu

Lecture 8: Scheduling
February 27, 2007

© 2007 Matt We ls h – Harvard Unive rs ity 2

Scheduling
Have already discussed context switching

● Have not discussed how the OS decides which thread to run next
● Context switching is the mechanism
● Scheduling is the policy

Which thread to run next?

How long does it run for (granularity)?

How to ensure every thread gets a chance to run (fairness)?

How to prevent starvation?

© 2007 Matt We ls h – Harvard Unive rs ity 4

Scheduler
The scheduler is the OS component that determines which thread to

run next on the CPU

The scheduler operates on the ready queue
● Why does it not deal with the waiting thread queues?

When does the scheduler run?
● When a thread voluntarily gives up the CPU (yield)
● When a thread blocks on I/O, timer, etc.
● When a thread exits
● When a thread is preempted (e.g., due to timer interrupt)

Scheduling can be preemptive or non-preemptive
● Preemptive: Timer interrupt can force context switch
● Non-preemptive: Process must yield or block voluntarily

Batch vs. Interactive Scheduling
● Batch: Non-preemptive and no other jobs run if they block
● Interactive: Preemptive and other jobs do run if they block

© 2007 Matt We ls h – Harvard Unive rs ity 6

 Scheduling Policy Goals
Goal of a scheduling policy is to achieve some “optimal” allocation of

CPU time in the system
● According to some definition of “optimal”

Possible goals:
[Note – Different texts use different meanings for these terms:]

● Maximize CPU utilization (% of time that CPU is running threads)
● Maximize CPU throughput (# jobs per second)
● Minimize job turnaround time (Tjob-ends – Tjob-starts)
● Minimize job response time (total time jobs spend on ready queue)

● How is this related to the “interactive response” of the system?
● Minimize job waiting time (total time jobs spend on wait queue)

● How can scheduling policy affect waiting time???

These goals often conflict!
● Batch system: Try to maximize job throughput and minimize turnaround time
● Interactive system: Minimize response time of interactive jobs (i.e., editors, etc.)

The choice of scheduling policy has a huge impact on performance

© 2007 Matt We ls h – Harvard Unive rs ity 8

- - - ()First Come First Served FCFS
Jobs are scheduled in the order that they arrive

● Also called First-In-First-Out (FIFO)

Used only for batch scheduling
● Implies that job runs to completion – never blocks or gets context switched out

Jobs treated equally, no starvation!
● As long as jobs eventually complete, of course

What's wrong with FCFS?

Job A Job B Job C

Short jobs get stuck behind long ones!

tim e

© 2007 Matt We ls h – Harvard Unive rs ity 9

 ()Round Robin RR
Essentially FCFS with preemption

A thread runs until it blocks or its CPU quantum expires
● How to determine the ideal CPU quantum?

Job A: 13 time units, Job B & C: 4 time units
● Turnaround time with FCFS: Job A = 13, Job B = (13+4), Job C = (13 + 4 + 4)

● Total turnaround time = 51, mean = (51/3) = 17
● Turnaround time with RR: Job A = 21, Job B = 11, Job C = 12

● Total turnaround time = 44, mean = (44/3) = 14.667

Job A

tim e

tim e

FCFS

RR

Job A Job B Job C

© 2007 Matt We ls h – Harvard Unive rs ity 11

 ()Shortest Job First SJF
Schedule job with the shortest expected CPU burst

Two broad classes of processes: CPU bound and I/O bound
● CPU bound:

● I/O bound:

Examples of each kind of process?
● CPU bound: compiler, number crunching, games, MP3 encoder, etc.
● I/O bound: web browser, database engine, word processor, etc.

How to predict a process's CPU burst?
● Can get a pretty good guess by looking at the past history of the job
● Track the CPU burst each time a thread runs, track the average
● CPU bound jobs will tend to have a long burst
● I/O bound jobs will tend to have a short burst

cpu i/o cpu i/o cpu i/o

cpu i/o cpu i/o cpu i/o cpu

© 2007 Matt We ls h – Harvard Unive rs ity 12

 SJF Example

cpu i/o

cpu i/o

cpu i/o

Job A

Job B

Job C

Re s ulting s che dule :

B i/o

A i/o

B i/o

A i/o

B i/o

C i/o

B is n o t o n th e re a d y q u e u e !

© 2007 Matt We ls h – Harvard Unive rs ity 13

 ()Shortest Job First SJF
Schedule job with the shortest expected CPU burst

● This policy is nonpreemptive. Job will run until it blocks for I/O.

SJF scheduling prefers I/O bound processes. Why?

Idea: A long CPU burst “hogs” the CPU.
● Running short-CPU-burst jobs first gets them done, and out of the way.
● Allows their I/O to overlap with each other: more efficient use of the CPU
● Interactive programs often have a short CPU burst: Good to run them first

● To yield “snappy” interactive performance, e.g., for window system or shell.

We all do this. It is called “procrastination.”
● When faced with too much work, easier to do the short tasks first, get them

out of the way.
● Leave the big, hard tasks for later.

© 2007 Matt We ls h – Harvard Unive rs ity 14

 ()Shortest Remaining Time First SRTF
SJF is a nonpreemptive policy.

Preemptive variant: Shortest Remaining Time First (SRTF)
● If a job becomes runnable with a shorter expected CPU burst,

preempt current job and run the new job

B i/o

A Pre e m p t A wh e n B b e c o m e s ru n na b le

A i/o

C

B i/o

B i/o

C i/o

© 2007 Matt We ls h – Harvard Unive rs ity 15

 SRTF versus RR
Say we have three jobs:

● Job A and B: both CPU-bound, will run for hours on the CPU with no I/O
● Job C: Requires a 1ms burst of CPU followed by 10ms I/O operation

RR with 25 ms time slice:

RR with 1 ms time slice:

● Lots of pointless context switches between Jobs A and B!

SRTF:

● Job A runs to completion, then Job B starts
● C gets scheduled whenever it needs the CPU

A B A

Job C's I/O

Job C's I/O

C C

© 2007 Matt We ls h – Harvard Unive rs ity 16

 Priority Scheduling
Assign each thread a priority

● In Linux, these range from 0 (lowest) to 99 (highest)
● UNIX “nice()” system call lets user adjust this

● But note, scale is inverted: -20 is highest priority and +20 is lowest

Priority may be set by user, OS, or some combination of the two
● User may adjust priority to bias scheduler towards a thread
● OS may adjust priority to achieve system performance goals

When scheduling, simply run the job with the highest priority

Usually implemented as separate “priority queues”
● One queue for each priority level
● Use RR scheduling within each queue
● If a queue is empty, look in next lowest priority queue

What's the problem with this policy?

© 2007 Matt We ls h – Harvard Unive rs ity 17

 Priority Scheduling
Assign each thread a priority

● In Linux, these range from 0 (lowest) to 99 (highest)
● UNIX “nice()” system call lets user adjust this

● But note, scale is inverted: -20 is highest priority and +20 is lowest

Priority may be set by user, OS, or some combination of the two
● User may adjust priority to bias scheduler towards a thread
● OS may adjust priority to achieve system performance goals

When scheduling, simply run the job with the highest priority

Usually implemented as separate “priority queues”
● One queue for each priority level
● Use RR scheduling within each queue
● If a queue is empty, look in next lowest priority queue

Problem: Starvation
● High priority threads always trump low priority threads

© 2007 Matt We ls h – Harvard Unive rs ity 18

 Lottery Scheduling
A kind of randomized priority scheduling scheme!

Give each thread some number of “tickets”
● The more tickets a thread has, the higher its priority

On each scheduling interval:
● Pick a random number between 1 and total # of tickets
● Scheduling the job holding the ticket with this number

How does this avoid starvation?
● Even low priority threads have a small chance of running!

© 2007 Matt We ls h – Harvard Unive rs ity 19

 Lottery scheduling example
Job A

30

Job B

10

Job C

60

Round 1 26 A i/o

Round 2 65 C i/oRound 2 65 C i/o

Round 3 92 C would win .. . but it is still blo cke d!

Round 4 33 B i/o

Round 5 7 A i/o

© 2007 Matt We ls h – Harvard Unive rs ity 21

 ()Multilevel FeedbackQueues MLFQ
Observation: Want to give higher priority to I/O-bound jobs

● They are likely to be interactive and need CPU rapidly after I/O completes
● However, jobs are not always I/O bound or CPU-bound during execution!

● Web browser is mostly I/O bound and interactive
● But, becomes CPU bound when running a Java applet

Basic idea: Adjust priority of a thread in response to its CPU usage
● Increase priority if job has a short CPU burst
● Decrease priority if job has a long CPU burst (e.g., uses up CPU quantum)
● Jobs with lower priorities get longer CPU quantum

What is the rationale for this???
● Don't want to give high priority to CPU-bound jobs...

● Because lower-priority jobs can't preempt them if they get the CPU.
● OK to give longer CPU quantum to low-priority jobs:

● I/O bound jobs with higher priority can still preempt when they become runnable.

© 2007 Matt We ls h – Harvard Unive rs ity 22

 MLFQ Implementation

PC

Re giste rs

PID 4277, T0
S tate : Re ady

PC

Re giste rs

PID 4391, T2
S tate : Re ady

High prio

PC

Re giste rs

PID 3202, T1
S tate : Re ady

Medium prio

Low prio

Run

© 2007 Matt We ls h – Harvard Unive rs ity 23

 MLFQ Implementation

PC

Re giste rs

PID 4391, T2
S tate : Re ady

High prio

PC

Re giste rs

PID 3202, T1
S tate : Re ady

Medium prio

Low prio

PC

Re giste rs

PID 4277, T0
S tate : Re ady

Uses entire CPU burst (preempted)
Placed into lower priority queue

© 2007 Matt We ls h – Harvard Unive rs ity 24

 MLFQ Implementation

PC

Re giste rs

PID 4391, T2
S tate : Re ady

High prio

PC

Re giste rs

PID 3202, T1
S tate : Re ady

Medium prio

Low prio

PC

Re giste rs

PID 4277, T0
S tate : Re ady

Run

© 2007 Matt We ls h – Harvard Unive rs ity 25

 MLFQ Implementation

High prio

PC

Re giste rs

PID 3202, T1
S tate : Re ady

Medium prio

Low prio

PC

Re giste rs

PID 4277, T0
S tate : Re ady

PC

Re giste rs

PID 4391 , T2
S tate : Re ady

Preempted

© 2007 Matt We ls h – Harvard Unive rs ity 26

 MLFQ Implementation

High prio

PC

Re giste rs

PID 3202, T1
S tate : Re ady

Medium prio

Low prio

PC

Re giste rs

PID 4277, T0
S tate : Re ady

PC

Re giste rs

PID 4391 , T2
S tate : Re adyRun

© 2007 Matt We ls h – Harvard Unive rs ity 27

 MLFQ Implementation

High prio

Medium prio

Low prio

PC

Re giste rs

PID 4277, T0
S tate : Re ady

PC

Re giste rs

PID 4391, T2
S tate : Re ady

PC

Re giste rs

PID 3202, T1
S tate : Re ady

Runs with s hort CPU burst
(blo cks on I/O)

© 2007 Matt We ls h – Harvard Unive rs ity 28

 (-2 .6)Linux Scheduling Policy pre
Caveat: I am eliding some details here!

Each thread has a different CPU quantum
● CPU quantum for each thread calculated after all threads have exhausted their quantum

– this is called an epoch
● If a thread blocks before its quantum has expired, it can use the leftover quantum during

the same epoch
● Think “rollover minutes”

Threads assigned initial quantum (about 210ms)
● Can be adjusted by setting thread priority

Scan over all runnable processes and calculate “goodness” for each
● Sum of static process priority plus “dynamic priority”
● Dynamic priority increases as threads wait on I/O
● Give a small bonus to a thread in the same address space as the previously running

thread – why??

Schedule process with the highest “goodness” value

© 2007 Matt We ls h – Harvard Unive rs ity 29

 (1) (-2 .6)Linux O Scheduler post
Original Linux scheduler did not scale well

● Had to recalculate goodness on all threads every epoch
● As the number of threads gets large, this overhead is serious!

New O(1) scheduler introduced in Linux 2.5 by Ingo Molnar
● Fancy O(1) priority queue and bitmap scheme to get highest-priority thread
● 140 separate run queues
● Update thread priority when it is descheduled

No bias for switching between threads in same addr space!
● Ingo says “no workload I know shows any sensitivity to this”*

*http://www.ussg.iu.edu/hypermail/linux/kernel/0201.0/0810.html

© 2007 Matt We ls h – Harvard Unive rs ity 30

 2 .6 Linux Scheduler Details
Each task has two priorities: static priority and dynamic priority

Static priority
● Ranges from 100-139, default value is 120
● Only changed using the nice() system call – change by -20 (higher) to +19 (lower)

Dynamic priority
● Represents static priority plus a dynamic “bonus”
● This is the value actually used by the scheduler when deciding which task to run

How the “bonus” is calculated
● Bonus range is between -5 (higher priority) to +5 (lower priority)
● I/O bound tasks given boost of up to -5
● CPU bound jobs given penalty of up to +5
● Bonus calculated by taking ratio of task's “wait time” to “running time”

● Idea: Task that waits more often is probably I/O bound

© 2007 Matt We ls h – Harvard Unive rs ity 31

 2 .6 Linux Scheduler Details

Priority Level Static priority Nice value Time quantum

Highest 100 -20 800 ms

Higher 110 -10 600 ms

Normal (default) 120 0 100 ms

Lower 130 +10 50 ms

Lowest 139 +19 5 ms

© 2007 Matt We ls h – Harvard Unive rs ity 32

 2 .6 Linux Scheduler Performance
2-way SMP system can do almost 1 million ctx switches a second!

● Older scheduler could achieve around 240,000 switches/sec

http://developer.osdl.org/craiger/hackbench/

© 2007 Matt We ls h – Harvard Unive rs ity 33

 2 .6 Linux Scheduler Performance
2-way SMP system can do almost 1 million ctx switches a second!

● Older scheduler could achieve around 240,000 switches/sec

http://developer.osdl.org/craiger/hackbench/

© 2007 Matt We ls h – Harvard Unive rs ity 34

 Scheduling onmultiprocessor systems
Load balancing

● Want to exploit multiple CPUs efficiently
● Try to run threads on different CPUs that do not interfere with each other
● For example, threads in different processes

● Why???

Space sharing
● Try to run threads from the same process on different CPUs simultaneously

● Why???

CPU affinity
● Generally desirable to run a thread on the same CPU each time

● Why???

These different goals are opposing
● Difficult to implement an SMP scheduler that gets the balance right

