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x86 Virtual Address Translation
Using data structures the memory manager creates and maintains called page tables, the CPU trans-

lates virtual addresses into physical addresses. Each page of virtual address space is associated with a 

system-space structure called a page table entry (PTE), which contains the physical address to which 

the virtual one is mapped. For example, Figure 10-15 shows how three consecutive virtual pages 

might be mapped to three physically discontiguous pages on an x86 system. There may not even be 

any PTEs for regions that have been marked as reserved or committed but never accessed, because 
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FIGURE 10-15 Mapping virtual addresses to physical memory (x86)

The dashed line connecting the virtual pages to the PTEs in Figure 10-15 represents the indirect 

relationship between virtual pages and physical memory.

Note Even kernel-mode code (such as device drivers) cannot reference physical memory 
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to them. For more information, see the memory descriptor list (MDL) support routines de-

scribed in the WDK documentation.
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As mentioned previously, Windows on x86 can use either of two schemes for address translation: 
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material does depend on the non-PAE material, so even if you are primarily interested in PAE, you 
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information.

Non-PAE x86 systems use a two-level page table structure to translate virtual to physical ad-
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virtual page number and the byte within the page, called the byte offset. The virtual page number is 
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table.
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offset is 12 bits because it denotes a byte within a page, and pages are 4,096 bytes (212 = 4,096). The 

other indexes are 10 bits because the structures they index have 1,024 entries (210 = 1,024).
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FIGURE 10-16 Components of a 32-bit virtual address on x86 systems

The job of virtual address translation is to convert these virtual addresses into physical addresses—

that is, addresses of locations in RAM. The format of a physical address on an x86 non-PAE system is 

shown in Figure 10-17.

0000.0000.0000.0000.0000       0000.0000.0000

31                                            12 11                            0

Physical page number
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“page frame number”)

Byte offset

FIGURE 10-17 Components of a physical address on x86 non-PAE systems

As you can see, the format is very similar to that of a virtual address. Furthermore, the byte offset 

value from a virtual address will be the same in the resulting physical address. We can say, then, that 

address translation involves converting virtual page numbers to physical page numbers (also referred 

to as page frame numbers, or PFNs). The byte offset does not participate in, and does not change as a 

result of, address translation. It is simply copied from the virtual address to the physical address,
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Figure 10-18 shows the relationship of these three values and how they are used to perform ad-

dress translation.

KPROCESS

Page directory
index

Page table
index

Byte offset

Physical address

Virtual address

CR3

Page directory
(one per process, 1,024 entries)

Page tables
(up to 512 per process

plus up to 512 systemwide, 
1,024 entries per table)

Physical address
space

Desired byte

Desired page

PFN

PFN

PTE

Index

PDE

Index

FIGURE 10-18 Translating a valid virtual address (x86 non-PAE)

The following basic steps are involved in translating a virtual address:

1. The memory management unit (MMU) uses a privileged CPU register, CR3, to obtain the 

physical address of the page directory.

2. The page directory index portion of the virtual address is used as an index into the page 

directory. This locates the page directory entry (PDE) that contains the location of the page 

table needed to map the virtual address. The PDE in turn contains the physical page number, 

also called the page frame number, or PFN, of the desired page table, provided the page table 

is resident—page tables can be paged out or not yet created, and in those cases, the page 
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large page, then it simply contains the PFN of the target large page, and the rest of the virtual 

address is treated as the byte offset within the large page.

3. The page table index is used as an index into the page table to locate the PTE that describes 

the virtual page in question.
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4. If the PTE’s valid bit is clear, this triggers a page fault (memory management fault). The oper-

ating system’s memory management fault handler (pager) locates the page and tries to make 

it valid; after doing so, this sequence continues at step 5. (See the section “Page Fault Han-

dling.”) If the page cannot or should not be made valid (for example, because of a protection 

fault), the fault handler generates an access violation or a bug check.

5. When the PTE describes a valid page (whether immediately or after page fault resolution), the 
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Now that you have the overall picture, let’s look at the detailed structure of page directories, page 

tables, and PTEs.

Page Directories

On non-PAE x86 systems, each process has a single page directory, a page the memory manager cre-

ates to map the location of all page tables for that process. The physical address of the process page 

directory is stored in the kernel process (KPROCESS) block, but it is also mapped virtually at address 

0xC0300000 on x86 non-PAE systems. (For more detailed information about the KPROCESS and other 

process data structures, refer to Chapter 5, “Processes, Threads, and Jobs” in Part 1.)

The CPU obtains the location of the page directory from a privileged CPU register called CR3. 

It contains the page frame number of the page directory. (Since the page directory is itself always 

page-aligned, the low-order 12 bits of its address are always zero, so there is no need for CR3 to sup-

ply these.) Each time a context switch occurs to a thread that is in a different process than that of the 
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the KPROCESS block of the new process. Context switches between threads in the same process don’t 

result in reloading the physical address of the page directory because all threads within the same 

process share the same process address space and thus use the same page directory and page tables.

The page directory is composed of page directory entries (PDEs), each of which is 4 bytes long. 

The PDEs in the page directory describe the state and location of all the possible page tables for the 

process. As described later in the chapter, page tables are created on demand, so the page directory 

for most processes points only to a small set of page tables. (If a page table does not yet exist, the 

VAD tree is consulted to determine whether an access should materialize it.) The format of a PDE isn’t 

repeated here because it’s mostly the same as a hardware PTE, which is described shortly.

To describe the full 4-GB virtual address space, 1,024 page tables are required. The process page 

directory that maps these page tables contains 1,024 PDEs. Therefore, the page directory index needs 

to be 10 bits wide (210 = 1,024).
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EXPERIMENT: Examining the Page Directory and PDEs

You can see the physical address of the currently running process’s page directory by examining 

the DirBase ���� �� ��� !process kernel debugger output:

lkd> !process -1 0 

PROCESS 857b3528  SessionId: 1  Cid: 0f70    Peb: 7ffdf000  ParentCid: 0818 

    DirBase: 47c9b000  ObjectTable: b4c56c48  HandleCount: 226.     

    Image: windbg.exe

You can see the page directory’s virtual address by examining the kernel debugger output 

for the PTE of a particular virtual address, as shown here:

lkd> !pte 10004 

                 VA 00010004 

PDE at C0300000         PTE at C0000040 

contains 6F06B867       contains 3EF8C847 

pfn 6f06b ---DA--UWEV   pfn 3ef8c ---D---UWEV
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Table Entries.” We will describe this output further in the section on x86 PAE translation.

Because Windows provides a private address space for each process, each process has its own 

page directory and page tables to map that process’s private address space. However, the page tables 

that describe system space are shared among all processes (and session space is shared only among 

processes in a session). To avoid having multiple page tables describing the same virtual memory, 

when a process is created, the page directory entries that describe system space are initialized to 

point to the existing system page tables. If the process is part of a session, session space page tables 

are also shared by pointing the session space page directory entries to the existing session page 

tables.

Page Tables and Page Table Entries

Each page directory entry points to a page table. A page table is a simple array of PTEs. The virtual 
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corresponds to and describes the data page in question. The page table index is 10 bits wide, allow-

ing you to reference up to 1,024 4-byte PTEs. Of course, because x86 provides a 4-GB virtual address 

space, more than one page table is needed to map the entire address space. To calculate the num-

ber of page tables required to map the entire 4-GB virtual address space, divide 4 GB by the virtual 

memory mapped by a single page table. Recall that each page table on an x86 system maps 4 MB of 

data pages. Thus, 1,024 page tables (4 GB / 4 MB) are required to map the full 4-GB address space. 

This corresponds with the 1,024 entries in the page directory.

You can use the !pte command in the kernel debugger to examine PTEs. (See the experiment 

“Translating Addresses.”) We’ll discuss valid PTEs here and invalid PTEs in a later section. Valid PTEs 
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page, as shown in Figure 10-19.
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FIGURE 10-19 Valid x86 hardware PTEs
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the MMU, whether or not the PTE is valid. These bits are stored and interpreted by the memory man-
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TABLE 10-11 PTE Status and Protection Bits

Name of Bit Meaning

Accessed Page has been accessed.

Cache disabled Disables CPU caching for that page.

Copy-on-write Page is using copy-on-write (described earlier).

Dirty Page has been written to.

Global �����	�
��� �
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this PTE.)

Large page Indicates that the PDE maps a 4-MB page (or 2 MB on PAE systems). See the section 
“Large and Small Pages” earlier in the chapter.

Owner Indicates whether user-mode code can access the page or whether the page is limited to 
kernel-mode access.

Prototype The PTE is a prototype PTE, which is used as a template to describe shared memory 
associated with section objects.

Valid Indicates whether the translation maps to a page in physical memory.

Write through Marks the page as write-through or (if the processor supports the page attribute table) 
write-combined. This is typically used to map video frame buffer memory.

Write Indicates to the MMU whether the page is writable.

On x86 systems, a hardware PTE contains two bits that can be changed by the MMU, the Dirty bit 

and the Accessed bit. The MMU sets the Accessed bit whenever the page is read or written (provided 

it is not already set). The MMU sets the Dirty bit whenever a write operation occurs to the page. The 

operating system is responsible for clearing these bits at the appropriate times; they are never cleared 

by the MMU.
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The x86 MMU uses a Write bit to provide page protection. When this bit is clear, the page is read-

only; when it is set, the page is read/write. If a thread attempts to write to a page with the Write bit 

clear, a memory management exception occurs, and the memory manager’s access fault handler (de-

scribed later in the chapter) must determine whether the thread can be allowed to write to the page 

(for example, if the page was really marked copy-on-write) or whether an access violation should be 

generated.

Hardware vs. Software Write Bits in Page Table Entries

The additional Write bit implemented in software (as mentioned in Table 10-11) is used to force 

updating of the Dirty bit to be synchronized with updates to Windows memory management data. 

In a simple implementation, the memory manager would set the hardware Write bit (bit 1) for any 

writable page, and a write to any such page will cause the MMU to set the Dirty bit in the page table 

entry. Later, the Dirty bit will tell the memory manager that the contents of that physical page must 

be written to backing store before the physical page can be used for something else.

In practice, on multiprocessor systems, this can lead to race conditions that are expensive to 

resolve. The MMUs of the various processors can, at any time, set the Dirty bit of any PTE that has its 

hardware Write bit set. The memory manager must, at various times, update the process working set 
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access to the working set list. But on a multiprocessor system, even while one processor is holding the 

lock, the Dirty bit might be changed by MMUs of other CPUs. This raises the possibility of missing an 

update to a Dirty bit.

To avoid this, the Windows memory manager initializes both read-only and writable pages with 

the hardware Write bit (bit 1) of their PTEs set to 0 and records the true writable state of the page 

�� ��� 	�
����� ����� ��� ���� ���� �� ��� ��	� ����� �

�		 �� 	�
� � ����� ��� ���
�		�� ���� ���	� �

memory management exception because the hardware Write bit is clear, just as it would be for a true 

read-only page. In this case, though, the memory manager learns that the page actually is writable 

(via the software Write bit), acquires the working set pushlock, sets the Dirty bit and the hardware 

Write bit in the PTE, updates the working set list to note that the page has been changed, releases the 

working set pushlock, and dismisses the exception. The hardware write operation then proceeds as 

usual, but the setting of the Dirty bit is made to happen with the working set list pushlock held.

On subsequent writes to the page, no exceptions occur because the hardware Write bit is set. The 

MMU will redundantly set the Dirty bit, but this is benign because the “written-to” state of the page is 
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handling may seem to be excessive overhead. However, it happens only once per writable page as 
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memory management exception handling because pages are usually initialized in the invalid state 
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overhead is small. Finally, on both uniprocessor and multiprocessor systems, this implementation al-

���	 ��	���� �
 ��� translation look-aside buffer (described later) without holding a lock for each page 
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Byte Within Page

Once the memory manager has determined the physical page number, it must locate the requested 
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the byte offset is 12 bits wide, allowing you to reference up to 4,096 bytes of data (the size of a page). 

Another way to interpret this is that the byte offset from the virtual address is concatenated to the 

physical page number retrieved from the PTE. This completes the translation of a virtual address to a 

physical address.

Translation Look-Aside Buffer
�	 ������ ������� 	� 
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entry in the page table. Because doing two additional memory lookups for every reference to a vir-

tual address would triple the required bandwidth to memory, resulting in poor performance, all CPUs 

cache address translations so that repeated accesses to the same addresses don’t have to be repeat-

edly translated. This cache is an array of associative memory called the translation look-aside buffer, or 

TLB. Associative memory is a vector whose cells can be read simultaneously and compared to a target 

value. In the case of the TLB, the vector contains the virtual-to-physical page mappings of the most 

recently used pages, as shown in Figure 10-20, and the type of page protection, size, attributes, and 

so on applied to each page. Each entry in the TLB is like a cache entry whose tag holds portions of the 
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usually a dirty bit indicating the condition of the page to which the cached PTE corresponds. If a PTE’s 

global bit is set (as is done by Windows for system space pages that are visible to all processes), the 

TLB entry isn’t invalidated on process context switches.
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�

FIGURE 10-20 Accessing the translation look-aside buffer
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Virtual addresses that are used frequently are likely to have entries in the TLB, which provides 

extremely fast virtual-to-physical address translation and, therefore, fast memory access. If a virtual 
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it, which makes the access time slightly slower. If a virtual page has been paged out of memory or if 

the memory manager changes the PTE, the memory manager is required to explicitly invalidate the 

TLB entry. If a process accesses it again, a page fault occurs, and the memory manager brings the 

page back into memory (if needed) and re-creates its PTE entry (which then results in an entry for it 

in the TLB).

Physical Address Extension (PAE)
The Intel x86 Pentium Pro processor introduced a memory-mapping mode called Physical Address 

Extension (PAE). With the proper chipset, the PAE mode allows 32-bit operating systems access to up 

to 64 GB of physical memory on current Intel x86 processors (up from 4 GB without PAE) and up to 

1,024 GB of physical memory when running on x64 processors in legacy mode (although Windows 

currently limits this to 64 GB due to the size of the PFN database required to describe so much 

memory). When the processor is running in PAE mode, the memory management unit (MMU) divides 
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implements page directories and page tables, but under PAE a third level, the page directory pointer 

table, exists above them.
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described in the earlier section “Address Windowing Extensions.” However, even if applications are 

not using such functions, the memory manager will use all available physical memory for multiple 
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PAE mode is selected at boot time and cannot be changed without rebooting. As explained in 

Chapter 2 in Part 1, there is a special version of the 32-bit Windows kernel with support for PAE 

called Ntkrnlpa.exe. Thirty-two-bit systems that have hardware support for nonexecutable memory 

(described earlier, in the section “No Execute Page Protection”) are booted by default using this PAE 

kernel, because PAE mode is required to implement the no-execute feature. To force the loading of 

the PAE-enabled kernel, you can set the pae BCD option to ForceEnable.

Note that the PAE kernel is installed on the disk on all 32-bit Windows systems, even systems with 

small memory and without hardware no-execute support. This is to allow testing of PAE-related code, 

even on small memory systems, and to avoid the need for reinstalling Windows should more RAM be 

added later. Another BCD option relevant to PAE is nolowmem, which discards memory below 4 GB 

(assuming you have at least 5 GB of physical memory) and relocates device drivers above this range. 

This guarantees that drivers will be presented with physical addresses greater than 32 bits, which 
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FIGURE 10-21 Page mappings with PAE

To understand PAE, it is useful to understand the derivation of the sizes of the various structures 
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limit for RAM addresses without PAE comes from the 12-bit byte offset and the 20-bit page frame 
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�� �����		� ��� �32 bytes = 4 GB. (Note 

that this is due to a limit of the physical address format and the number of bits allocated for the PFN 

within a page table entry. The fact that virtual addresses are 32 bits wide on x86, with or without PAE, 

does not limit the physical address space.)

Under PAE, the PFN is expanded to 24 bits. Combined with the 12-bit byte offset, this allows ad-

dressing of 224 + 12 bytes, or 64 GB, of memory.
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from 20 to 24 bits. To allow room for this expansion, the page table and page directory entries are 
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rather than just 4, but in x86 processors, PFNs are limited to 24 bits. This does leave a large number of 

bits in the PDE unused—or, rather, available for future expansion.)
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ingly reduced from 10 to 9 bits.
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This then leaves the two high-order bits of the virtual address unaccounted for. So PAE expands 

the number of page directories from one to four and adds a third-level address translation table, 

called the page directory pointer table, or PDPT. This table contains only four entries, 8 bytes each, 

which provide the PFNs of the four page directories. The two high-order bits of the virtual address are 

used to index into the PDPT and are called the page directory pointer index.

As before, CR3 provides the location of the top-level table, but that is now the PDPT rather than 

the page directory. The PDPT must be aligned on a 32-byte boundary and must furthermore reside in 
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 �� �
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��	� ��� �� ��	 �	 ���� � ������ ����	���� ���� ���� ��� ���������

Note that PAE mode can address more memory than the standard translation mode not directly 

because of the extra level of translation, but because the physical address format has been expanded. 

The extra level of translation is required to allow processing of all 32 bits of a virtual address.

EXPERIMENT: Translating Addresses

To clarify how address translation works, this experiment shows a real example of translat-

ing a virtual address on an x86 PAE system, using the available tools in the kernel debugger 

to examine the PDPT, page directories, page tables, and PTEs. (It is common for Windows on 

today’s x86 processors, even with less than 4 GB of RAM, to run in PAE mode because PAE 

mode is required to enable no-execute memory access protection.) In this example, we’ll work 

with a process that has virtual address 0x30004, currently mapped to a valid physical address. In 

later examples, you’ll see how to follow address translation for invalid addresses with the kernel 

debugger.
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late an address. In binary, 0x30004 is 11.0000.0000.0000.0100. Breaking it into the component 
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0.0011.000000.0000.000 0000.0000.0100

31 30 29 21 20 12 11 0

Page directory
index (0)

Page 
directory
pointer 
index (0)

Page table index 
(0x30 or 48 decimal)

Byte offset
 (4)

00

To start the translation process, the CPU needs the physical address of the process’s page 

directory pointer table, found in the CR3 register while a thread in that process is running. You 

can display this address by looking at the DirBase ���� �� ��� ������ �
 ��� !process command, 

as shown here:

lkd> !process -1 0 

PROCESS 852d1030  SessionId: 1  Cid: 0dec    Peb: 7ffdf000  ParentCid: 05e8 

    DirBase: ced25440  ObjectTable: a2014a08  HandleCount: 221. 

    Image: windbg.exe


