
CS 241
February 1, 2012

Slides adapted in part from material by
Matt Welsh, Harvard U.

1

Memory

Paging
  Solve the external fragmentation problem by using fixed-

size chunks of virtual and physical memory
  Virtual memory unit called a page
  Physical memory unit called a frame (or sometimes page frame)

17

frame 0

frame 1

frame 2

frame Y

physical memory

…

page 0

page 1

page 2

page X

virtual memory
(for one process)‏

…

page 3

...

...

Application Perspective
  Application believes it has a single, contiguous address space ranging from 0

to 2P – 1 bytes
  Where P is the number of bits in a pointer (e.g., 32 bits)

  In reality, virtual pages are scattered across physical memory
  This mapping is invisible to the program, and not even under it's control!

18

Stack

Heap

Initialized vars
(data segment)‏

Code
(text segment)‏

Uninitialized vars
(BSS segment)‏

(Reserved for OS)‏

Physical RAM

MMU

Stack

Heap

Initialized vars
(data segment)‏

Code
(text segment)‏

Uninitialized vars
(BSS segment)‏

(Reserved for OS)‏

Stack

Heap

Initialized vars
(data segment)‏

Code
(text segment)‏

Uninitialized vars
(BSS segment)‏

(Reserved for OS)‏

Lots of separate processes

Translation process
  Virtual-to-physical address translation performed by MMU

  Virtual address is broken into a virtual page number and an offset
  Mapping from virtual page to physical frame provided by a page

table (which is stored in memory)

0xdeadbeef = 0xdeadb 0xeef

Virtual page number Offset

page
frame 0

page
frame 1

page
frame 2

page
frame Y

page
frame 3

physical memory

offset
physical address

page frame # page frame #

page table

offset
virtual address

virtual page #

...

Page table entry

0x
de

ad
b

0xeef

Translation process
if (virtual page is invalid or non-resident or protected)
 trap to OS fault handler
else
 physical frame # = pageTable[virtpage#].physPageNum

  Each virtual page can be in physical memory or swapped
out to disk (called “paged out” or just “paged”)

  What must change on a context switch?
  Could copy entire contents of table, but this will be slow
  Instead use an extra layer of indirection: Keep pointer to current

page table and just change pointer

Copyright ©: University of Illinois CS 241 Staff 20

Where is the page table?
  Page Tables store the virtual-to-physical address mappings.
  Where are they located? In memory!
  OK, then. How does the MMU access them?

  The MMU has a special register called the page table base pointer.
  This points to the physical memory address of the top of the page table

for the currently-running process.

21

Process A page tbl

Process B page tbl

Physical RAM

MMU pgtbl base ptr

Page Faults
  What happens when a program accesses a virtual page

that is not mapped into any physical page?
  Hardware triggers a page fault

  Page fault handler
  Find any available free physical page
  If none, evict some resident page to disk
  Allocate a free physical page
  Load the faulted virtual page to the prepared physical page
  Modify the page table

Copyright ©: University of Illinois CS 241 Staff 22

Advantages of Paging
  Simplifies physical memory management

  OS maintains a free list of physical page frames
  To allocate a physical page, just remove an entry from this list

  No external fragmentation!
  Virtual pages from different processes can be interspersed in

physical memory
  No need to allocate pages in a contiguous fashion

  Allocation of memory can be performed at a (relatively) fine
granularity
  Only allocate physical memory to those parts of the address space

that require it
  Can swap unused pages out to disk when physical memory is

running low
  Idle programs won't use up a lot of memory (even if their address

space is huge!)
23

Paging Example

Copyright ©: University of Illinois CS 241 Staff 24

3 1
2
3
4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Real Memory Request Address within
Virtual Memory Page 3

Paging Example

Copyright ©: University of Illinois CS 241 Staff 25

3 1
1 2

3
4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Real Memory Request Address within
Virtual Memory Page 1

Paging Example

Copyright ©: University of Illinois CS 241 Staff 26

3 1
1
6

2
3
4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Real Memory Request Address within
Virtual Memory Page 6

Paging Example

Copyright ©: University of Illinois CS 241 Staff 27

3 1
1
6
2

2
3
4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Real Memory Request Address within
Virtual Memory Page 2

Paging Example

Copyright ©: University of Illinois CS 241 Staff 28

3 1
1
6
2

2
3
4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Real Memory Request Address within
Virtual Memory Page 8

What happens when there
is no more space in the

cache?

Paging Example

Copyright ©: University of Illinois CS 241 Staff 29

3 1
1
6
2

2
3
4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Real Memory Store Virtual Memory
Page 1 to disk

Paging Example

Copyright ©: University of Illinois CS 241 Staff 30

3 1

6
2

2
3
4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Real Memory Process request for Address
within Virtual Memory Page 8

Paging Example

Copyright ©: University of Illinois CS 241 Staff 31

3 1
8
6
2

2
3
4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Real Memory Load Virtual Memory
Page 8 to cache

Is paging enough?

32

Stack

Heap

Initialized vars
(data segment)

Code
(text segment)

Uninitialized vars
(BSS segment)

(Reserved for OS)

Physical RAM

MMU

How do we allocate memory in here?

Memory allocation w/in a process
  What happens when you declare a variable?

  Allocating a page for every variable wouldn’t be efficient
  Allocations within a process are much smaller
  Need to allocate on a finer granularity

  Solution (stack): stack data structure (duh)
  Function calls follow LIFO semantics
  So we can use a stack data structure to represent the

process’s stack – no fragmentation!

  Solution (heap): malloc
  This is a much harder problem
  Need to deal with fragmentation

33

