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Memory 



Paging 
  Solve the external fragmentation problem by using fixed-

size chunks of virtual and physical memory 
  Virtual memory unit called a page 
  Physical memory unit called a frame (or sometimes page frame) 
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Application Perspective 
  Application believes it has a single, contiguous address space ranging from 0 

to 2P – 1 bytes 
  Where P is the number of bits in a pointer (e.g., 32 bits) 

  In reality, virtual pages are scattered across physical memory 
  This mapping is invisible to the program, and not even under it's control! 
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Translation process 
  Virtual-to-physical address translation performed by MMU 

  Virtual address is broken into a virtual page number and an offset 
  Mapping from virtual page to physical frame provided by a page 

table (which is stored in memory) 

0xdeadbeef = 0xdeadb 0xeef 
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Translation process 
if (virtual page is invalid or non-resident or protected) 
    trap to OS fault handler 
else 
    physical frame # = pageTable[virtpage#].physPageNum 

  Each virtual page can be in physical memory or swapped 
out to disk (called “paged out” or just “paged”) 

  What must change on a context switch? 
  Could copy entire contents of table, but this will be slow 
  Instead use an extra layer of indirection: Keep pointer to current 

page table and just change pointer 
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Where is the page table? 
  Page Tables store the virtual-to-physical address mappings. 
  Where are they located? In memory! 
  OK, then. How does the MMU access them?  

  The MMU has a special register called the page table base pointer. 
  This points to the physical memory address of the top of the page table 

for the currently-running process. 
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Page Faults 
  What happens when a program accesses a virtual page 

that is not mapped into any physical page? 
  Hardware triggers a page fault 

  Page fault handler 
  Find any available free physical page 
  If none, evict some resident page to disk 
  Allocate a free physical page 
  Load the faulted virtual page to the prepared physical page 
  Modify the page table 
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Advantages of Paging 
  Simplifies physical memory management 

  OS maintains a free list of physical page frames 
  To allocate a physical page, just remove an entry from this list 

  No external fragmentation! 
  Virtual pages from different processes can be interspersed in 

physical memory 
  No need to allocate pages in a contiguous fashion 

  Allocation of memory can be performed at a (relatively) fine 
granularity 
  Only allocate physical memory to those parts of the address space 

that require it 
  Can swap unused pages out to disk when physical memory is 

running low 
  Idle programs won't use up a lot of memory (even if their address 

space is huge!) 
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Paging Example 
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Paging Example 
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Paging Example 
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Paging Example 
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Is paging enough? 
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Memory allocation w/in a process 
  What happens when you declare a variable? 

  Allocating a page for every variable wouldn’t be efficient 
  Allocations within a process are much smaller 
  Need to allocate on a finer granularity 

  Solution (stack): stack data structure (duh) 
  Function calls follow LIFO semantics 
  So we can use a stack data structure to represent the 

process’s stack – no fragmentation! 

  Solution (heap): malloc 
  This is a much harder problem 
  Need to deal with fragmentation 
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