Want processes to co-exist

0x9000
0S
0x7000
cc
J 0x4000
bochs/pintos
0x3000
emacs
0x0000

¢ Consider multiprogramming on physical memory

- What happens if pintos needs to expand?

If emacs needs more memory than is on the machine??

If pintos has an error and writes to address 0x7100?

When does gcc have to know it will run at 0x4000?

What if emacs isn’t using its memory?

Issues in sharing physical memory

e Protection

- A bug in one process can corrupt memory in another
- Must somehow prevent process A from trashing B’s memory

- Also prevent A from even observing B’s memory (ssh-agent)

¢ Transparency

- A process shouldn’t require particular physical memory bits

- Yes processes often require large amounts of contiguous memory
(for stack, large data structures, etc.)

¢ Resource exhaustion

- Programmers typically assume machine has “enough” memory

- Sum of sizes of all processes often greater than physical memory

Virtual memory goals

Is address
legal?
o

app. virtual address S Yes, phys. addr
0x30408 0x92408
\ | data | memory
kernel

To fault handler No

¢ Give each program its own “virtual” address space

- At run time, Memory-Management Unit relocates each load, store
to actual memory... App doesn’t see physical memory

e Also enforce protection
- Prevent one app from messing with another’s memory
¢ And allow programs to see more memory than exists

- Somehow relocate some memory accesses to disk

3/36

Virtual memory advantages

¢ Can re-locate program while running

- Run partially in memory, partially on disk

e Most of a process’s memory will be idle (80/20 rule).

gce emacs
><><
kernel
. |

- Write idle parts to disk until needed

kernel

- Let other processes use memory of idle part
- Like CPU virtualization: when process not using CPU, switch
(Not using a memory region? switch it to another process)
e Challenge: VM = extra layer, could be slow

4/36

Idea 1: load-time linking

static a.out

Jjump 0x2000

0x3000

0x1000

0Ss

a.out’
jump 0x5000

0x6000

0x4000

o Linker patches addresses of symbols like printf

¢ Idea: link when process executed, not at compile time

- Determine where process will reside in memory

- Adjust all references within program (using addition)

e Problems?

Idea 1: load-time linking

static a.out

Jjump 0x2000

0x3000

0x1000

0Ss

a.out’
jump 0x5000

0x6000

0x4000

o Linker patches addresses of symbols like printf

¢ Idea: link when process executed, not at compile time

- Determine where process will reside in memory

- Adjust all references within program (using addition)

e Problems?

- How to enforce protection

- How to move once in memory (Consider: data pointers)

- What if no contiguous free region fits program?

Idea 2: base + bound register

static a.out
0x3000

Jjump 0x2000

0x1000

0Ss

a.out’
jump 0x5000

0x6000

0x4000

Two special privileged registers: base and bound

On each load/store:

- Physical address = virtual address + base

- Check 0 < virtual address < bound, else trap to kernel

How to move process in memory?

What happens on context switch?

Idea 2: base + bound register

static a.out
0x3000

Jjump 0x2000

0x1000

0Ss

a.out’
jump 0x5000

0x6000

0x4000

Two special privileged registers: base and bound

On each load/store:

- Physical address = virtual address + base

- Check 0 < virtual address < bound, else trap to kernel

How to move process in memory?

- Change base register

What happens on context switch?

Idea 2: base + bound register

static a.out
0x3000

Jjump 0x2000

0x1000

0Ss

a.out’
jump 0x5000

0x6000

0x4000

Two special privileged registers: base and bound

On each load/store:

- Physical address = virtual address + base

- Check 0 < virtual address < bound, else trap to kernel

How to move process in memory?

- Change base register

What happens on context switch?

- OS must re-load base and bound register

Definitions

¢ Programs load/store to virtual (or logical) addresses

e Actual memory uses physical (or real) addresses

e VM Hardware is Memory Management Unit (MMU)

virtual addrs

CPU

.

Usually part of CPU

Accessed w. privileged instructions (e.g., load bound reg)

Physical
addrs

MMU

L

Translates from virtual to physical addresses

memory

Gives per-process view of memory called address space

Address space

Virtual Address Physical Address
View View

0

0S

Base+bound trade-offs

e Advantages

- Cheap in terms of hardware: only two registers
- Cheap in terms of cycles: do add and compare in parallel

- Examples: Cray-1 used this scheme

¢ Disadvantages

Base+bound trade-offs

e Advantages
- Cheap in terms of hardware: only two registers
- Cheap in terms of cycles: do add and compare in parallel

- Examples: Cray-1 used this scheme

¢ Disadvantages Free space

- Growing a process is expensive or impossible _

- No way to share code or data (E.g., two
. o gce
copies of bochs, both running pintos)

pinfosl

¢ One solution: Multiple segments

- E.g., separate code, stack, data segments

- Possibly multiple data segments

9/36

0x1000

0x3000

0x5000

0x6000

gcc

Text seg
r/o

Stack seg
r/w

Segmentation

Baseé&bound?

Real memory

¢ Let processes have many base/bound regs

- Address space built from many segments

- Can share/protect memory at segment granularity

e Must specify segment as part of virtual address

0x2000

0x8000

0x6000

Segmentation mechanics

fault
Virtual addr n mem
3 P& 0x100Q
1 1
Seg 128

seg

e Each process has a segment table
e Each VA indicates a segment and offset:
- Top bits of addr select segment, low bits select offset (PDP-10)

- Or segment selected by instruction or operand (means you need
wider “far” pointers to specify segment)

Segmentation example

bounds rw

Seg Dbase
0 0x4000
1 0x0000
2 0x3000
3

Ox6ff
Ox4ff
Oxfff

10
11
11
00

virtual physical
024000 0x4700
0%3000 0%4000
0%2000 0%3000
0x1500

0x0700

0x0000

¢ 2-bit segment number (Ist digit), 12 bit offset (last 3)
- Where is 0x0240? 0x1108? 0x265c? 0x3002? 0x1600?

12 /36

Segmentation trade-offs

e Advantages]
- Multiple segments per process gcc
- Allows sharing! (how?) = 4
- Don’t need entire process in memory
- where?
¢ Disadvantages gee emacs?

Requires translation hardware, which could limit performance

Segments not completely transparent to program (e.g., default
segment faster or uses shorter instruction)

n byte segment needs n contiguous bytes of physical memory

Makes fragmentation a real problem.

Fragmentation

e Fragmentation = Inability to use free memory

e Over time:

- Variable-sized pieces = many small holes (external fragmentation)

- Fixed-sized pieces = no external holes, but force internal waste
(internal fragmentation)

External
] e ,—,—”””fra mentation
Pintos fele} g

} Unused

(“internal
fragmentation”)

allocated

14/ 36

Alternatives to hardware MMU

¢ Language-level protection (Java)
- Single address space for different modules
- Language enforces isolation
- Singularity OS does this [Hunt]

e Software fault isolation

- Instrument compiler output

- Checks before every store operation prevents modules from
trashing each other

- Google Native Client does this with only about 5% slowdown [Yee]

http://research.microsoft.com/pubs/52716/tr-2005-135.pdf
http://code.google.com/p/nativeclient/
http://research.google.com/pubs/archive/34913.pdf

Paging

Divide memory up into small pages
Map virtual pages to physical pages
- Each process has separate mapping

Allow OS to gain control on certain operations

- Read-only pages trap to OS on write
- Invalid pages trap to OS on read or write

- OS can change mapping and resume application

Other features sometimes found:

- Hardware can set “accessed” and “dirty” bits
- Control page execute permission separately from read /write

- Control caching of page

Paging trade-offs

/7
——
Pages >

typical: 4k-8k

gcc

~__

emacs

/ internal frag
£

e Eliminates external fragmentation

e Simplifies allocation, free, and backing storage (swap)

e Average internal fragmentation of .5 pages per “segment”

Simplified allocation

physical
memory

gcc emacs

e Allocate any physical page to any process

¢ Can store idle virtual pages on disk

|

Disk

18 /36

Paging data structures

o Pages are fixed size, e.g., 4K

- Least significant 12 (log, 4K) bits of address are page offset

- Most significant bits are page number

e Each process has a page table

- Maps virtual page numbers to physical page numbers

- Also includes bits for protection, validity, etc.

e On memory access: Translate VPN to PPN,

then add offset
Virtual addr

3
veN \ o

Prot

VPN

PPN

?

>
*“invalid”
— _

4.| ((1<<1/2\)I128) | 0x100Q

page table

PPN

mem

128

seg

Example: Paging on PDP-11

¢ 64K virtual memory, 8K pages

- Separate address space for instructions & data

- Le, can’t read your own instructions with a load
e Entire page table stored in registers

- 8 Instruction page translation registers

- 8 Data page translations

e Swap 16 machine registers on each context switch

20/ 3

x86 Paging

Paging enabled by bits in a control register (J,.cr0)
- Only privileged OS code can manipulate control registers
Normally 4KB pages
/cr3: points to 4KB page directory
- See pagedir_activate in Pintos
Page directory: 1024 PDEs (page directory entries)
- Each contains physical address of a page table
Page table: 1024 PTEs (page table entries)
- Each contains physical address of virtual 4K page
- Page table covers 4 MB of Virtual mem
See old intel manual for simplest explanation

- Also volume 2 of AMD64 Architecture docs

- Also volume 3A of latest Pentium Manual

N

http://www.scs.stanford.edu/14wi-cs140/pintos/pintos_3.html#SEC37
http://www.scs.stanford.edu/05au-cs240c/lab/i386/s05_02.htm
http://developer.amd.com/Resources/documentation/guides/Pages/default.aspx#manuals
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

x86 page translation

Linear Address

4-KByte Page

Physical Address

CR3 (PDBR)

*32 bits aligned onto a 4-KByte boundary

31 22 21 12 11 0
| Directory | Table | Offset |
12
10 10 Page Table
Page Directory
Page-Table Entry 7?
—» Directory Entry >
30+ 1024 PDE x 1024 PTE = 2?0 Pages

x86 page directory entry

Page-Directory Entry (4-KByte Page Table)
12 11 9876543210

Page-Table Base Address Avail [a|P[o]A

o0
—=T
—
—
o

S
Available for system programmer’s use —I ‘

Globalpage (lgnored)
Page size (0 indicates 4 KBytes)
Reserved (setto 0)
Accessed
Cache disabled
Writethrough
User/Supervisor
Read/Write
Present

N
@

31

x86 page table entry

Page-Table Entry (4-KByte Page)
1211 9876543210

Page Base Address

Avail |G

D|A

PP
clw
D|T

Available for system programmer’s use
Global Page

— |

Page Table Attribute Index

Dirty

Accessed
Cache Disabled

Write-Through

User/Supervisor
Read/Write

Present

x86 hardware segmentation

e x86 architecture also supports segmentation
- Segment register base + pointer val = linear address
- Page translation happens on linear addresses
e Two levels of protection and translation check
- Segmentation model has four privilege levels (CPL 0-3)
- Paging only two, so 0-2 = kernel, 3 = user

e Why do you want both paging and segmentation?

N
a1

x86 hardware segmentation

x86 architecture also supports segmentation
- Segment register base + pointer val = linear address
- Page translation happens on linear addresses
Two levels of protection and translation check
- Segmentation model has four privilege levels (CPL 0-3)
- Paging only two, so 0-2 = kernel, 3 = user
Why do you want both paging and segmentation?
Short answer: You don’t — just adds overhead

- Most OSes use “flat mode” — set base = 0, bounds = Oxffffffff
in all segment registers, then forget about it

- x86-64 architecture removes much segmentation support
Long answer: Has some fringe/incidental uses

- VMware runs guest OS in CPL 1 to trap stack faults

- OpenBSD used CS limit for WAX when no PTE NX bit

N
a1

Making paging fast

e x86 PTs require 3 memory references per load/store

- Look up page table address in page directory
- Look up PPN in page table

- Actually access physical page corresponding to virtual address

e For speed, CPU caches recently used translations

- Called a translation lookaside buffer or TLB
- Typical: 64-2K entries, 4-way to fully associative, 95% hit rate
- Each TLB entry maps a VPN — PPN + protection information

¢ On each memory reference

- Check TLB, if entry present get physical address fast

- If not, walk page tables, insert in TLB for next time
(Must evict some entry)

TLB details

TLB operates at CPU pipeline speed =—> small, fast

Complication: what to do when switch address space?
- Flush TLB on context switch (e.g., old x86)
- Tag each entry with associated process’s ID (e.g., MIPS)
In general, OS must manually keep TLB valid

E.g., x86 invlpg instruction

- Invalidates a page translation in TLB
- Must execute after changing a possibly used page table entry
- Otherwise, hardware will miss page table change

More Complex on a multiprocessor (TLB shootdown)

x86 Paging Extensions

o PSE: Page size extensions
- Setting bit 7 in PDE makes a 4MB translation (no PT)

e PAE Page address extensions

- Newer 64-bit PTE format allows 36 bits of physical address

- Page tables, directories have only 512 entries

Use 4-entry Page-Directory-Pointer Table to regain 2 lost bits
PDE bit 7 allows 2MB translation

e Long mode PAE
- In Long mode, pointers are 64-bits
- Extends PAE to map 48 bits of virtual address (next slide)
- Why are aren’t all 64 bits of VA usable?

x86 long mode paging

Virtual Address
63 48 47 3938 30 29 2120 1211 0
. Page-Map Page Directory— | Page Director Page-Table Physical—
Sign Extend Level-4 offset Piinter Offseyt i Offset Y %)ffset P ’ Offset
(PMLA) sel age Offse
A9 A9 A9 9 12
Page-
Page-Map Directory Page— . 4—Kb.yte
Level-4 Pointer Directory age Physical
Table Table Table Table Page
PTE %
52
—» PDPE
L 52 Physical
PMLAE 52 1 Ad}::lress
—» PDE
51 12
Page-Map L4 Base Addr ' CR3

29 /36

Where does the OS live?

e In its own address space?

- Can’t do this on most hardware (e.g., syscall instruction won't
switch address spaces)

- Also would make it harder to parse syscall arguments passed as
pointers
¢ So in the same address space as process

- Use protection bits to prohibit user code from writing kernel

o Typically all kernel text, most data at same VA in every
address space
- On x86, must manually set up page tables for this
- Usually just map kernel in contiguous virtual memory when boot
loader puts kernel into contiguous physical memory
- Some hardware puts physical memory (kernel-only) somewhere in
virtual address space

Pintos memory layout

Kernel
Pseudo-physical memory

User stack

¥ ¥
A '

BSS / Heap

Data segment

Code segment

Invalid virtual addresses

~— Oxffffffff

~—— 0xc0000000
(PHYS_BASE)

—~— 0x08048000

—~+—— 0x00000000

/36

http://www.scs.stanford.edu/14wi-cs140/pintos/pintos_3.html#SEC38

Very different MMU: MIPS

Hardware has 64-entry TLB

- References to addresses not in TLB trap to kernel

Each TLB entry has the following fields:

Virtual page, Pid, Page frame, NC, D, V, Global

Kernel itself unpaged
- All of physical memory contiguously mapped in high VM
- Kernel uses these pseudo-physical addresses

User TLB fault hander very efficient
- Two hardware registers reserved for it

- utlb miss handler can itself fault—allow paged page tables

OS is free to choose page table format!

DEC Alpha MMU

Software managed TLB (like MIPS)

- 8KB, 64KB, 512KB, 4MB pages all available

- TLB supports 128 instruction/128 data entries of any size
But TLB miss handler not part of OS

- Processor ships with special “PAL code” in ROM

- Processor-specific, but provides uniform interface to OS

- Basically firmware that runs from main memory like OS
Various events vector directly to PAL code

- call_pal instruction, TLB miss/fault, FP disabled

PAL code runs in special privileged processor mode

- Interrupts always disabled

- Have access to special instructions and registers

PAL code interface details

e Examples of Digital Unix PALcode entry functions

- callsys/retsys - make, return from system call
- swpctx - change address spaces

- wrvptptr - write virtual page table pointer

tbi - TBL invalidate

e Some fields in PALcode page table entries

- GH - 2-bit granularity hint — 2N pages have same translation
- ASM - address space match — mapping applies in all processes

Example: Paging to disk

gcc needs a new page of memory
OS re-claims an idle page from emacs

If page is clean (i.e., also stored on disk):

- E.g., page of text from emacs binary on disk

- Can always re-read same page from binary

- So okay to discard contents now & give page to gcc
If page is dirty (meaning memory is only copy)

- Must write page to disk first before giving to gcc
Either way:

- Mark page invalid in emacs

- emacs will fault on next access to virtual page

- On fault, OS reads page data back from disk into new page, maps
new page into emacs, resumes executing

Paging in day-to-day use

Demand paging

Growing the stack

BSS page allocation

Shared text

Shared libraries

Shared memory

Copy-on-write (fork, mmap, etc.)

Q: Which pages should have global bit set on x86?

