
© 2007 Matt Welsh – Harvard University 1

CS161: Operating Systems

Matt Welsh
mdw@eecs.harvard.edu

Lecture 10: Demand Paging and Multi-level Page Tables
March 8, 2007

© 2007 Matt Welsh – Harvard University 2

Topics for today
What happens when a page is not in memory?

How do we prevent having page tables take up a huge amount of
memory themselves?

© 2007 Matt Welsh – Harvard University 3

Page Faults

When a virtual address translation cannot be performed,
it's called a page fault

CPU MMU
Virtual

address
Physical
address Memory

TLB

Translation
mapping

Page fault!!

© 2007 Matt Welsh – Harvard University 4

Page Faults
Recall the PTE format:

● Valid bit indicates whether a page translation is valid
● If Valid bit is 0, then a page fault will occur
● Page fault will also occur if attempt to write a read-only page (based on the

Protection bits, not the valid bit)
● This is sometimes called a protection fault

page frame numberprotRMV

© 2007 Matt Welsh – Harvard University 5

Demand Paging
Does it make sense to read an entire program into memory at once?

● No! Remember that only a small portion of a program's code may be used!
● For example, if you never use the “save as PDF” feature in OpenOffice...

Stack

Heap

Initialized vars
(data segment)

Code
(text segment)

Uninitialized vars
(BSS segment)

(Reserved for OS)

Virtual address space Physical Memory

© 2007 Matt Welsh – Harvard University 6

Demand Paging
Does it make sense to read an entire program into memory at once?

● No! Remember that only a small portion of a program's code may be used!
● For example, if you never use the “save as PDF” feature in OpenOffice...

(Reserved for OS)

Virtual address space Physical Memory

What are these “holes” ??

© 2007 Matt Welsh – Harvard University 7

What are these “holes”?
Three kinds of “holes” in a process's page tables:

1. Pages that are on disk
● Pages that were swapped out to disk to save memory
● Also includes code pages in an executable file

● When a page fault occurs, load the corresponding page from disk

2. Pages that have not been accessed yet
● For example, newly-allocated memory

● When a page fault occurs, allocate a new physical page
● What are the contents of the newly-allocated page???

3. Pages that are invalid
● For example, the “null page” at address 0x0

● When a page fault occurs, kill the offending process

© 2007 Matt Welsh – Harvard University 8

Starting up a process
What does a process's address space look like when it first starts up?

CodeCode

Initialized vars

Uninitialized vars

Heap

Stack

Unmapped pages

© 2007 Matt Welsh – Harvard University 9

Starting up a process
What does a process's address space look like when it first starts up?

Reference next instruction

© 2007 Matt Welsh – Harvard University 10

Starting up a process
What does a process's address space look like when it first starts up?

Page fault!!!

© 2007 Matt Welsh – Harvard University 11

Starting up a process
What does a process's address space look like when it first starts up?

OS reads missing page
from executable file on

disk

© 2007 Matt Welsh – Harvard University 12

Starting up a process
What does a process's address space look like when it first starts up?

OS adds page to process's
page table

© 2007 Matt Welsh – Harvard University 13

Starting up a process
What does a process's address space look like when it first starts up?

Process resumes at the next instruction

© 2007 Matt Welsh – Harvard University 14

Starting up a process
What does a process's address space look like when it first starts up?

Over time, more pages are
brought in from the executable as needed

© 2007 Matt Welsh – Harvard University 15

Uninitialized variables and the heap
Page faults bring in pages from the executable file for:

● Code (text segment) pages
● Initialized variables

What about uninitialized variables and the heap?

Say I have a global variable “int c” in the program ... what happens
when the process first accesses it?

© 2007 Matt Welsh – Harvard University 16

Uninitialized variables and the heap
Page faults bring in pages from the executable file for:

● Code (text segment) pages
● Initialized variables

What about uninitialized variables and the heap?

Say I have a global variable “int c” in the program ... what happens
when the process first accesses it?

● Page fault occurs
● OS looks at the page and realizes it corresponds to a zero page
● Allocates a new physical frame in memory and sets all bytes to zero

● Why???
● Maps the frame into the address space

● What do I mean by this?

What about the heap?
● malloc() just asks the OS to map new zero pages into the address space
● Page faults allocate new empty pages as above

© 2007 Matt Welsh – Harvard University 17

More Demand Paging Tricks
Paging can be used to allow processes to share memory

● A significant portion of many process's address space is identical
● For example, multiple copies of your shell all have the same exact code!

Stack

Heap

Initialized vars

Code

Uninitialized vars

(Reserved for OS)

Stack

Heap

Initialized vars

Code

Uninitialized vars

(Reserved for OS)

Stack

Heap

Initialized vars

Code

Uninitialized vars

(Reserved for OS)

Shell #1

Shell #2

Physical Memory

Code for shell

Same page
table mapping!

© 2007 Matt Welsh – Harvard University 18

More Demand Paging Tricks
This can be used to let different processes share memory

● UNIX supports shared memory through the shmget/shmat/shmdt system calls
● Allocates a region of memory that is shared across multiple processes
● Some of the benefits of multiple threads per process, but the rest of the processes

address space is protected
● Why not just use multiple processes with shared memory regions?

Memory-mapped files
● Idea: Make a file on disk look like a block of memory
● Works just like faulting in pages from executable files

● In fact, many OS's use the same code for both
● One wrinkle: Writes to the memory region must be reflected in the file
● How does this work?

© 2007 Matt Welsh – Harvard University 19

More Demand Paging Tricks
This can be used to let different processes share memory

● UNIX supports shared memory through the shmget/shmat/shmdt system calls
● Allocates a region of memory that is shared across multiple processes
● Some of the benefits of multiple threads per process, but the rest of the processes

address space is protected
● Why not just use multiple processes with shared memory regions?

Memory-mapped files
● Idea: Make a file on disk look like a block of memory
● Works just like faulting in pages from executable files

● In fact, many OS's use the same code for both
● One wrinkle: Writes to the memory region must be reflected in the file
● How does this work?

● When writing to the page, mark the “modified” bit in the PTE
● When page is removed from memory, write back to original file

© 2007 Matt Welsh – Harvard University 20

Remember fork()?
fork() creates an exact copy of a process

● What does this imply about page tables?

When we fork a new process, does it make sense to make a copy of all
of its memory?

● Why or why not?

What if the child process doesn't end up touching most of the memory
the parent was using?

● Extreme example: What happens if a process does an exec() immediately after fork()?

© 2007 Matt Welsh – Harvard University 21

Copy-on-write
Idea: Give the child process access to the same memory, but don't let it

write to any of the pages directly!
● 1) Parent forks a child process
● 2) Child gets a copy of the parent's page tables

● They point to the same physical frames!!!

Stack

Heap

Initialized vars

Code

Uninitialized vars

(Reserved for OS)

Parent

Parent's
page tbl

Stack

Heap

Initialized vars

Code

Uninitialized vars

(Reserved for OS)

Child

Child's
page tbl

© 2007 Matt Welsh – Harvard University 22

Copy-on-write
All pages (both parent and child) marked read-only

● Why???

Stack

Heap

Initialized vars

Code

Uninitialized vars

(Reserved for OS)

Parent

Parent's
page tbl

Stack

Heap

Initialized vars

Code

Uninitialized vars

(Reserved for OS)

Child

Child's
page tbl

RO
RO
RO
RO
RO
RO
RO

RO
RO
RO
RO
RO
RO
RO

© 2007 Matt Welsh – Harvard University 23

Copy-on-write
What happens when the child reads the page?

● Just accesses same memory as parent niiiiiice

What happens when the child writes the page?
● Protection fault occurs (page is read-only!)
● OS copies the page and maps it R/W into the child's addr space

Stack

Heap

Initialized vars

Code

Uninitialized vars

(Reserved for OS)

Parent

Parent's
page tbl

Stack

Heap

Initialized vars

Code

Uninitialized vars

(Reserved for OS)

Child

Child's
page tbl

RO
RO
RO
RO
RO
RO
RO

RO
RO
RO
RO
RO
RO
RO

Copy page

© 2007 Matt Welsh – Harvard University 24

Copy-on-write
What happens when the child reads the page?

● Just accesses same memory as parent niiiiiice

What happens when the child writes the page?
● Protection fault occurs (page is read-only!)
● OS copies the page and maps it R/W into the child's addr space

Stack

Heap

Initialized vars

Code

Uninitialized vars

(Reserved for OS)

Parent

Parent's
page tbl

Stack

Heap

Initialized vars

Code

Uninitialized vars

(Reserved for OS)

Child

Child's
page tbl

RO
RO
RO
RO
RO
RO
RO

RO
RO
RO
RO
RO
RO
RO

RW

© 2007 Matt Welsh – Harvard University 25

Page Tables
Remember how paging works:

Recall that page tables for one process can be very large!
● 2^20 PTEs * 4 bytes per PTE = 4 Mbytes per process

page
frame 0

page
frame 1

page
frame 2

page
frame Y

…

page
frame 3

physical memory

offset

physical address

page frame #page frame #

page table

offset

virtual address

virtual page #

..
.Page table entry

© 2007 Matt Welsh – Harvard University 26

page frame #
page frame #

page frame #

Multilevel Page Tables
Problem: Can't hold all of the page tables in memory

Solution: Page the page tables!
● Allow portions of the page tables to be kept in memory at one time

page
frame 0

page
frame 1

page
frame 2

page
frame Y

…

page
frame 3

physical memory

offset

physical address

page frame #page table #

offset

virtual address

primary page # secondary page #

..
.

page frame #

Primary page
table (1) Secondary page

tables (N)

© 2007 Matt Welsh – Harvard University 27

Multilevel Page Tables
Problem: Can't hold all of the page tables in memory

Solution: Page the page tables!
● Allow portions of the page tables to be kept in memory at one time

page table #

offset

virtual address

primary page # secondary page #

Primary page
table (1)

Secondary page
tables (N)

On disk

On disk

© 2007 Matt Welsh – Harvard University 28

Multilevel Page Tables
Problem: Can't hold all of the page tables in memory

Solution: Page the page tables!
● Allow portions of the page tables to be kept in memory at one time

page table #

offset

virtual address

primary page # secondary page #

Primary page
table (1)

Secondary page
tables (N)

On disk

© 2007 Matt Welsh – Harvard University 29

Multilevel Page Tables
Problem: Can't hold all of the page tables in memory

Solution: Page the page tables!
● Allow portions of the page tables to be kept in memory at one time

page table #

offset

virtual address

primary page # secondary page #

Primary page
table (1)

Secondary page
tables (N)

On disk

page
frame 0

page
frame 1

page
frame 2

page
frame Y

…

page
frame 3

physical memory

offset

physical address

page frame #

..
.

© 2007 Matt Welsh – Harvard University 30

Multilevel page tables
With two levels of page tables, how big is each table?

● Say we allocate 10 bits to the primary page, 10 bits to the secondary page, 12 bits to the
page offset

● Primary page table is then 2^10 * 4 bytes per PTE == 4 KB
● Secondary page table is also 4 KB

● Hey ... that's exactly the size of a page on most systems ... cool

What happens on a page fault?
● MMU looks up index in primary page table to get secondary page table

● Assume this is “wired” to physical memory
● MMU tries to access secondary page table

● May result in another page fault to load the secondary table!
● MMU looks up index in secondary page table to get PFN
● CPU can then access physical memory address

Issues
● Page translation has very high overhead

● Up to three memory accesses plus two disk I/Os!!
● TLB usage is clearly very important.

© 2007 Matt Welsh – Harvard University 31

Next Lecture
Page Replacement Policies

● How do we decide which pages to kick out to disk?
● How do we bring kicked out pages back into memory?

