
CS 241
February 1, 2012

Slides adapted in part from material by
Matt Welsh, Harvard U.

1

Memory

Recap: Virtual Addresses
 A virtual address is a memory address that a process uses

to access its own memory
 Virtual address ≠ actual physical RAM address
 When a process accesses a virtual address, the MMU hardware translates

the virtual address into a physical address
 The OS determines the mapping from virtual address to physical address

 Benefit: Isolation
 Virtual addresses in one process refer to different physical memory than

virtual addresses in another
 Exception: shared memory regions between processes (discussed later)

 Benefit: Illusion of larger memory space
 Can store unused parts of virtual memory on disk temporarily

 Benefit: Relocation
 A program does not need to know which physical addresses it will

use when it’s run
 Can even change physical location while program is running

3

Mapping virtual to physical addresses

4

Stack

Heap

Initialized vars
(data segment)

Code
(text segment)

Uninitialized vars
(BSS segment)

(Reserved for OS)

Physical RAM

MMU

How does this thing work??

Translating virtual to physical
  Can do it almost any way we like
  But, some ways are better than others…

  Strawman solution from last time:
base and bound

6

Base and bound

if (virt addr > bound)
 trap to kernel
else
 phys addr = virt addr + base

  Process has the illusion of
running on its own
dedicated machine with
memory [0,bound)

  Provides protection from
other processes also
currently in memory

Copyright ©: University of Illinois CS 241 Staff 7

physical
memory

physical
memory
size

base + bound

base
bound

virtual
memory

0 0

Base and bound

Copyright ©: University of Illinois CS 241 Staff 8

Memory

Bounds Register Base Register

CPU
Address < +

Memory
Address

MA

Logical
Address LA

Physical
Address

PA

Fault

Base Address

Bound
Address

MA+BA

Base
Address

BA

Base: start of the process’s memory partition
Bound: length of the process’s memory partition

Base and bounds

  Problem: Process needs more
memory over time
  Stack grows as functions are called
  Heap grows upon request (malloc)
  Processes start and end

  How does the kernel handle the
address space growing?
  You are the OS designer
  Design strategy for allowing

processes to grow

Copyright ©: University of Illinois CS 241 Staff 9

physical
memory

base + bound

base
bound

virtual
memory

0 0

Process 1

Process 2

But wait, didn’t we solve this?

  Problem: wasted space
  And must have virtual mem ≤ phys mem

10

Code segment

Data segment

Heap

Stack

fixed size

fixed size

grows
dynamically

grows
dynamically

physical
memory

base + bound

base

Another attempt: segmentation
  Segment

  Region of contiguous memory
  Segmentation

  Generalized base and bounds with support for
multiple segments at once

Copyright ©: University of Illinois CS 241 Staff 11

Segmentation

Copyright ©: University of Illinois CS 241 Staff 12

code

stack

data code

stack

data

physical
memory

virtual
memory
segment 3

Virtual
memory
segment 1

Virtual
memory
segment 0

0

0

0

0

fff

4ff

6ff
0

4ff

2000

2fff

4000

46ff

Seg # Base Bound Description

0 4000 700 Code
segment

1 0 500 Data
segment

2 Unused

3 2000 1000 Stack
segment

Segmentation

  Segments are specified
many different ways

  Advantages over base
and bounds?

  Protection
  Different segments can

have different protections

  Flexibility
  Can separately grow both

a stack and heap
  Enables sharing of code

and other segments if
needed Copyright ©: University of Illinois CS 241 Staff 13

code

stack

data code

stack

data

physical
memory

virtual
memory
segment 3

Virtual
memory
segment 1

Virtual
memory
segment 0

0

0

0

0

fff

4ff

6ff
0

4ff

2000

2fff

4000

46ff

Segmentation

  Segments are specified
many different ways

  What are the advantages
over base and bounds?

  What must be changed on
context switch?
  Contents of your

segmentation table
  A pointer to the table, expose

caching semantics to the
software (what x86 does)

Copyright ©: University of Illinois CS 241 Staff 14

code

stack

data code

stack

data

physical
memory

virtual
memory
segment 3

Virtual
memory
segment 1

Virtual
memory
segment 0

0

0

0

0

fff

4ff

6ff
0

4ff

2000

2fff

4000

46ff

Recap: mapping virtual memory
  Base & bounds

  Problem: growth is inflexible
  Problem: external fragmentation

  As jobs run and complete, holes left in physical memory

  Segments

  Resize pieces based on process needs
  Problem: external fragmentation
  Note: x86 used to support segmentation, now

effectively deprecated with x86-64

  Modern approach: Paging

15

