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[ Recap: Virtual Addresses

= A virtual address is a memory address that a process uses
to access its own memory

o Virtual address # actual physical RAM address

o When a process accesses a virtual address, the MMU hardware translates
the virtual address into a physical address

o The OS determines the mapping from virtual address to physical address

m Benefit: Isolation

o Virtual addresses in one process refer to different physical memory than
virtual addresses in another

o Exception: shared memory regions between processes (discussed later)
uBenefit: lllusion of larger memory space
o Can store unused parts of virtual memory on disk temporarily

m Benefit: Relocation

o A program does not need to know which physical addresses it will
use when it’s run

o Can even change physical location while program is running ][
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[ Mapping virtual to physical addresses
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[ Translating virtual to physical

= Can do it almost any way we like
= But, some ways are better than others...

= Strawman solution from last time:
base and bound



Base and bound

if (virt addr > bound)
trap to kernel

else
phys addr = virt addr + base

Process has the illusion of

running on its own

dedicated machine with _

memory [0,bound) virtual
memory

Provides protection from bound
other processes also
currently in memory 0
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Base and bound

Bounds Register || Base Register

Base
Address
BA

Logical
Address LA

CPU
Address Physical
emory
Address Addrer)z

MA
Fault

Base: start of the process’s memory partition

Bound: length of the process’s memory partition
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[ Base and bounds

Problem: Process needs more ohysical
memory over time Process 1 memory

o Stack grows as functions are called -
o Heap grows upon request (malloc)
o Processes start and end

base + bound
How does the kernel handle the

address space growing?
o You are the OS designer bound

o Design strategy for allowing

processes to grow 0
Process 2

virtual
memory
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[ But wait, didn’t we solve this?

grows Stack
dynamically
l physical
memory
grows
dynamically Heap
+
fixed size Data segment base + boun
fixed size Code segment base
Problem: wasted space

o And must have virtual mem < phys mem
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[ Another attempt: segmentation

Segment
o Region of contiguous memory

Segmentation

o Generalized base and bounds with support for
multiple segments at once
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Segmentation

Seg # | Base |Bound | Description

0 4000 700 Code
segment

1 0 500 Data
segment

2 Unused

3 2000 1000 Stack
segment

o4ff
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virtual
memory
segment 3

stack

Virtual
memory
segment 1

data

Virtual
memory
segmeny0

code
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Segmentation

virtual
memory
. segment 3
Segments are specified
many different ways stack
0
Advantages over base
and bounds?
Protection Virtual
o Different segments can memory
. . segment 1
have different protections  w#
oy ey data
Flexibility 0
o Can separately grow both Virtual
a stack and heap memory
. 0
o Enables sharing of code ; il
and other segments if o [ code
needed Copyright ©: University of Illinois CS 241 Staff
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Segmentation

Segments are specified
many different ways

What are the advantages
over base and bounds?

What must be changed on

context switch?

o Contents of your
segmentation table

o A pointer to the table, expose

caching semantics to the
software (what x86 does)

o4ff

off
0

virtual
memory
segment 3

stack

Virtual
memory
segment 1

data

Virtual
memory
segmeny0

code
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[ Recap: mapping virtual memory ]

Base & bounds
o Problem: growth is inflexible

o Problem: external fragmentation
= As jobs run and complete, holes left in physical memory

Segments
o Resize pieces based on process needs
o Problem: external fragmentation

o Note: x86 used to support segmentation, now
effectively deprecated with x86-64

Modern approach: Paging



