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Memory 



Recap: Virtual Addresses 
 A virtual address is a memory address that a process uses 

to access its own memory 
 Virtual address ≠ actual physical RAM address 
 When a process accesses a virtual address, the MMU hardware translates 

the virtual address into a physical address 
 The OS determines the mapping from virtual address to physical address 

 Benefit: Isolation 
 Virtual addresses in one process refer to different physical memory than 

virtual addresses in another 
 Exception: shared memory regions between processes (discussed later) 

 Benefit: Illusion of larger memory space  
 Can store unused parts of virtual memory on disk temporarily 

 Benefit: Relocation 
 A program does not need to know which physical addresses it will 

use when it’s run 
 Can even change physical location while program is running 
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Mapping virtual to physical addresses 
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How does this thing work?? 



Translating virtual to physical 
  Can do it almost any way we like 
  But, some ways are better than others… 

  Strawman solution from last time:          
base and bound 
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Base and bound 

if (virt addr > bound) 
    trap to kernel 
else 
    phys addr = virt addr + base 
 

  Process has the illusion of 
running on its own 
dedicated machine with 
memory [0,bound) 

  Provides protection from 
other processes also 
currently in memory 
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Base and bound 
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Base: start of the process’s memory partition 
Bound: length of the process’s memory partition 



Base and bounds 

  Problem: Process needs more 
memory over time 
  Stack grows as functions are called 
  Heap grows upon request (malloc) 
  Processes start and end 

  How does the kernel handle the 
address space growing? 
  You are the OS designer 
  Design strategy for allowing 

processes to grow 
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But wait, didn’t we solve this? 

  Problem: wasted space 
  And must have virtual mem ≤ phys mem 
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Another attempt: segmentation 
  Segment 

  Region of contiguous memory 
  Segmentation 

  Generalized base and bounds with support for 
multiple segments at once 
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Segmentation 
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Seg # Base Bound Description 

0 4000 700 Code 
segment 

1 0 500 Data 
segment 

2 Unused 

3 2000 1000 Stack 
segment 



Segmentation 

  Segments are specified 
many different ways 

  Advantages over base 
and bounds? 

  Protection 
  Different segments can 

have different protections 

  Flexibility 
  Can separately grow both 

a stack and heap 
  Enables sharing of code 

and other segments if 
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Segmentation 

  Segments are specified 
many different ways 

  What are the advantages 
over base and bounds? 

  What must be changed on 
context switch? 
  Contents of your 

segmentation table 
  A pointer to the table, expose 

caching semantics to the 
software (what x86 does) 
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Recap: mapping virtual memory 
  Base & bounds 

  Problem: growth is inflexible 
  Problem: external fragmentation 

  As jobs run and complete, holes left in physical memory 

 
  Segments 

  Resize pieces based on process needs 
  Problem: external fragmentation 
  Note: x86 used to support segmentation, now 

effectively deprecated with x86-64 

  Modern approach: Paging 
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