
Processes 119

Figure 6-1: Typical memory layout of a process on Linux/x86-32

The upshot of locality of reference is that it is possible to execute a program while
maintaining only part of its address space in RAM.

A virtual memory scheme splits the memory used by each program into small,
fixed-size units called pages. Correspondingly, RAM is divided into a series of page
frames of the same size. At any one time, only some of the pages of a program need
to be resident in physical memory page frames; these pages form the so-called
resident set. Copies of the unused pages of a program are maintained in the swap
area—a reserved area of disk space used to supplement the computer’s RAM—and
loaded into physical memory only as required. When a process references a page
that is not currently resident in physical memory, a page fault occurs, at which point
the kernel suspends execution of the process while the page is loaded from disk
into memory.

On x86-32, pages are 4096 bytes in size. Some other Linux implementations
use larger page sizes. For example, Alpha uses a page size of 8192 bytes, and
IA-64 has a variable page size, with the usual default being 16,384 bytes. A pro-
gram can determine the system virtual memory page size using the call
sysconf(_SC_PAGESIZE), as described in Section 11.2.

(unallocated memory)

argv, environ

Uninitialized data (bss)

Initialized data

Text (program code)

0xC0000000

Stack
(grows downwards)

Heap
(grows upwards)

0x08048000

Program
break

Top of
stack

&etext

&edata

&end

Kernel
(mapped into process

virtual memory, but not
accessible to program)

/proc/kallsyms
provides addresses of
kernel symbols in this
region (/proc/ksyms in
kernel 2.4 and earlier)

Virtual memory address
(hexadecimal)

in
cr

ea
si

ng
 v

ir
tu

al
 a

dd
es

se
s

0x00000000

