Memory

CS 241
February 1, 2012

[Paging

= Solve the external fragmentation problem by using fixed-
size chunks of virtual and physical memory
o Virtual memory unit called a page
o Physical memory unit called a frame (or sometimes page frame)

virtual memory
(for one process)

physical memory

age 0
PE9 frame O

age 1
P9 frame 1

age 2
PE0 frame 2

page 3
frame Y

page X 17]

[Application Perspective

Application believes it has a single, contiguous address space ranging from O
to 2P — 1 bytes

o Where P is the number of bits in a pointer (e.g., 32 bits)

In reality, virtual pages are scattered across physical memory
o This mapping is invisible to the program, and not even under it's control!

(Reserved for OS})
- Lots of separate processes
acl
Heap —
Uninitialized vars (resemeear o)
(BSS segment), _\
Initialized vars Stack
(data segment)y [
Code
(text segment) —
Heap
Uninitialized vars
(Reserved for OS) (BSS segment) |
Initialized vars
Stack — | (data segment)
Code
(text segment)
Heap

Uninitialized vars
(BSS segment)

Initialized vars
(data segment})

Code
(text segment)

[\

Physical RAM

Translation process

Virtual-to-physical address translation performed by MMU
o Virtual address is broken into a virtual page number and an offset

o Mapping from virtual page to physical frame provided by a page
table (which is stored in memory)

Oxdeadbeef = Oxdeadb Oxeef
_ Virtual page number Offset
virtual address
virtual page # offset
a Oxeef physical memory
ﬁg page
c page table frame 0
é; page
physical address v UED |
page

— | page frame # ——— > | page frame # | offset ———

frame 2
page
frame 3

Page table entry

page
frame Y

[Translation process]

if (virtual page is invalid or non-resident or protected)
trap to OS fault handler

else
physical frame # = pageTable[virtpage#] .physPageNum

Each virtual page can be in physical memory or swapped
out to disk (called “paged out” or just “paged”)

What must change on a context switch?
o Could copy entire contents of table, but this will be slow

o Instead use an extra layer of indirection: Keep pointer to current
page table and just change pointer

Copyright ©: University of Illinois CS 241 Staff 20]

[Where is the page table?

Page Tables store the virtual-to-physical address mappings.

Where are they located? In memory!
OK, then. How does the MMU access them?
o The MMU has a special register called the page table base pointer.

o This points to the physical memory address of the top of the page table
for the currently-running process.

Process A page tbl

Process B page tbl

Physical RAM 1

[Page Faults]

What happens when a program accesses a virtual page
that is not mapped into any physical page?

o Hardware triggers a page fault

Page fault handler

o Find any available free physical page

If none, evict some resident page to disk

Allocate a free physical page

Load the faulted virtual page to the prepared physical page
Modify the page table

O O O O

Copyright ©: University of Illinois CS 241 Staff 22]

[Advantages of Paging]

Simplifies physical memory management
o OS maintains a free list of physical page frames
o To allocate a physical page, just remove an entry from this list

No external fragmentation!

o Virtual pages from different processes can be interspersed in
physical memory

o No need to allocate pages in a contiguous fashion

Allocation of memory can be performed at a (relatively) fine
granularity

o Only allocate physical memory to those parts of the address space
that require it

o Can swap unused pages out to disk when physical memory is
running low

o Idle programs won't use up a lot of memory (even if their address
space is huge!) ‘
23]

Paging Example

Request Address within Real Memory
Virtual Memory Page 3 Page Table 1
Cache VM Frame

N

W

N

3 4

Memory Stored on Disk

1 2 3 4 &5 6 7 8

Copyright ©: University of lllinois CS 241 Staff

Paging Example

Request Address within Real Memory
Virtual Memory Page 1 Page Table 1
Cache VM Frame
3 2

1

W

N

1/ 2 3 4

irtual Memory Stored on Disk

1 2 3 4 5 6 7 8

Copyright ©: University of lllinois CS 241 Staff

Paging Example

Request Address within Real Memory
Virtual Memory Page 6 Page Table 1
Cache VM Frame
2
3
1 2 3 4
Virtual Memo red on Disk

1 2 3 4 5 6 7 8

Copyright ©: University of lllinois CS 241 Staff

Paging Example

Request Address within Real Memory
Virtual Memory Page 2 Page Table 1
Cache VM Frame
3 2
1
6 3
2 4

1 2 4
Virtydl Memory Stored on Disk

1 2 3 4 5 6 7 8

Copyright ©: University of lllinois CS 241 Staff

[Paging Example

Request Address within

Virtual Memory Page 8 Page Table 1
Cache VM Frame
3 [1 9

Real Memony

T~

What happens when there
IS N0 more space in the

) cache?
=
1 2 3 4 5 6 7 8 S

Copyright ©: University of lllinois CS 241 Staff

Paging Example

Store Virtual Memory
Page 1 to disk Page Table
Cache VM Frame
3 2
1
6 3
1/ 2 3 4 2 4

irtual Memory Stored on Disk

1 2 3

4 &5 6 7 8

Copyright ©: University of lllinois CS 241 Staff

Real Memo

T~

Paging Example

Process request for Address Real Memory
within Virtual Memory Page 8 Fage Table 1
Cache VM Frame
3 2
6 3
2 4

1 2 3 4
Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

Copyright ©: University of lllinois CS 241 Staff

Paging Example

Load Virtual Memory Real Memory
Page 8 to cache Page Table 1
Cache VM Frame
3 2
8
6 3
2 4

1 2 3

Virtual Memory Store Disk

1 2 3 4 5 6 7 8

Copyright ©: University of lllinois CS 241 Staff

[Is paging enough?

How do we allocate memory in here?

(Reserved for V
Stack

v

I\

I .

\

Heap
Uninitialized vars
(BSS segment)
Initialized vars

(data segment)

Code
(text segment)

Physical RAM

N 1

[Memory allocation w/in a process

What happens when you declare a variable?

o Allocating a page for every variable wouldn’t be efficient
o Allocations within a process are much smaller

o Need to allocate on a finer granularity

Solution (stack): stack data structure (duh)
o Function calls follow LIFO semantics

o S0 we can use a stack data structure to represent the
process’s stack — no fragmentation!

Solution (heap): malloc
o This is a much harder problem
o Need to deal with fragmentation

