Motivation

= What happens when we type
gCcc program.c -0 program?

= What work 1s done to turn the source code 1nto
something the computer can process?

= How 1s it possible to play N64 games on your PC?

Richard Guo CS61CL Spring 2009 Edition Images Used with Permission
from Wikipedia

Lowdown
Ig program: foo.c |

Compiler

Assembly program: foo.s

Assembler

[Object(mach Tang module): foo.o |

inker]+~ {13 o]
xecutable(mach lang pgm): a.out

Loader

Richard Guo CS61CL Spring 2009 Edition Images Used with Permission
from Wikipedia

Compiler

= Translates from one programming language to
another (e.g. C -> Assembly)

= Pseudo-instructions may be present in output

= Targeted optimization at this step

Richard Guo CS61CL Spring 2009 Edition Images Used with Permission
from Wikipedia

Assembler

Decodes assembly language into machine language
(opcodes + symbol table)

Splits pseudo-instructions into actual ones

Resolves symbolic names

Processes directives

Generates symbol and relocation tables

Output 1s 1n an object file

Richard Guo

CS61CL Spring 2009 Edition

Images Used with Permission
from Wikipedia

Assembler

Regular Instructions g Straight—up conversion

Pseudo-instructions

= Instruction: sra $sl1 $0 8
= R Fields: 0001783

Symbolic Names

Relocation Table

Symbol Table w Binary: 000000 00000 00000
Directives 10001 01000 000011
= Hex: 0x00008A03

= What about 1a $a0, str?

Richard Guo CS61CL Spring 2009 Edition Images Used with Permission
from Wikipedia

Regular Instructions
Pseudo-instructions
Symbolic Names

Relocation Table
Symbol Table

Directives

Richard Guo

Assembler

= la $a0, str

= Pseudo, so broken down 1nto:

= lui $at,left 16(str)
orli %$a0,%at,right 16(str)

= Note the usage of $at

CS61CL Spring 2009 Edition

Images Used with Permission
from Wikipedia

Regular Instructions
Pseudo-instructions
Symbolic Names

Relocation Table
Symbol Table

Directives

Richard Guo

Assembler

= |L1: slt $tO, $0, $al
beq $t0O, $0, L2
addi %$al, %al, -1
j L1
L2: add $tl, %$a0, $al
= We can resolve branches right now!
= |1: slt $tO, $0, $al
beq $t0O, $0, 2
addi %$al, %al, -1
j L1
L2: add $tl, %$a0, $al

CS61CL Spring 2009 Edition

Images Used with Permission
from Wikipedia

Assembler

Regular Instructions - Jymps are more troublesome

Pseudo-instructions : :
= Require the absolute address

Symbolic Names

= Don't know how objects will arrange
Relocation Table

= Forward addressing

Symbol Table
Directives = Thus, maintain two tables
= Symbol Table
= Relocation Table
Richard Guo CS61CL Spring 2009 Edition Images Used with Permission

from Wikipedia

Assembler

Regular Instructions w Rel]ocation table contains a list of
Pseudo-instructions things we need to fix in the file

Symbolic Names .. : .
yHbOH = Labels referenced 1n jump instructions

= Global labels targeted by la

Relocation Table

Symbol Table
L = External labels not in the current file
Directives
= We fix these later on when the
information becomes available
Richard Guo CS61CL Spring 2009 Edition Images Used with Permission

from Wikipedia

Regular Instructions
Pseudo-instructions
Symbolic Names

Relocation Table
Symbol Table

Directives

Richard Guo

Assembler

= Symbol table associates identifiers
with where it 1s declared

= Relative address of labels to the start

of the text segment

= Ordering of variables 1n the .data

segment

= This 1s for later reference by the
program or by another object file

CS61CL Spring 2009 Edition

Images Used with Permission
from Wikipedia

Regular Instructions
Pseudo-instructions
Symbolic Names

Relocation Table
Symbol Table

Directives

Richard Guo

Assembler

Directives give guidelines to assembler

.globl — Declares a global variable

. Text — Marks beginning of the code

segment

.data — Start of variable declaration for

storage in memory

.aSC11Z — Declares a \O terminated string

.word - 32 bit integer

And many more...
CS61CL Spring 2009 Edition

Images Used with Permission
from Wikipedia

ELF Layout

= The Executable and
Linking Format

= Object Header

= Section Headers text

ELF header

Program header table

= .text segment

\ rodata
= .data segment

= Relocation Table |
.data
Symbol Table >

Section header table

= Misc. + Debug Info

Richard Guo CS61CL Spring 2009 Edition Images Used with Permission
from Wikipedia

Linker

.o file 1
text 1
data 1 Linker output
: relocated text 1
info 1
relocated text 2
.0 file 2 —
relocated data 1
text 2
relocated data 2
data 2
info 2
Richard Guo CS61CL Spring 2009 Edition Images Used with Permission

from Wikipedia

Linker

Input has all the necessary files

Start by concatenating data and text segments

Then fix up things 1n all the relocation tables by
consulting the symbol table of each file

Assume 0 1s the start address of text segment

Separate object files allow

= Distribution of obfuscated object+header files

= Quick recompilation of just the modified source files

Richard Guo CS61CL Spring 2009 Edition Images Used with Permission
from Wikipedia

Loader

Loads text and data of program into memory

Initialize registers ($sp, $gp, $fp, etc.)

Moves command line input parameters to registers

Executes and increments program counter

Richard Guo

CS61CL Spring 2009 Edition

Images Used with Permission
from Wikipedia

Summary

Compiler turns source code into assembly code

(.c ->.S)

Assembler turns assembly code into machine code

(.s -=>.0)

Linker combines many object files and libraries into
an executable (.0 + .0 -> a.out)

Loader loads the program into memory and runs

(./a.out)

Richard Guo

CS61CL Spring 2009 Edition

Images Used with Permission
from Wikipedia

Dynamic vs Static Linking

= So far, we've done static linking
= Embeds libraries and objects in a single file
= Dynamic linking loads required objects at runtime

= (+) Reduced file size and memory usage at runtime
= (+) Library updates are propagated automatically

= (-) Linking process takes time

Richard Guo CS61CL Spring 2009 Edition Images Used with Permission
from Wikipedia

