
 CHAPTER 10 Memory Management 237

64-Bit Address Space Layouts
The theoretical 64-bit virtual address space is 16 exabytes (18,446,744,073,709,551,616 bytes, or

approximately 18.44 billion billion bytes). Unlike on x86 systems, where the default address space is

divided in two parts (half for a process and half for the system), the 64-bit address is divided into a

number of different size regions whose components match conceptually the portions of user, system,

and session space. The various sizes of these regions, listed in Table 10-8, represent current imple-

mentation limits that could easily be extended in future releases. Clearly, 64 bits provides a tremen-

dous leap in terms of address space sizes.

TABLE 10-8 64-Bit Address Space Sizes

Region IA64 x64

Process Address Space 7,152 GB 8,192 GB

System PTE Space 128 GB 128 GB

System Cache 1 TB 1 TB

Paged Pool 128 GB 128 GB

Nonpaged Pool 75% of physical memory 75% of physical memory

Also, on 64-bit Windows, another useful feature of having an image that is large address space aware

is that while running on 64-bit Windows (under Wow64), such an image will actually receive all 4 GB of

user address space available—after all, if the image can support 3-GB pointers, 4-GB pointers should

not be any different, because unlike the switch from 2 GB to 3 GB, there are no additional bits involved.

Figure 10-11 shows TestLimit, running as a 32-bit application, reserving address space on a 64-bit

Windows machine, followed by the 64-bit version of TestLimit leaking memory on the same machine.

FIGURE 10-11 32-bit and 64-bit TestLimit reserving address space on a 64-bit Windows computer

Note that these results depend on the two versions of TestLimit having been linked with the

/LARGEADDRESSAWARE option. Had they not been, the results would have been about 2 GB for each.

������ �����	���
�� ���
�� ����
�� ������������������ ��� 	
��������� �
 ��� ���� � ��
 ���

process virtual address space, just like 32-bit applications.

 CHAPTER 10 Memory Management 239

Start of system space

0000000000000000
User mode addresses: 8TB minus 64KB

000007FFFFFF0000

000007FFFFFEFFFF

000007FFFFFFFFFF
64KB no access region

FFFFF68000000000
512GB four-level page table map

FFFFF70000000000 Hyperspace: working set lists and per
process memory management struc-
tures mapped in this 512GB region

FFFFF80000000000
Mappings initialized by the loader.

This is a 512GB region.

FFFFF88000000000 Start of system PTEs area.
Kernel mode access only. 128GB.

FFFFF78000000000
Shared system page

FFFFF78000001000
The system cache working set

information resides in this
512GB – 4K region

FFFF080000000000

..

Note: The ranges below are sign-extended for >43 bits and therefore can be
used with interlocked slists. The system address space above is NOT...

..

FFFFF98000000000

Win32k.sys. Session data structures.
This is a 512GB region.

PFN database

MM_SYSTEM_SPACE_START for a length
of MI_DYNAMIC_KERNEL_VA_BYTES is
managed by the MiSystemVaBitMap.

This is typically 1TB and is used for the
system cache, system PTEs,

and special pool.
FFFFFA8000000000

FFFFFFFF00C00000

Initial and expansion nonpaged pool.
Kernel mode access only.

Up to 128GB.

FFFFFFFFFFFFFFFF

Minimum 4MB reserved for the HAL.
Loader/HAL can consume additional
virtual accesss memory by leaving it

mapped at kernel bootup.

Note: A large VA range is deliberately reserved here to support machines with
a large number of bits of physical addressing with RAM present at the very
top (i.e., a PFN database virtual span of ~6TB is required for 49-bit physical
addressing using a 4KB page size with 8 byte PTEs).

..

..

..

FFFFF90000000000

FFFFF8A000000000 Start of paged system area.
Kernel mode access only. 128GB.

FIGURE 10-13 x64 address space layout

240 Windows Internals, Sixth Edition, Part 2

x64 Virtual Addressing Limitations
As discussed previously, 64 bits of virtual address space allow for a possible maximum of 16 exabytes

(EB) of virtual memory, a notable improvement over the 4 GB offered by 32-bit addressing. With such

a copious amount of memory, it is obvious that today’s computers, as well as tomorrow’s foreseeable

machines, are not even close to requiring support for that much memory.

Accordingly, to simplify chip architecture and avoid unnecessary overhead, particularly in address

translation (to be described later), AMD’s and Intel’s current x64 processors implement only 256 TB of

virtual address space. That is, only the low-order 48 bits of a 64-bit virtual address are implemented.

However, virtual addresses are still 64 bits wide, occupying 8 bytes in registers or when stored in

memory. The high-order 16 bits (bits 48 through 63) must be set to the same value as the highest

order implemented bit (bit 47), in a manner similar to sign extension in two’s complement arithmetic.

An address that conforms to this rule is said to be a “canonical” address.

Under these rules, the bottom half of the address space thus starts at 0x0000000000000000,

as expected, but it ends at 0x00007FFFFFFFFFFF. The top half of the address space starts at

0xFFFF800000000000 and ends at 0xFFFFFFFFFFFFFFFF. Each “canonical” portion is 128 TB. As

newer processors implement more of the address bits, the lower half of memory will expand up-

ward, toward 0x7FFFFFFFFFFFFFFF, while the upper half of memory will expand downward, toward

0x8000000000000000 (a similar split to today’s memory space but with 32 more bits).

Windows x64 16-TB Limitation

Windows on x64 has a further limitation: of the 256 TB of virtual address space available on x64 pro-

cessors, Windows at present allows only the use of a little more than 16 TB. This is split into two 8-TB

regions, the user mode, per-process region starting at 0 and working toward higher addresses (end-

ing at 0x000007FFFFFFFFFF), and a kernel-mode, systemwide region starting at “all Fs” and working

toward lower addresses, ending at 0xFFFFF80000000000 for most purposes. This section describes

the origin of this 16-TB limit.

A number of Windows mechanisms have made, and continue to make, assumptions about usable

bits in addresses. Pushlocks, fast references, Patchguard DPC contexts, and singly linked lists are com-

mon examples of data structures that use bits within a pointer for nonaddressing purposes. Singly

linked lists, combined with the lack of a CPU instruction in the original x64 CPUs required to “port”

the data structure to 64-bit Windows, are responsible for this memory addressing limit on Windows

for x64.

Here is the SLIST_HEADER, the data structure Windows uses to represent an entry inside a list:

typedef union _SLIST_HEADER {

 ULONGLONG Alignment;

 struct {

 SLIST_ENTRY Next;

 USHORT Depth;

 USHORT Sequence;

 } DUMMYSTRUCTNAME;

} SLIST_HEADER, *PSLIST_HEADER;

