CS161: Operating Systems

Matt Welsh
mdw@eecs.harvard.edu

1y

1is)

Lecture 10: Demand Paging and Multi-level Page Tables
March 8, 2007

© 2007 Matt Welsh - Harvard University

Topics for today

What happens when a page is not in memory?

How do we prevent having page tables take up a huge amount of
memory themselves?

© 2007 Matt Welsh - Harvard University

Virtual
address

Page Faults

MMU

Page fault!!

1

Translation

mapping

» Physical
address

|

When a virtual address translation cannot be performed,

it's called a page fault

© 2007 Matt Welsh - Harvard University

Page Faults
Recall the PTE format:

V M R prot page frame number

 Valid bit indicates whether a page translation is valid
e If Valid bit is O, then a page fault will occur

» Page fault will also occur if attempt to write a read-only page (based on the
Protection bits, not the valid bit)

* This is sometimes called a protection fault

© 2007 Matt Welsh - Harvard University

Demand Paging

Does it make sense to read an entire program into memory at once?
* No! Remember that only a small portion of a program's code may be used!
* For example, if you never use the “save as PDF” feature in OpenOffice...

Virtual address space Physical Memory

(Reserved for OS)

Stack

\J
A

Heap

Uninitialized vars
(BSS segment)

Initialized vars
(data segment)

Code
(text segment)

© 2007 Matt Welsh - Harvard University

Demand Paging

Does it make sense to read an entire program into memory at once?
* No! Remember that only a small portion of a program's code may be used!
* For example, if you never use the “save as PDF” feature in OpenOffice...

Virtual address space Physical Memory

(Reserved for OS)

——
\J
A

What are these “holes” ??

© 2007 Matt Welsh - Harvard University

What are these “holes™?
Three kinds of “holes” in a process's page tables:

1. Pages that are on disk

» Pages that were swapped out to disk to save memory
 Also includes code pages in an executable file
« When a page fault occurs, load the corresponding page from disk

2. Pages that have not been accessed yet
* For example, newly-allocated memory
 When a page fault occurs, allocate a new physical page
* What are the contents of the newly-allocated page???

3. Pages that are invalid
* For example, the “null page” at address 0x0
« When a page fault occurs, kill the offending process

© 2007 Matt Welsh - Harvard University

Starting up a process
What does a process's address space look like when it first starts up?

Stack

— Unmapped pages

© 2007 Matt Welsh - Harvard University

Starting up a process
What does a process's address space look like when it first starts up?

Reference next instruction

© 2007 Matt Welsh - Harvard University

Starting up a process
What does a process's address space look like when it first starts up?

Page fault!!!

© 2007 Matt Welsh - Harvard University

10

Starting up a process
What does a process's address space look like when it first starts up?

OS reads missing page
from executable file on
disk

© 2007 Matt Welsh - Harvard University

11

Starting up a process
What does a process's address space look like when it first starts up?

OS adds page to process's
page table

© 2007 Matt Welsh - Harvard University

12

Starting up a process
What does a process's address space look like when it first starts up?

Process resumes at the next instruction

© 2007 Matt Welsh - Harvard University

13

Starting up a process
What does a process's address space look like when it first starts up?

E—

: Over time, more pages are
brought in from the executable as needed

© 2007 Matt Welsh - Harvard University

Uninitialized variables and the heap

Page faults bring in pages from the executable file for:

* Code (text segment) pages
* Initialized variables

What about uninitialized variables and the heap?

Say | have a global variable “int <¢” in the program ... what happens
when the process first accesses it?

© 2007 Matt Welsh - Harvard University

15

Uninitialized variables and the heap

Page faults bring in pages from the executable file for:

* Code (text segment) pages
* Initialized variables

What about uninitialized variables and the heap?

Say | have a global variable “int <¢” in the program ... what happens
when the process first accesses it?
* Page fault occurs
* OS looks at the page and realizes it corresponds to a zero page
 Allocates a new physical frame in memory and sets all bytes to zero
o« Why???
* Maps the frame into the address space
« What do | mean by this?

What about the heap?

e malloc () just asks the OS to map new zero pages into the address space
* Page faults allocate new empty pages as above

© 2007 Matt Welsh - Harvard University

16

More Demand Paging Tricks

Paging can be used to allow processes to share memory
* A significant portion of many process's address space is identical
* For example, multiple copies of your shell all have the same exact code!

Shell #1 Physical Memory
(Reserved for OS)
y Shell #2
A
Heap (Reserved for OS)
Uninitialized vars Same pag e_
Stack table mapping!
Initialized vars Y
A — Code for shell
Code
Heap

Uninitialized vars

Initialized vars

Code

© 2007 Matt Welsh - Harvard University

More Demand Paging Tricks

This can be used to let different processes share memory
« UNIX supports shared memory through the shmget /shmat/shmdt system calls
 Allocates a region of memory that is shared across multiple processes

« Some of the benefits of multiple threads per process, but the rest of the processes
address space is protected

* Why not just use multiple processes with shared memory regions?

Memory-mapped files
 ldea: Make a file on disk look like a block of memory
* Works just like faulting in pages from executable files
 In fact, many OS's use the same code for both
* One wrinkle: Writes to the memory region must be reflected in the file
 How does this work?

© 2007 Matt Welsh - Harvard University

18

More Demand Paging Tricks

This can be used to let different processes share memory
« UNIX supports shared memory through the shmget /shmat/shmdt system calls
 Allocates a region of memory that is shared across multiple processes

« Some of the benefits of multiple threads per process, but the rest of the processes
address space is protected

* Why not just use multiple processes with shared memory regions?

Memory-mapped files
 ldea: Make a file on disk look like a block of memory
* Works just like faulting in pages from executable files
 In fact, many OS's use the same code for both
* One wrinkle: Writes to the memory region must be reflected in the file
* How does this work?
« When writing to the page, mark the “modified” bit in the PTE
« When page is removed from memory, write back to original file

© 2007 Matt Welsh - Harvard University

19

Remember fork()?

fork() creates an exact copy of a process
* What does this imply about page tables?

When we fork a new process, does it make sense to make a copy of all
of its memory?
* Why or why not?

What if the child process doesn't end up touching most of the memory
the parent was using?
« Extreme example: What happens if a process does an exec() immediately after fork()?

© 2007 Matt Welsh - Harvard University

20

Copy-on-write
|dea: Give the child process access to the same memory, but don't let it

write to any of the pages directly!
* 1) Parent forks a child process

« 2) Child gets a copy of the parent's page tables
» They point to the same physical frames!!!

Parent Child
Parent's Child's
(Reserved for OS) page tbl page thl (Reserved for OS)
Stack Stack
\/ \/
A A
Heap M —»* *‘ Heap M
Uninitialized vars N\ / Uninitialized vars

Initialized vars

Code

Initialized vars

Code

© 2007 Matt Welsh - Harvard University

21

Copy-on-write

All pages (both parent and child) marked read-only

- Why???
Parent
Parent's
(Reserved for OS) page tbl
Stack RO
\ / RO
A RO
Heap W —»-%h
RON
Uninitialized vars RO \

Initialized vars

Code

© 2007 Matt Welsh - Harvard University

Child's
page tbl

Child

(Reserved for OS)

RO

RO

Stack

\/
A

Heap M

Uninitialized vars

Initialized vars

Code

22

Copy-on-write
What happens when the child reads the page?

What happens when the child writes the page?

 Protection fault occurs (page is read-only!)
* OS copies the page and maps it R/W into the child's addr space

Parent

(Reserved for OS)

Stack

\/
A

Heap W

— >

Uninitialized vars

Initialized vars

Code

© 2007 Matt Welsh - Harvard University

Parent's
page tbl

RO
RO
RO

RO\,
RO \

Copy page

Child's
page tbl

RO
RO
RO

S ey B

Child

(Reserved for OS)

Stack

\/
A

0
RO
go

Heap l

Uninitialized vars

Initialized vars

Code

23

Copy-on-write
What happens when the child reads the page?

What happens when the child writes the page?

 Protection fault occurs (page is read-only!)
* OS copies the page and maps it R/W into the child's addr space

Parent

(Reserved for OS)

Stack

\/
A

Heap W

Uninitialized vars

Initialized vars

Code

Parent's
page tbl

RO
RO
RO

— >

RO\,
RO \

Child's
page tbl

Child

(Reserved for OS)

RO

RO

Stack

RO

RO

\/
A

RW

g0

Heap l

RO

Uninitialized vars

Initialized vars

Code

© 2007 Matt Welsh - Harvard University

24

Page Tables

Remember how paging works:

virtual address
virtual page #| offset

page table

— |page frame #

physical address |

physical memory

page
frame O

page
frame 1

—— page frame #| offset

™

Page table entry

page
frame 2

page
frame 3

page
frame Y

Recall that page tables for one process can be very large!
« 2220 PTEs * 4 bytes per PTE = 4 Mbytes per process

© 2007 Matt Welsh - Harvard University

25

Multilevel Page Tables

Problem: Can't hold all of the page tables in memory

Solution: Page the page tables!

 Allow portions of the page tables to be kept in memory at one time

virtual address

primary page # secondary page #| offset

Primary page
ta b/é/ Z)g Secondary page
tables (N)
I
[I Bm physical address
page table # | 1 pageframe # offset

page frame #

© 2007 Matt Welsh - Harvard University

physical memory

page
frame O

page
frame 1

page
frame 2

page
frame 3

page
frame Y

26

Multilevel Page Tables

Problem: Can't hold all of the page tables in memory

Solution: Page the page tables!
* Allow portions of the page tables to be kept in memory at one time

virtual address

primary page # secondary page #| offset

Secondary page

Primary page tables (N)

table (1)

/. On disk
page table #

On disk

© 2007 Matt Welsh - Harvard University

Multilevel Page Tables

Problem: Can't hold all of the page tables in memory

Solution: Page the page tables!
* Allow portions of the page tables to be kept in memory at one time

virtual address

primary page # secondary page #| offset

Secondary page
Primary page tables (N)
table (1)
-
page table #

. On disk

© 2007 Matt Welsh - Harvard University

Multilevel Page Tables

Problem: Can't hold all of the page tables in memory

Solution: Page the page tables!

 Allow portions of the page tables to be kept in memory at one time

virtual address

primary page # secondary page #| offset
Secondary pag
Primary page tables (N)
table (1)
page table # e

© 2007 Matt Welsh - Harvard University

. On disk

physical address

page frame #| offset

physical memory

page
frame O

page
frame 1

page
frame 2

page
frame 3

page
frame Y

Multilevel page tables

With two levels of page tables, how big is each table?

« Say we allocate 10 bits to the primary page, 10 bits to the secondary page, 12 bits to the
page offset

* Primary page table is then 2210 * 4 bytes per PTE == 4 KB
« Secondary page table is also 4 KB
* Hey ... that's exactly the size of a page on most systems ... cool

What happens on a page fault?
« MMU looks up index in primary page table to get secondary page table
* Assume this is “wired” to physical memory
« MMU tries to access secondary page table
* May result in another page fault to load the secondary table!
« MMU looks up index in secondary page table to get PFN
* CPU can then access physical memory address

Issues
* Page translation has very high overhead
* Up to three memory accesses plus two disk I/0s!!
e TLB usage is clearly very important.

© 2007 Matt Welsh — Harvard University 30

Next Lecture

Page Replacement Policies
* How do we decide which pages to kick out to disk?
* How do we bring kicked out pages back into memory?

© 2007 Matt Welsh - Harvard University

31

