Memory

CS 241
February 1, 2012

[Recap: Virtual Addresses

= A virtual address is a memory address that a process uses
to access its own memory

o Virtual address # actual physical RAM address

o When a process accesses a virtual address, the MMU hardware translates
the virtual address into a physical address

o The OS determines the mapping from virtual address to physical address

m Benefit: Isolation

o Virtual addresses in one process refer to different physical memory than
virtual addresses in another

o Exception: shared memory regions between processes (discussed later)
uBenefit: lllusion of larger memory space
o Can store unused parts of virtual memory on disk temporarily

m Benefit: Relocation

o A program does not need to know which physical addresses it will
use when it’s run

o Can even change physical location while program is running][
3

[Mapping virtual to physical addresses

(Reserved for OS)

Stack

ow does this thing work??

!
f

/Z

Heap

Uninitialized vars
(BSS segment)

Initialized vars
(data segment)

Code
(text segment)

AN

Physical RAM

. 1

[Translating virtual to physical

= Can do it almost any way we like
= But, some ways are better than others...

= Strawman solution from last time:
base and bound

Base and bound

if (virt addr > bound)
trap to kernel

else
phys addr = virt addr + base

Process has the illusion of

running on its own

dedicated machine with _

memory [0,bound) virtual
memory

Provides protection from bound
other processes also
currently in memory 0

Copyright ©: University of Illinois CS 241 Staff

physical
memory
size

base + bound

base

physical
memory

Base and bound

Bounds Register || Base Register

Base
Address
BA

Logical
Address LA

CPU
Address Physical
emory
Address Addrer)z

MA
Fault

Base: start of the process’s memory partition

Bound: length of the process’s memory partition
Copyright ©: University of Illinois CS 241 Staff

Base Address

MA+BA
Memory

Bound
Address

[Base and bounds

Problem: Process needs more ohysical
memory over time Process 1 memory

o Stack grows as functions are called -
o Heap grows upon request (malloc)
o Processes start and end

base + bound
How does the kernel handle the

address space growing?
o You are the OS designer bound

o Design strategy for allowing

processes to grow 0
Process 2

virtual
memory

Copyright ©: University of Illinois CS 241 Staff 9]

[But wait, didn’t we solve this?

grows Stack
dynamically
l physical
memory
grows
dynamically Heap
+
fixed size Data segment base + boun
fixed size Code segment base
Problem: wasted space

o And must have virtual mem < phys mem

N

[Another attempt: segmentation

Segment
o Region of contiguous memory

Segmentation

o Generalized base and bounds with support for
multiple segments at once

Copyright ©: University of Illinois CS 241 Staff 11]

Segmentation

Seg # | Base |Bound | Description

0 4000 700 Code
segment

1 0 500 Data
segment

2 Unused

3 2000 1000 Stack
segment

o4ff

off
0

virtual
memory
segment 3

stack

Virtual
memory
segment 1

data

Virtual
memory
segmeny0

code

Copyright ©: University of Illinois CS 241 Staff

physical
memory

code

stack

data

46ff
4000

2fff

2000

Segmentation

virtual
memory
. segment 3
Segments are specified
many different ways stack
0
Advantages over base
and bounds?
Protection Virtual
o Different segments can memory
. . segment 1
have different protections w#
oy ey data
Flexibility 0
o Can separately grow both Virtual
a stack and heap memory
. 0
o Enables sharing of code ; il
and other segments if o [code
needed Copyright ©: University of Illinois CS 241 Staff

physical
memory

code

46ff

4000

stack

2fff

data

2000

Segmentation

Segments are specified
many different ways

What are the advantages
over base and bounds?

What must be changed on

context switch?

o Contents of your
segmentation table

o A pointer to the table, expose

caching semantics to the
software (what x86 does)

o4ff

off
0

virtual
memory
segment 3

stack

Virtual
memory
segment 1

data

Virtual
memory
segmeny0

code

Copyright ©: University of Illinois CS 241 Staff

physical
memory

code

46ff

4000

stack

2fff

2000

data

[Recap: mapping virtual memory]

Base & bounds
o Problem: growth is inflexible

o Problem: external fragmentation
= As jobs run and complete, holes left in physical memory

Segments
o Resize pieces based on process needs
o Problem: external fragmentation

o Note: x86 used to support segmentation, now
effectively deprecated with x86-64

Modern approach: Paging

