

Bertocci

Programming/
Microsoft Visual Studio9 780735 627185

ISBN: 978-0-7356-2718-5

0 0 0 0 0

About the Author
Vittorio Bertocci is a Senior Architect
Evangelist in the Developer Platform Evangelism
division at Microsoft, and a key member of the
extended engineering team for WIF. He is an
expert on identity, Windows Azure, and .NET
development; a frequent speaker at Microsoft
PDC, Tech•Ed, and other industry events; and
a coauthor of A Guide to Claims-Based Identity
and Access Control.

Apply the principles—and patterns—for implementing
claims-based identity in your .NET solutions
Take control of access and identity management with Windows
Identity Foundation (WIF)—the claims-based identity model in
Microsoft .NET. Led by an insider on the WIF engineering team,
you’ll learn practical, scenario-based approaches for implementing
WIF in your Web applications and services—while streamlining
development and IT overhead.

Discover how to:
• Implement authentication and authorization in ASP.NET—
 without low-level code
• Delve deeper—examining WS-Federation and WS-Trust protocols
 in action
• Confi gure WIF for fi ne-grained control over identity management
• Implement Single Sign-On, Single Sign-Out, advanced session
 management, and other patterns
• Tackle advanced scenarios—from managing delegation to fl owing
 identity across multiple tiers
• Employ claims-based identity in Windows Communication
 Foundation
• Use WIF to help secure applications and services hosted in
 Windows Azure™
• Extend WIF to Microsoft Silverlight® and ASP.NET MVC

Programming Windows®
Identity Foundation

Get code samples on the Web
For system requirements, see the Introduction.

Program
m

ing W
indow

s
® Identity Foundation

microsoft.com/mspress

U.S.A. $34.99
Canada $40.99

[Recommended]

See inside cover

DEVELOPER ROADMAP

Step by Step
• For experienced developers learning a
 new topic
• Focus on fundamental techniques and tools
• Hands-on tutorial with practice fi les plus
 eBook

Start Here!
• Beginner-level instruction
• Easy to follow explanations and examples
• Exercises to build your fi rst projects

Developer Reference
• Professional developers; intermediate to
 advanced
• Expertly covers essential topics and
 techniques
• Features extensive, adaptable code examples

 Professional developers; intermediate to

 Expertly covers essential topics and

Focused Topics
• For programmers who develop
 complex or advanced solutions
• Specialized topics; narrow focus; deep
 coverage
• Features extensive, adaptable code examples

Windows®

Internals
Part 1

6
S I X T H

E D I T I O N

Mark Russinovich
David A. Solomon

Alex Ionescu

spine = .64”

Cyan Magenta Yellow Black

416	 Windows Internals, Sixth Edition, Part 1

Windows System Resource Manager
Windows Server 2008 R2 Standard Edition and higher SKUs include an optionally installable
component called Windows System Resource Manager (WSRM). It permits the administrator to
configure policies that specify CPU utilization, affinity settings, and memory limits (both physi-
cal and virtual) for processes. In addition, WSRM can generate resource utilization reports that
can be used for accounting and verification of service-level agreements with users.

Policies can be applied for specific applications (by matching the name of the image with or
without specific command-line arguments), users, or groups. The policies can be scheduled to
take effect at certain periods or can be enabled all the time.

After you set a resource-allocation policy to manage specific processes, the WSRM service
monitors CPU consumption of managed processes and adjusts process base priorities when
those processes do not meet their target CPU allocations.

The physical memory limitation uses the function SetProcessWorkingSetSizeEx to set a
hard-working set maximum. The virtual memory limit is implemented by the service checking
the private virtual memory consumed by the processes. (See Chapter 10 in Part 2 for an expla-
nation of these memory limits.) If this limit is exceeded, WSRM can be configured to either kill
the processes or write an entry to the Event Log. This behavior can be used to detect a process
with a memory leak before it consumes all the available committed memory on the system.
Note that WSRM memory limits do not apply to Address Windowing Extensions (AWE) memory,
large page memory, or kernel memory (nonpaged or paged pool).

Thread States
Before you can comprehend the thread-scheduling algorithms, you need to understand the various
execution states that a thread can be in. The thread states are as follows:

■■ Ready  A thread in the ready state is waiting to execute (or ready to be in-swapped after
completing a wait). When looking for a thread to execute, the dispatcher considers only the
pool of threads in the ready state.

■■ Deferred ready  This state is used for threads that have been selected to run on a specific
processor but have not actually started running there. This state exists so that the kernel can
minimize the amount of time the per-processor lock on the scheduling database is held.

■■ Standby  A thread in the standby state has been selected to run next on a particular proces-
sor. When the correct conditions exist, the dispatcher performs a context switch to this thread.
Only one thread can be in the standby state for each processor on the system. Note that a
thread can be preempted out of the standby state before it ever executes (if, for example, a
higher priority thread becomes runnable before the standby thread begins execution).

	 CHAPTER 5  Processes, Threads, and Jobs	 417

■■ Running  Once the dispatcher performs a context switch to a thread, the thread enters the
running state and executes. The thread’s execution continues until its quantum ends (and
another thread at the same priority is ready to run), it is preempted by a higher priority thread,
it terminates, it yields execution, or it voluntarily enters the waiting state.

■■ Waiting  A thread can enter the waiting state in several ways: a thread can voluntarily wait
for an object to synchronize its execution, the operating system can wait on the thread’s
behalf (such as to resolve a paging I/O), or an environment subsystem can direct the thread
to suspend itself. When the thread’s wait ends, depending on the priority, the thread either
begins running immediately or is moved back to the ready state.

■■ Transition  A thread enters the transition state if it is ready for execution but its kernel stack
is paged out of memory. Once its kernel stack is brought back into memory, the thread enters
the ready state.

■■ Terminated  When a thread finishes executing, it enters the terminated state. Once the
thread is terminated, the executive thread object (the data structure in a nonpaged pool that
describes the thread) might or might not be deallocated. (The object manager sets the policy
regarding when to delete the object.)

■■ Initialized  This state is used internally while a thread is being created.

Table 5-4 describes the state transitions for threads, and Figure 5-16 illustrates a simplified version.
(The numeric values shown represent the value of the thread-state performance counter.) In the
simplified version, the Ready, Standby, and Deferred Ready states are represented as one. This reflects
the fact that the Standby and Deferred Ready states act as temporary placeholders for the schedul-
ing routines. These states are almost always very short-lived; threads in these states always transition
quickly to Ready, Running, or Waiting. More details on what happens at each transition are included
later in this section.

TABLE 5-4  Thread States and Transitions

 Init Ready	 Running Standby Terminated Waiting Transition Deferred
Ready

Init A thread becomes
Initialized during the
first few moments of its
creation (KeStartThread).

Ready A thread is
added in the
dispatcher-
ready
database
of its ideal
processor.

Running Selected by
KiSearch-
ForNew-
Thread

 Picked up
for
execution
by local
CPU

 Preemption
after wait
satisfaction

418	 Windows Internals, Sixth Edition, Part 1

 Init Ready	 Running Standby Terminated Waiting Transition Deferred
Ready

Standby Selected by
KiSelect-
NextThread

 Selected by
KiDeferred-
ReadyThread
for remote
CPU

Terminated Killed
before
PspInsert-
Thread
finished

 Killed A thread can kill
only itself. It must
be in the Running
state before entering
KeTerminateThread.

Waiting Thread
enters a
wait

 Only running threads
can wait.

Transition Kernel stack
no longer
resident

 Only waiting threads can
transition.

Deferred
Ready

Last
step in
PspInsert-
Thread

Affinity
change

Thread
becomes
preempted
(if old
processor
is no longer
available)

Affinity
change

 Wait
satisfaction
(but no
preemp-
tion)

Kernel stack
swap-in
completed

Ready (1),
Standby (3),

Deferred ready
(7)

Running (2)

voluntary
switch

preemption or
quantum end

Init (0)

Terminate (4)

Transition (6)

Waiting (5)

dispatched

kernel stack
outswapped wait

resolved

kernel stack
inswapped

Figure 5-16  Simplified version of thread states and transitions

