Foreword by Ben Fathi _

Corporate Vice President, Windows Core Development, Microsoft Corporation

Windows =
Internals

Covering Windows Server 2008
and Windows Vista

Mark E. Russinovich

and David A. Solomon
with Alex lonescu



400

Windows Internals, Fifth Edition

Thread priorities 0-31

IRQLs
31 High
30 Power fail
29| Inter-processor interrupt
28 Clock
27 Profile i

— Hardware interrupts

26 Device n

Device 1
DPC/dispatch
APC

Passive

— Software interrupts

|° HIN w
[

Thread States

Before you can comprehend the thread-scheduling algorithms, you need to understand the
various execution states that a thread can be in. Figure 5-14 illustrates the state transitions
for threads. (The numeric values shown represent the value of the thread state performance
counter.) More details on what happens at each transition are included later in this section.

The thread states are as follows:

Ready A thread in the ready state is waiting to execute. When looking for a thread to
execute, the dispatcher considers only the pool of threads in the ready state.

Deferred ready This state is used for threads that have been selected to run on a spe-
cific processor but have not yet been scheduled. This state exists so that the kernel can
minimize the amount of time the systemwide lock on the scheduling database is held.

Standby A thread in the standby state has been selected to run next on a particular
processor. When the correct conditions exist, the dispatcher performs a context switch
to this thread. Only one thread can be in the standby state for each processor on the
system. Note that a thread can be preempted out of the standby state before it ever
executes (if, for example, a higher priority thread becomes runnable before the standby
thread begins execution).

Running Once the dispatcher performs a context switch to a thread, the thread enters
the running state and executes. The thread’s execution continues until its quantum ends
(and another thread at the same priority is ready to run), it is preempted by a higher
priority thread, it terminates, it yields execution, or it voluntarily enters the wait state.



Chapter 5 Processes, Threads, and Jobs 401

B Waiting A thread can enter the wait state in several ways: a thread can voluntarily
wait for an object to synchronize its execution, the operating system can wait on the
thread’s behalf (such as to resolve a paging I/O), or an environment subsystem can
direct the thread to suspend itself. When the thread’s wait ends, depending on the pri-
ority, the thread either begins running immediately or is moved back to the ready state.

B Gate Waiting When a thread does a wait on a gate dispatcher object (see Chapter
3 for more information on gates), it enters the gate waiting state instead of the wait-
ing state. This difference is important when breaking a thread's wait as the result of
an APC. Because gates don't use the dispatcher lock, but a per-object lock, the kernel
needs to perform some unique locking operations when breaking the wait of a thread
waiting on a gate and a way to differentiate this from a normal wait.

B Transition A thread enters the transition state if it is ready for execution but its kernel
stack is paged out of memory. Once its kernel stack is brought back into memory, the
thread enters the ready state.

B Terminated When a thread finishes executing, it enters the terminated state. Once
the thread is terminated, the executive thread block (the data structure in nonpaged
pool that describes the thread) might or might not be deallocated. (The object man-
ager sets policy regarding when to delete the object.)

B |nitialized This state is used internally while a thread is being created.

Ready (1)

Deferred
ready (7)

Transition (6)

preemption,
quantum end

voluntary
switch

Waiting (5) or
Gate waiting (8)

Terminate (4)

FIGURE 5-14 Thread states and transitions



