Windows 6

Internals
Part 1

Windows System Resource Manager

Windows Server 2008 R2 Standard Edition and higher SKUs include an optionally installable
component called Windows System Resource Manager (WSRM). It permits the administrator to
configure policies that specify CPU utilization, affinity settings, and memory limits (both physi-
cal and virtual) for processes. In addition, WSRM can generate resource utilization reports that
can be used for accounting and verification of service-level agreements with users.

Policies can be applied for specific applications (by matching the name of the image with or
without specific command-line arguments), users, or groups. The policies can be scheduled to
take effect at certain periods or can be enabled all the time.

After you set a resource-allocation policy to manage specific processes, the WSRM service
monitors CPU consumption of managed processes and adjusts process base priorities when
those processes do not meet their target CPU allocations.

The physical memory limitation uses the function SetProcessWorkingSetSizeEx to set a
hard-working set maximum. The virtual memory limit is implemented by the service checking
the private virtual memory consumed by the processes. (See Chapter 10 in Part 2 for an expla-
nation of these memory limits.) If this limit is exceeded, WSRM can be configured to either kill
the processes or write an entry to the Event Log. This behavior can be used to detect a process
with a memory leak before it consumes all the available committed memory on the system.
Note that WSRM memory limits do not apply to Address Windowing Extensions (AWE) memory,
large page memory, or kernel memory (nonpaged or paged pool).

Thread States

Before you can comprehend the thread-scheduling algorithms, you need to understand the various
execution states that a thread can be in. The thread states are as follows:

m Ready A thread in the ready state is waiting to execute (or ready to be in-swapped after
completing a wait). When looking for a thread to execute, the dispatcher considers only the
pool of threads in the ready state.

m Deferred ready This state is used for threads that have been selected to run on a specific
processor but have not actually started running there. This state exists so that the kernel can
minimize the amount of time the per-processor lock on the scheduling database is held.

m Standby A thread in the standby state has been selected to run next on a particular proces-
sor. When the correct conditions exist, the dispatcher performs a context switch to this thread.
Only one thread can be in the standby state for each processor on the system. Note that a
thread can be preempted out of the standby state before it ever executes (if, for example, a
higher priority thread becomes runnable before the standby thread begins execution).

416 Windows Internals, Sixth Edition, Part 1

Running Once the dispatcher performs a context switch to a thread, the thread enters the
running state and executes. The thread’s execution continues until its quantum ends (and
another thread at the same priority is ready to run), it is preempted by a higher priority thread,
it terminates, it yields execution, or it voluntarily enters the waiting state.

Waiting A thread can enter the waiting state in several ways: a thread can voluntarily wait
for an object to synchronize its execution, the operating system can wait on the thread’s
behalf (such as to resolve a paging I/0O), or an environment subsystem can direct the thread
to suspend itself. When the thread’s wait ends, depending on the priority, the thread either
begins running immediately or is moved back to the ready state.

Transition A thread enters the transition state if it is ready for execution but its kernel stack
is paged out of memory. Once its kernel stack is brought back into memory, the thread enters
the ready state.

Terminated When a thread finishes executing, it enters the terminated state. Once the
thread is terminated, the executive thread object (the data structure in a nonpaged pool that
describes the thread) might or might not be deallocated. (The object manager sets the policy
regarding when to delete the object.)

Initialized This state is used internally while a thread is being created.

Table 5-4 describes the state transitions for threads, and Figure 5-16 illustrates a simplified version.
(The numeric values shown represent the value of the thread-state performance counter.) In the
simplified version, the Ready, Standby, and Deferred Ready states are represented as one. This reflects
the fact that the Standby and Deferred Ready states act as temporary placeholders for the schedul-
ing routines. These states are almost always very short-lived; threads in these states always transition
quickly to Ready, Running, or Waiting. More details on what happens at each transition are included
later in this section.

TABLE 5-4 Thread States and Transitions

Init

Ready

Running

Init

Ready Running Standby Terminated | Waiting Transition Deferred
Ready
A thread becomes
Initialized during the
first few moments of its
creation (KeStartThread).
Athread is
added in the
dispatcher-
ready
database
of its ideal
processor.
Selected by Picked up Preemption
KiSearch- for after wait
ForNew- execution satisfaction
Thread by local
CPU

Processes, Threads, and Jobs 417

Init Ready Running Standby Terminated | Waiting Transition Deferred
Ready
Standby Selected by Selected by
KiSelect- KiDeferred-
NextThread ReadyThread
for remote
CPU
Terminated | Killed Killed
before
Psplnsert-
Thread
finished
Waiting Thread
enters a
wait
Transition Kernel stack
no longer
resident
Deferred Last Affinity Thread Affinity Wait Kernel stack
Ready stepin change becomes change satisfaction | swap-in
Psplnsert- preempted (but no completed
Thread (if old preemp-
processor tion)
is no longer
available)

SO

7

Ready (1),
Standby (3),
Deferred ready
@)

kernel stack
inswapped

dispatched preemption or
\ quantum end

Transition (6)

Terminate (4)
voluntary
switch

kernel stack

outswapped wait
resolved

FIGURE 5-16 Simplified version of thread states and transitions

418 Windows Internals, Sixth Edition, Part 1

Athread can kill
only itself. It must
be in the Running
state before entering
KeTerminateThread.

Only running threads

can wait.

Only waiting threads can
transition.

