Chapter 7
Linking

Linking is the process of collecting and combining various pieces of code and data into a single file that can
be loaded (copied) into memory and executed. Linking can be performed at compile time, when the source
code is translated into machine code, at load time, when the program is loaded into memory and executed
by the loader, and even at run time, by application programs. On early computer systems, linking was
performed manually. On modern systems, linking is performed automatically by programs called linkers.

Linkers play a crucial role in software development because they enable separate compilation. Instead
of organizing a large application as one monolithic source file, we can decompose it into smaller, more
manageable modules that can be modified and compiled separately. When we change one of these modules,
we simply recompile it and relink the application, without having to recompile the other files.

Linking is usually handled quietly by the linker, and is not an important issue for students who are building
small programs in introductory programming classes. So why bother learning about linking?

e Understanding linkers will help you build large programs. Programmers who build large programs
often encounter linker errors caused by missing modules, missing libraries, or incompatible library
versions. Unless you understand how a linker resolves references, what a library is, and how a linker
uses a library to resolve references, these kinds of errors will be baffling and frustrating.

e Understanding linkers will help you avoid dangerous programming errors. The decisions that Unix
linkers make when they resolve symbol references can silently affect the correctness of your pro-
grams. Programs that incorrectly define multiple global variables pass through the linker without any
warnings in the default case. The resulting programs can exhibit baffling run-time behavior and are
extremely difficult to debug. We will show you how this happens and how to avoid it.

¢ Understanding linking will help you understand how language scoping rules are implemented. For
example, what is the difference between global and local variables? What does it really mean when
you define a variable or function with the st at i c attribute?

e Understanding linking will help you understand other important systems concepts. The executable
object files produced by linkers play key roles in important systems functions such as loading and
running programs, virtual memory, paging, and memory mapping.

523

524 CHAPTER 7. LINKING

¢ Understanding linking will enable you to exploit shared libraries. For many years, linking was con-
sidered to be fairly straightforward and uninteresting. However, with the increased importance of
shared libraries and dynamic linking in modern operating systems, linking is a sophisticated process
that provides the knowledgeable programmer with significant power. For example, many software
products use shared libraries to upgrade shrink-wrapped binaries at run time. Also, most Web servers
rely on dynamic linking of shared libraries to serve dynamic content.

This chapter provides a thorough discussion of all aspects of linking, from traditional static linking, to
dynamic linking of shared libraries at load time, to dynamic linking of shared libraries at run time. We will
describe the basic mechanisms using real examples, and we will identify situations in which linking issues
can affect the performance and correctness of your programs. To keep things concrete and understandable,
we will couch our discussion in the context of an IA32 machine running a version of Unix, such as Linux
or Solaris, that uses the standard ELF object file format. However, it is important to realize that the basic
concepts of linking are universal, regardless of the operating system, the ISA, or the object file format.
Details may vary, but the concepts are the same.

7.1 Compiler Drivers

Consider the C program in Figure 7.1. It consists of two source files, mai n. ¢ and swap. c. Function
mai n() calls swap, which swaps the two elements in the external global array buf . Granted, this is a
strange way to swap two numbers, but it will serve as a small running example throughout this chapter that
will allow us to make some important points about how linking works.

Most compilation systems provide a compiler driver that invokes the language preprocessor, compiler, as-
sembler, and linker, as needed on behalf of the user. For example, to build the example program using the
GNU compilation system, we might invoke the Gcc driver by typing the following command to the shell:

uni x> gcc -2 -g -0 p nain.c swap.c

Figure 7.2 summarizes the activities of the driver as it translates the example program from an ASCII source
file into an executable object file. (If you want to see these steps for yourself, run Gcc with the - v option.)
The driver first runs the C preprocessor (cpp), which translates the C source file nai n. ¢ into an ASCII
intermediate file mai n. i :

cpp [other argunents] main.c /tnp/main.i

Next, the driver runs the C compiler (cc 1), which translates mai n. i into an ASCII assembly language file
mai n. s.

ccl /tnp/main.i main.c -2 [other argunents] -o /tnp/nmain.s
Then, the driver runs the assembler (as), which translates mai n. s into a relocatable object file mai n. o:

as [other arguments] -o /tnp/main.o /tnp/ main.s

7.2. STATICLINKING 525

code/link/swap.c

_ _ 1/* swap.c */
code/link/main.c 2 extern int buf[];
_ 3
1/*_rra|n.c*{ 4 int *bufp0 = &buf[0];
2 void swap(); 5 int *bufpil;
3
. 6
4int buf[2] = {1, 2}; 7 voi d swap()
5 _ _ 8 {
6 int main() 9 int tenp;
7 { 10
8 svvap(),o_ 11 buf pl = &buf[1];
9 return O; 12 tenp = *buf p0;
10 } 13 *puf p0 = *buf pl;
codeflink/main.c 14 “bufpl = temp;
15 }
code/link/swap.c
(@ mai n.c (b) swap. c

Figure 7.1: Example program 1: The example program consists of two source files, mai n. ¢ and swap. c.
The mai n function initializes a two-element array of ints, and then calls the swap function to swap the pair.

The driver goes through the same process to generate swap. 0. Finally it runs the linker program | d, which
combines mai n. 0 and swap. o, along with the necessary system object files, to create the executable
object file p:

Id -0 p [systemobject files and args] /tnp/main.o /tnp/swap.o
To run the executable p, we type its name on the Unix shell’s command line:
uni x> ./p

The shell invokes a function in the operating system called the loader, which copies the code and data in the
executable file p into memory, and then transfers control to the beginning of the program.

7.2 Static Linking

Static linkers such as the Unix | d program take as input a collection of relocatable object files and command
line arguments and generate as output a fully linked executable object file that can be loaded and run. The
input relocatable object files consist of various code and data sections. Instructions are in one section,
initialized global variables are in another section, and uninitialized variables are in yet another section.

To build the executable, the linker must perform two main tasks:

e Symbol resolution. Object files define and reference symbols. The purpose of symbol resolution is to
associate each symbol reference with exactly one symbol definition.

526 CHAPTER 7. LINKING

main. c swap. ¢ Source files
Translators Translators
(cpp, ccl, as) (cpp, ccl, as)
.i i Relocatable
main. o swap. o object files
| Linker (I d) |
i Fully linked

P executable object file

Figure 7.2: Static linking. The linker combines relocatable object files to form an executable object file p.

e Relocation. Compilers and assemblers generate code and data sections that start at address zero. The
linker relocates these sections by associating a memory location with each symbol definition, and
then modifying all of the references to those symbols so that they point to this memory location.

The sections that follow describe these tasks in more detail. As you read, keep in mind some basic facts
about linkers: Object files are merely collections of blocks of bytes. Some of these blocks contain program
code, others contain program data, and others contain data structures that guide the linker and loader. A
linker concatenates blocks together, decides on run-time locations for the concatenated blocks, and modi-
fies various locations within the code and data blocks. Linkers have minimal understanding of the target
machine. The compilers and assemblers that generate the object files have already done most of the work.

7.3 Object Files

Obiject files come in three forms:

o Relocatable object file. Contains binary code and data in a form that can be combined with other
relocatable object files at compile time to create an executable object file.

e Executable object file. Contains binary code and data in a form that can be copied directly into
memory and executed.

e Shared object file. A special type of relocatable object file that can be loaded into memory and linked
dynamically, at either load time or run time.

Compilers and assemblers generate relocatable object files (including shared object files). Linkers generate
executable object files. Technically, an object module is a sequence of bytes, and an object file is an object
module stored on disk in a file. However, we will use these terms interchangeably.

Obiject file formats vary from system to system. The first Unix systems from Bell Labs used the a. out
format. (To this day, executables are still referred to as a. out files.) Early versions of System V Unix
used the Common Obiject File format (COFF). Windows NT uses a variant of COFF called the Portable

74. RELOCATABLE OBJECT FILES 527

Executable (PE) format. Modern Unix systems — such as Linux, later versions of System V Unix, BSD
Unix variants, and Sun Solaris — use the Unix Executable and Linkable Format (ELF). Although our
discussion will focus on ELF, the basic concepts are similar, regardless of the particular format.

7.4 Relocatable Object Files

Figure 7.3 shows the format of a typical ELF relocatable object file. The ELF header begins with a 16-byte
sequence that describes the word size and byte ordering of the system that generated the file. The rest of
the ELF header contains information that allows a linker to parse and interpret the object file. This includes
the size of the ELF header, the object file type (e.g., relocatable, executable, or shared), the machine type
(e.g., 1A32) the file offset of the section header table, and the size and number of entries in the section
header table. The locations and sizes of the various sections are described by the section header table,
which contains a fixed sized entry for each section in the object file.

ELF header

.text

.rodata

.data

. bss

.synt ab

Sections
.rel.text

.rel.data

. debug

.line

. .strtab
Describes

object file { Section header table
sections

Figure 7.3: Typical ELF relocatable object file.

Sandwiched between the ELF header and the section header table are the sections themselves. A typical
ELF relocatable object file contains the following sections:

.t ext: The machine code of the compiled program.

. rodat a: Read-only data such as the format strings in pri nt f statements, and jump tables for switch
statements (see Problem 7.14).

. dat a: |Initialized global C variables. Local C variables are maintained at run time on the stack, and do
not appear in either the . dat a or . bss sections.

. bss: Uninitialized global C variables. This section occupies no actual space in the object file; it is merely
a place holder. Obiject file formats distinguish between initialized and uninitialized variables for space
efficiency: uninitialized variables do not have to occupy any actual disk space in the object file.

528

CHAPTER 7. LINKING

. synt ab: A symbol table with information about functions and global variables that are defined and

.rel

.rel

referenced in the program. Some programmers mistakenly believe that a program must be compiled
with the - g option to get symbol table information. In fact, every relocatable object file has a symbol
table in . synt ab. However, unlike the symbol table inside a compiler, the . synt ab symbol table
does not contain entries for local variables.

.text: A list of locations in the . t ext section that will need to be modified when the linker
combines this object file with others. In general, any instruction that calls an external function or
references a global variable will need to be modified. On the other hand, instructions that call local
functions do not need to be modified. Note that relocation information is not needed in executable
object files, and is usually omitted unless the user explicitly instructs the linker to include it.

. dat a: Relocation information for any global variables that are referenced or defined by the mod-
ule. In general, any initialized global variable whose initial value is the address of a global variable
or externally defined function will need to be modified.

. debug: A debugging symbol table with entries for local variables and typedefs defined in the program,

global variables defined and referenced in the program, and the original C source file. It is only
present if the compiler driver is invoked with the - g option.

. l'i ne: A mapping between line numbers in the original C source program and machine code instructions

in the .text section. It is only present if the compiler driver is invoked with the - g option.

. strtab: Astring table for the symbol tables in the . synt ab and . debug sections, and for the section

7.5

names in the section headers. A string table is a sequence of null-terminated character strings.

Aside: Why isuninitialized data called . bss?

The use of the term . bss to denote uninitialized data is universal. It was originally an acronym for the “Block
Storage Start” instruction from the IBM 704 assembly language (circa 1957) and the acronym has stuck. A simple
way to remember the difference between the . dat a and . bss sections is to think of “bss” as an abbreviation for
“Better Save Space!”. End Aside.

Symbols and Symbol Tables

Each relocatable object module, m, has a symbol table that contains information about the symbols that are
defined and referenced by m. In the context of a linker, there are three different kinds of symbols:

e Global symbols that are defined by module m and that can be referenced by other modules. Global

linker symbols correspond to nonstatic C functions and global variables that are defined without the
Cstati c attribute.

e Global symbols that are referenced by module m but defined by some other module. Such symbols

are called externals and correspond to C functions and variables that are defined in other modules.

e Local symbols that are defined and referenced exclusively by module m. Some local linker symbols

correspond to C functions and global variables that are defined with the st at i ¢ attribute. These

7.5. SYMBOLSAND SYMBOL TABLES 529

symbols are visible anywhere within module m, but cannot be referenced by other modules. The
sections in an object file and the name of the source file that corresponds module m also get local
symbols.

It is important to realize that local linker symbols are not the same as local program variables. The symbol
table in. symt ab does not contain any symbols that correspond to local nonstatic program variables. These
are managed at run time on the stack and are not of interest to the linker.

Interestingly, local procedure variables that are defined with the C st at i c attribute are not managed on
the stack. Instead, the compiler allocates space in . dat a or . bss for each definition and creates a local
linker symbol in the symbol table with a unique name. For example, suppose a pair of functions in the same
module define a static local variable x:

1int f()

2 {

3 static int x = 0;
4 return x;

5}

6

7 int g()

8 {

9 static int x = 1;
10 return x;

11 }

In this case, the compiler allocates space for two integers in . bss and exports a pair of unique local linker
symbols to the assembler. For example, it might use x. 1 for the definition in function f and x. 2 for the
definition in function g.

New to C?: Hiding variable and function nameswith st atii c.

C programmers use the st at i ¢ attribute to hide variable and function declarations inside modules, much as you
would use public and private declarations in Java and C++. C source files play the role of modules. Any global
variable or function declared with the st at i ¢ attribute is private to that module. Similarly, any global variable
or function declared without the st at i c attribute is public, and can be accessed by any other module. It is good
programming practice to protect your variables and functions with the st at i ¢ attribute wherever possible. End.

Symbol tables are built by assemblers, using symbols exported by the compiler into the assembly language
. s file. An ELF symbol table is contained in the . synt ab section. It contains an array of entries. Fig-
ure 7.4 shows the format of each entry.

The narme is a byte offset into the string table that points to the null-terminated string name of the symbol.
The val ue is the symbol’s address. For relocatable modules, the val ue is an offset from the beginning of
the section where the object is defined. For executable object files, the value is an absolute run-time address.
The si ze is the size (in bytes) of the object. The t ype is usually either data or function. The symbol table
can also contain entries for the individual sections and for the path name of the original source file. So there
are distinct types for these objects as well. The bi ndi ng field indicates whether the symbol is local or
global.

530 CHAPTER 7. LINKING

code/link/elfstructs.c

1 typedef struct {

2 i nt nane; /* string table offset */

3 i nt val ue; /* section offset, or VM address */

4 int size; /* object size in bytes */

5 char type: 4, /* data, func, section, or src file name (4 bits) */
6 binding:4; /* local or global (4 bits) */

7 char reserved; /* unused */

8 char section; /* section header index, ABS, UNDEF, */

9 /* or COWON */

10 } Elf_Synbol;

code/link/elfstructs.c

Figure 7.4: ELF symbol table entry. t ype and bi ndi ng are four bits each.

Each symbol is associated with some section of the object file, denoted by the sect i on field, which
is an index into the section header table. There are three special pseudo sections that don’t have entries
in the section header table: ABS is for symbols that should not be relocated. UNDEF is for undefined
symbols, that is, symbols that are referenced in this object module but defined elsewhere. COMMON is
for uninitialized data objects that are not yet allocated. For COMMON symbols, the val ue field gives the
alignment requirement, and si ze gives the minimum size.

For example, here are the last three entries in the symbol table for mai n. o, as displayed by the GNU
READELF tool. The first eight entries, which are not shown, are local symbols that the linker uses internally.

Num Val ue Size Type Bi nd O Ndx Nane
8: 0 8 OBJECT GLOBAL O 3 buf
9: 0 17 FUNC GLOBAL O 1 main
10: 0 0 NOTYPE GLOBAL 0 UND swap

In this example, we see an entry for the definition of global symbol buf , an 8-byte object located at an
offset (i.e., val ue) of zero in the . dat a section. This is followed by the definition of the global symbol
mai n, a 17-byte function located at an offset of zero in the . t ext section. The last entry comes from
the reference for the external symbol swap. READELF identifies each section by an integer index. Ndx=1
denotes the . t ext section, and Ndx=3 denotes the . dat a section.

Similarly, here are the symbol table entries for swap. o:

Num Val ue Size Type Bi nd O Ndx Nane

8: 0 4 OBJECT G.OBAL O 3 buf p0
9: 0 0 NOTYPE GLOBAL 0 UND buf

10: 0 39 FUNC GLOBAL O 1 swap
11: 4 4 OBJECT GLOBAL 0 COM bufpl

First, we see an entry for the definition of the global symbol buf p0O, which is a 4-byte initialized object
starting at offset 0 in . dat a. The next symbol comes from the reference to the external buf symbol in the

7.6. SYMBOL RESOLUTION 531

initialization code for buf p0. This is followed by the global symbol swap, a 39-byte function at an offset
of 0in. t ext . The last entry is the global symbol buf p1, a 4-byte uninitialized data object (with a 4-byte
alignment requirement) that will eventually be allocated as a . bss object when this module is linked.

Practice Problem 7.1;

This problem concerns the swap. o module from Figure 7.1(b). For each symbol that is defi ned or
referencedin swap. o, indicate whether or not it will have asymbol table entry inthe. synt ab section
in module swap. o. If so, indicate the module that defi nes the symbol (swap. o or mai n. 0), the
symbol type (local, global, or extern) and the section (. t ext, . dat a, or . bss) it occupies in that
module.

| Symbol || swap. 0. synt ab entry? | Symbol type | Module where defi ned | Section |
buf
buf p0
buf p1
swap
tenp

7.6 Symbol Resolution

The linker resolves symbol references by associating each reference with exactly one symbol definition from
the symbol tables of its input relocatable object files. Symbol resolution is straightforward for references to
local symbols that are defined in the same module as the reference. The compiler allows only one definition
of each local symbol per module. The compiler also ensures that static local variables, which get local linker
symbols, have unique names.

Resolving references to global symbols, however, is trickier. When the compiler encounters a symbol (either
a variable or function name) that is not defined in the current module, it assumes that it is defined in some
other module, generates a linker symbol table entry, and leaves it for the linker to handle. If the linker is
unable to find a definition for the referenced symbol in any of its input modules, it prints an (often cryptic)
error message and terminates. For example, if we try to compile and link the following source file on a
Linux machine,

1 void foo(void);

2
3int main() {
4 foo();

5 return O;
6 }

then the compiler runs without a hitch, but the linker terminates when it cannot resolve the reference to f 00:

uni x> gcc -Wall -Q2 -o linkerror linkerror.c
/[tmp/ccSz5uti.o: In function ‘main’:

/tmp/ ccSz5uti.o(.text+0x7): undefined reference to ‘foo’
collect2: Id returned 1 exit status

532 CHAPTER 7. LINKING

Symbol resolution for global symbols is also tricky because the same symbol might be defined by multiple
object files. In this case, the linker must either flag an error, or somehow choose one of the definitions
and discard the rest. The approach adopted by Unix systems involves cooperation between the compiler,
assembler, and linker, and can introduce some baffling bugs to the unwary programmer.

Aside: Mangling of linker symbolsin C++ and Java.

Both C++ and Java allow overloaded methods that have the same name in the source code but different parameter
lists. So how does the linker tell the difference between these different overloaded functions? Overloaded functions
in C++ and Java work because the compiler encodes each unique method and parameter list combination into a
unique name for the linker. This encoding process is called mangling, and the inverse process demangling.

Happily, C++ and Java use compatible mangling schemes. A mangled class name consists of the integer number of
characters in the name followed by the original name. For example, the class Foo is encoded as 3Foo. A method
is encoded as the original method name, followed by __, followed by the mangled class name, followed by single
letter encodings of each argument. For example, Foo: : bar (i nt, | ong) isencoded asbar __3Fooi | . Similar
schemes are used to mangle global variable and template names. End Aside.

7.6.1 How Linkers Resolve Multiply Defined Global Symbols

At compile time, the compiler exports each global symbol to the assembler as either strong or weak, and the
assembler encodes this information implicitly in the symbol table of the relocatable object file. Functions
and initialized global variables get strong symbols. Uninitialized global variables get weak symbols. For
the example program in Figure 7.1, buf , buf p0, mai n, and swap are strong symbols; buf p1 is a weak
symbol.

Given this notion of strong and weak symbols, Unix linkers use the following rules for dealing with multiply
defined symbols:

e Rule 1: Multiple strong symbols are not allowed.
e Rule 2: Given a strong symbol and multiple weak symbols, choose the strong symbol.

e Rule 3: Given multiple weak symbols, choose any of the weak symbols.

For example, suppose we attempt to compile and link the following two C modules:

1/* fool.c */ 1/* barl.c */
2 int main() 2 int main()
3 3 {

4 return O; 4 return O;
5} 5}

In this case the linker will generate an error message because the strong symbol mai n is defined multiple
times (Rule 1):

uni x> gcc fool.c barl.c

/tmp/ cca015022.0: In function ‘main’

/tp/ cca015022. o(. text +0x0): multiple definition of ‘main’
/trmp/ cca015021. o(. text +0x0): first defined here

7.6. SYMBOL RESOLUTION 533

Similarly, the linker will generate an error message for the following modules because the strong symbol x
is defined twice (Rule 1):

1/* foo2.c */ 1/* bar2.c */
2 int x = 15213; 2 int x = 15213;
3 3

4 int main() 4 void f()

5 { 5 {

6 return O; 6 }

7}

However, if x is uninitialized in one module, then the linker will quietly choose the strong symbol defined
in the other (Rule 2):

1/* foo3.c */ 1/* bar3.c */
2 #include <stdio. h> 2 int x;

3 void f(void); 3

4 4 void f()

5 int x = 15213; 5 {

6 6 X = 15212;
7 int main() 7}

8 {

9 f();

10 printf("x = %\ n", X);

11 return O;

12 }

At run time, function f changes the value of x from 15213 to 15212, which might come as a unwelcome
surprise to the author of function mai n! Notice that the linker normally gives no indication that it has
detected multiple definitions of x:

uni x> gcc -o foobar3 foo3.c bar3.c
uni x> ./ foobar3
x = 15212

The same thing can happen if there are two weak definitions of x (Rule 3):

534 CHAPTER 7. LINKING

1/* food.c */ 1/* bar4.c */
2 #include <stdio. h> 2 int x;

3 void f(void); 3

4 4 void f()

5 int Xx; 5 {

6 6 x = 15212;
7 int main() 7}

8 {

9 x = 15213;

10 f(O);

11 printf("x = %\n", X);

12 return O;

13 }

The application of Rules 2 and 3 can introduce some insidious run-time bugs that are incomprehensible to
the unwary programmer, especially if the duplicate symbol definitions have different types. Consider the
following example, in which x is defined as an i nt in one module and a doubl e in another:

1/* foob.c */

* *
2 #include <stdio. h> ; ijougf”eS;(F /
3 void f(void); 3 '
4 .
5int x = 15213; ;‘}’O'df()
3|nty:15212; 5 X = -0.0:
g int main() 7}
9 {
10 f();
11 printf("x = Ox% y = Ox% \n",
12 X, Y);
13 return O;
14 }
Onan IA32/Linux machine, doubl es are 8 bytes and i nt s are 4 bytes. Thus, the assignmentx = -0. 0

in line 6 of bar 5. ¢ will overwrite the memory locations for x and y (lines 5 and 6 in f 005. ¢) with the
double-precision floating-point representation of negative one!

i nux> gcc -o foobar5 foo5.c bar5.c
['i nux> ./foobar5
x = 0x0 y = 0x80000000

This is a subtle and nasty bug, especially because it occurs silently, with no warning from the compilation
system, and because it typically manifests itself much later in the execution of the program, far away from
where the error occurred. In a large system with hundreds of modules, a bug of this kind is extremely hard
to fix, especially because many programmers are not aware of how linkers work. When in doubt, invoke
the linker with a flag such as the ccc - war n- cormon flag, which instructs it to print a warning message
when it resolves multiply defined global symbol definitions.

7.6. SYMBOL RESOLUTION 535

Practice Problem 7.2;

In this problem, let REF(x. i) --> DEF(x. k) denote that the linker will associate an arbitrary
reference to symbol x in modulei to the defi nition of x in module k. For each example that follows,
use this notation to indicate how the linker would resolve references to the multiply defi ned symbol in
each module. If thereis alink-time error (Rule 1), write “ERROR”". If the linker arbitrarily chooses one
of the defi nitions (Rule 3), write “UNKNOWN".

A./* Mdule 1 */ /* Module 2 */
int main() i nt main;
{ int p2()
} {
}
(@ REF(main.1) --> DEF(_____.___)

() REF(main.2) -->DEF(_____._)
B./* Module 1 */ /* Module 2 */
voi d mai n() i nt mai n=1;

{ int p2()

} {

}

(@ REF(main.1) --> DEF(_____.___)

() REF(main.2) -->DEF(____ .)
C./* Mdule 1 */ /* Module 2 */

int x; doubl e x=1.0;

voi d mai n() int p2()

{ {

} }

(@ REF(x.1) --> DEF(___)

(b) REF(x.2) --> DEF(____)

7.6.2 Linking with Static Libraries

So far we have assumed that the linker reads a collection of relocatable object files and links them together
into an output executable file. In practice, all compilation systems provide a mechanism for packaging
related object modules into a single file called a static library, which can then be supplied as input to the
linker. When it builds the output executable, the linker copies only the object modules in the library that are
referenced by the application program.

Why do systems support the notion of libraries? Consider ANSI C, which defines an extensive collection of
standard 1/O, string manipulation, and integer math functions such as at oi , pri ntf, scanf, strcpy,
and random They are available to every C program in the | i bc. a library. ANSI C also defines an
extensive collection of floating-point math functions such as si n, cos,and sqrt inthel i bm a library.

Consider the different approaches that compiler developers might use to provide these functions to users
without the benefit of static libraries. One approach would be to have the compiler recognize calls to the

536 CHAPTER 7. LINKING

standard functions and to generate the appropriate code directly. Pascal, which provides a small set of
standard functions, takes this approach, but it is not feasible for C because of the large number of standard
functions defined by the C standard. It would add significant complexity to the compiler and would require
a new compiler version each time a function was added, deleted, or modified. To application programmers,
however, this approach would be quite convenient because the standard functions would always be available.

Another approach would be to put all of the standard C functions in a single relocatable object module, say
I'i bc. o, that application programmers could link into their executables:

uni x> gcc main.c /usr/lib/libc.o

This approach has the advantage that it would decouple the implementation of the standard functions from
the implementation of the compiler, and would still be reasonably convenient for programmers. However, a
big disadvantage is that every executable file in a system would now contain a complete copy of the collec-
tion of standard functions, which would be extremely wasteful of disk space. (On a typical system, | i bc. a
isabout 8 MB and | i bm a is about 1 MB.) Worse, each running program would now contain its own copy
of these functions in memory, which would be extremely wasteful of memory. Another big disadvantage
is that any change to any standard function, no matter how small, would require the library developer to
recompile the entire source file, a time-consuming operation that would complicate the development and
maintenance of the standard functions.

We could address some of these problems by creating a separate relocatable file for each standard function
and storing them in a well-known directory. However, this approach would require application programmers

to explicitly link the appropriate object modules into their executables, a process that would be error prone
and time consuming:

uni x> gcc main.c /usr/lib/printf.o /usr/lib/scanf.o ...

The notion of a static library was developed to resolve the disadvantages of these various approaches. Re-
lated functions can be compiled into separate object modules and then packaged in a single static library
file. Application programs can then use any of the functions defined in the library by specifying a single file
name on the command line. For example, a program that uses functions from the standard C library and the
math library could be compiled and linked with a command of the form

uni x> gcc main.c /usr/lib/libma /usr/lib/libc.a

At link time, the linker will only copy the object modules that are referenced by the program, which reduces
the size of the executable on disk and in memory. On the other hand, the application programmer only needs
to include the names of a few library files. (In fact, C compiler drivers always pass | i bc. a to the linker,
so the reference to | i bc. a mentioned previously is unnecessary.)

On Unix systems, static libraries are stored on disk in a particular file format known as an archive. An
archive is a collection of concatenated relocatable object files, with a header that describes the size and
location of each member object file. Archive filenames are denoted with the . a suffix. To make our
discussion of libraries concrete, suppose that we want to provide the vector routines in Figure 7.5 in a static
library called | i bvect or. a.

To create the library, we would use the AR tool as follows:

7.6. SYMBOL RESOLUTION 537

code/link/addvec.c code/link/multvec.c
1 void addvec(int *x, int *y, 1 void multvec(int *x, int *y,
2 int *z, int n) 2 int *z, int n)
3 { 3 {
4 int i; 4 int i;
5 5
6 for (i =0; i <n; i++) 6 for (i =0; i < n; i++4)
7 z[i] = x[i] +y[i]; 7 z[i] = x[i] * y[i];
8 } 8 }
code/link/addvec.c code/link/multvec.c
(a) addvec. o (@ nmul tvec. o

Figure 7.5: Member object files in | i bvect or. a.

uni x> gcc -c addvec.c nultvec.c
uni x> ar rcs |ibvector.a addvec.o nultvec.o

To use the library, we might write an application such as mai n2. c in Figure 7.6, which invokes the ad-
dvec library routine. (The include (header) file vect or . h defines the function prototypes for the routines
inlibvector. a.)

code/link/main2.c

1/* main2.c */
2 #include <stdio. h>
3 #i nclude "vector.h"

4

5int x[2] = {1, 2};

6 int y[2] = {3, 4};

7 int z[2];

8

9 int main()

10 {

11 addvec(x, vy, z, 2);
12 printf("z =% %]\n", z[0], z[1]);
13 return O;

14 }

code/link/main2.c

Figure 7.6: Example program 2: This program calls member functions in the static | i bvect or. a library.

To build the executable, we would compile and link the input files mai n. oand | i bvect or. a:

uni x> gcc -2 -c¢ main2.c
uni x> gcc -static -o p2 main2.0 ./libvector.a

538 CHAPTER 7. LINKING

Figure 7.7 summarizes the activity of the linker. The - st at i ¢ argument tells the compiler driver that the
linker should build a fully linked executable object file that can be loaded into memory and run without
any further linking at load time. When the linker runs, it determines that the addvec symbol defined by
addvec. o is referenced by mai n. o, so it copies addvec. o into the executable. Since the program
doesn’t reference any symbols defined by rmul t vec. o, the linker does not copy this module into the
executable. The linker also copies the pri nt f. o module from | i bc. a, along with a number of other
modules from the C run-time system.

Source files mai n2.¢c vector.h

Translators

(cpp, ccl, as) |'i bvector.a libc.a Static libraries
Relocatable | oi 1o o addvec. o printf.o and any other
object files modules called by printf. o

Linker (I d)
p2 Fully linked

executable object file

Figure 7.7: Linking with static libraries.

7.6.3 How Linkers Use Static Libraries to Resolve References

While static libraries are useful and essential tools, they are also a source of confusion to programmers
because of the way the Unix linker uses them to resolve external references. During the symbol resolution
phase, the linker scans the relocatable object files and archives left to right in the same sequential order that
they appear on the compiler driver’s command line. (The driver automatically translates any . c files on the
command line into . o files.) During this scan, the linker maintains a set E' of relocatable object files that
will be merged to form the executable, a set U of unresolved symbols (i.e., symbols referred to, but not yet
defined), and a set D of symbols that have been defined in previous input files. Initially, £, U, and D are
empty.

e For each input file f on the command line, the linker determines if f is an object file or an archive.
If f is an object file, the linker adds f to F, updates U and D to reflect the symbol definitions and
references in f, and proceeds to the next input file.

e If f is an archive, the linker attempts to match the unresolved symbols in U against the symbols
defined by the members of the archive. If some archive member, m, defines a symbol that resolves a
reference in U, then m is added to E, and the linker updates U and D to reflect the symbol definitions
and references in m. This process iterates over the member object files in the archive until a fixed point
is reached where U and D no longer change. At this point, any member object files not contained in
E are simply discarded and the linker proceeds to the next input file.

7.6. SYMBOL RESOLUTION 539

o If U is nonempty when the linker finishes scanning the input files on the command line, it prints
an error and terminates. Otherwise, it merges and relocates the object files in E to build the output
executable file.

Unfortunately, this algorithm can result in some baffling link-time errors because the ordering of libraries
and object files on the command line is significant. If the library that defines a symbol appears on the
command line before the object file that references that symbol, then the reference will not be resolved and
linking will fail. For example, consider the following:

uni x> gcc -static ./libvector.a main2.c
/tmp/ ccO9XHERp. 0: In function ‘main’:
/tmp/ ccOXHERp. o(. t ext +0x18): undefined reference to ‘addvec’

What happened? When | i bvect or. a is processed, U is empty, so no member object files from | i b-
vect or . a are added to E. Thus, the reference to addvec is never resolved, and the linker emits an error
message and terminates..

The general rule for libraries is to place them at the end of the command line. If the members of the
different libraries are independent, in that no member references a symbol defined by another member, then
the libraries can be placed at the end of the command line in any order.

If, on the other hand, the libraries are not independent, then they must be ordered so that for each symbol
s that is referenced externally by a member of an archive, at least one definition of s follows a reference to
s on the command line. For example, suppose f 00. ¢ calls functions in | i bx. aand | i bz. a that call
functionsinl i by. a. Thenli bx. aand | i bz. a must precede | i by. a on the command line:

uni x> gcc foo.c libx.a libz.a liby.a

Libraries can be repeated on the command line if necessary to satisfy the dependence requirements. For
example, suppose f 00. c calls a function in | i bx. a that calls a function in | i by. a that calls a function
inlibx.a. Thenl i bx. amust be repeated on the command line:

uni x> gcc foo.c libx.a liby.a libx.a

Alternatively, we could combine | i bx. aand | i by. a into a single archive.

Practice Problem 7.3;

Let a and b denote object modules or static libraries in the current directory, and let a—b denote that
a dependson b, in the sense that b defi nesa symbol that is referenced by a. For each of the following
scenarios, show the minimal command line (i.e., one with the least number of fi le object fi le and library
arguments) that will allow the static linker to resolve al symbol references.

A. p.o—1libx.a.

B. p.o—libx.a—1liby.a.

C.p.o—>libx.a—liby.aandliby.a—1ibx.a—p.o.

540 CHAPTER 7. LINKING

7.7 Relocation

Once the linker has completed the symbol resolution step, it has associated each symbol reference in the
code with exactly one symbol definition (i.e., a symbol table entry in one of its input object modules). At
this point, the linker knows the exact sizes of the code and data sections in its input object modules. It is
now ready to begin the relocation step, where it merges the input modules and assigns run-time addresses
to each symbol. Relocation consists of two steps:

¢ Relocating sections and symbol definitions. In this step, the linker merges all sections of the same
type into a new aggregate section of the same type. For example, the . dat a sections from the input
modules are all merged into one section that will become the . dat a section for the output executable
object file. The linker then assigns run-time memory addresses to the new aggregate sections, to each
section defined by the input modules, and to each symbol defined by the input modules. When this
step is complete, every instruction and global variable in the program has a unique run-time memory
address.

¢ Relocating symbol references within sections. In this step, the linker modifies every symbol reference
in the bodies of the code and data sections so that they point to the correct run-time addresses. To
perform this step, the linker relies on data structures in the relocatable object modules known as
relocation entries, which we describe next.

7.7.1 Relocation Entries

When an assembler generates an object module, it does not know where the code and data will ultimately
be stored in memory. Nor does it know the locations of any externally defined functions or global variables
that are referenced by the module. So whenever the assembler encounters a reference to an object whose
ultimate location is unknown, it generates a relocation entry that tells the linker how to modify the reference
when it merges the object file into an executable. Relocation entries for code are placed in. rel o. t ext.
Relocation entries for initialized data are placed in. r el 0. dat a.

Figure 7.8 shows the format of an ELF relocation entry. The of f set is the section offset of the reference
that will need to be modified. The synbol identifies the symbol that the modified reference should point
to. The t ype tells the linker how to the modify the new reference.

code/link/elfstructs.c

1 typedef struct {

2 int offset; /* offset of the reference to relocate */
3 int synmbol:24, /* synbol the reference should point to */
4 type: 8; /* relocation type */

5} Elf32_Rel;

code/link/elfstructs.c

Figure 7.8: ELF relocation entry. Each entry identifies a reference that must be relocated.

7.7. RELOCATION 541

ELF defines 11 different relocation types, some quite arcane. We are concerned with only the two most
basic relocation types:

e R 386 _PC32: Relocate a reference that uses a 32-bit PC-relative address. Recall from Section 3.6.3
that a PC-relative address is an offset from the current run-time value of the program counter (PC).
When the CPU executes an instruction using PC-relative addressing, it forms the effective address
(e.g., the target of the cal | instruction) by adding the 32-bit value encoded in the instruction to the
current run-time value of the PC, which is always the address of the next instruction in memory.

e R 386_32: Relocate a reference that uses a 32-bit absolute address. With absolute addressing, the
CPU directly uses the 32-bit value encoded in the instruction as the effective address, without further
modifications.

7.7.2 Relocating Symbol References

Figure 7.9 shows the pseudo code for the linker’s relocation algorithm.

1 foreach section s {

2 foreach relocation entry r {

3 refptr = s + r.offset; /* ptr to reference to be relocated */
4

5 /* relocate a PC-relative reference */

6 if (r.type == R 386_PC32) {

7 refaddr = ADDR(s) + r.offset; /* ref’s run-tinme address */
8 *refptr = (unsigned) (ADDR(r.synbol) + *refptr - refaddr);
9 }

10

11 /* relocate an absol ute reference */

12 if (r.type == R _386_32)

13 *refptr = (unsigned) (ADDR(r.synbol) + *refptr);

14 }

15 }

Figure 7.9: Relocation algorithm.

Lines 1 and 2 iterate over each section s and each relocation entry r associated with each section. For
concreteness, assume that each section s is an array of bytes and that each relocation entry r isa st ruct
of type El f 32_Rel , as defined in Figure 7.8. Also, assume that when the algorithm runs, the linker
has already chosen run-time addresses for each section (denoted ADDR(s)), and each symbol (denoted
ADDR(r. synbol)). Line 3 computes the address in the s array of the 4-byte reference that needs to be
relocated. If this reference uses PC-relative addressing, then it is relocated by lines 5-9. If the reference
uses absolute addressing, then it is relocated by lines 11-13.

542 CHAPTER 7. LINKING

Relocating PC-Relative References

Recall from our running example in Figure 7.1(a) that the mai n routine in the . t ext section of mai n. o
calls the swap routine, which is defined in swap. o. Here is the disassembled listing for the cal | instruc-
tion, as generated by the GNU oBJDUMP tool:

6: e8 fc ff ff ff cal | 7 <mai n+0x7> swap();
7: R _386_PC32 swap relocation entry

From this listing we see that the cal | instruction begins at section offset 0x6 and consists of the 1-byte
opcode Oxe8, followed by the 32-bit reference Oxf f f f f f f ¢ (—4 decimal), which is stored in little-endian
byte order. We also see a relocation entry for this reference displayed on the following line. (Recall that
relocation entries and instructions are actually stored in different sections of the object file. The oBiDUMP
tool displays them together for convenience.) The relocation entry r consists of three fields:

r.of fset = Ox7
r.symbol = swap
r.type = R 386_PC32

These fields tell the linker to modify the 32-bit PC-relative reference starting at offset 0x7 so that it will
point to the swap routine at run time. Now, suppose that the linker has determined that

ADDR(s) = ADDR(.text) = 0x80483b4

and

ADDR(r . synmbol) = ADDR(swap) = 0x80483c8.

Using the algorithm in Figure 7.9, the linker first computes the run-time address of the reference (line 7):

ref addr ADDR(s) + r.of fset

0x80483b4 + 0Ox7
0x80483bb

It then updates the reference from its current value (—4) to 0x9 so that it will point to the swap routine at
run time (line 8):

*refptr (unsi gned) (ADDR(r.synbol) + *refptr - refaddr)
(unsi gned) (0x80483c8 + (-4) - 0x80483bb)
(unsi gned) (0x9)

In the resulting executable object file, the cal | instruction has the following relocated form:
80483ba: €8 09 00 00 00 cal | 80483c8 <swap> swap() ;

At run time, the cal | instruction will be stored at address 0x80483ba. When the CPU executes the
cal | instruction, the PC has a value of 0x80483bf , which is the address of the instruction immediately
following the cal | instruction. To execute the instruction, the CPU performs the following steps:

7.7. RELOCATION 543

1. push PC onto stack
2. PC <- PC + 0x9 = 0x80483bf + 0x9 = 0x80483c8

Thus, the next instruction to execute is the first instruction of the swap routine, which of course is what we
want!

You may wonder why the assembler created the reference in the cal | instruction with an initial value of
—4. The assembler uses this value as a bias to account for the fact that the PC always points to the instruction
following the current instruction. On a different machine with different instruction sizes and encodings, the
assembler for that machine would use a different bias. This is powerful trick that allows the linker to blindly
relocate references, blissfully unaware of the instruction encodings for a particular machine.

Relocating Absolute References

Recall that in our example program in Figure 7.1, the swap. o module initializes the global pointer buf pO
to the address of the first element of the global buf array:

int *buf p0 = &buf[0];

Since buf pO0 is an initialized data object, it will be stored in the . dat a section of the swap. o relocatable
object module. Since it is initialized to the address of a global array, it will need to be relocated. Here is the
disassembled listing of the . dat a section from swap. o:

00000000 <buf p0>:
0: 00 00 00 00 int *bufp0 = &buf[0];
0: R _386_32 buf rel ocation entry

We see that the . dat a section contains a single 32-bit reference, the buf p0O pointer, which has a value of
0x0. The relocation entry tells the linker that this is a 32-bit absolute reference, beginning at offset 0, which
must be relocated so that it points to the symbol buf . Now, suppose that the linker has determined that

ADDR(r . synmbol) = ADDR(buf) = 0x8049454
The linker updates the reference using line 13 of the algorithm in Figure 7.9:

*refptr = (unsigned) (ADDR(r.synbol) + *refptr)
= (unsigned) (0x8049454 + 0)

(unsi gned) (0x8049454)
In the resulting executable object file, the reference has the following relocated form:

0804945c <buf p0>:
804945c: 54 94 04 08 Rel ocat ed!

In words, the linker has decided that at run time, the variable buf pO will be located at memory address
0x804945c and will be initialized to 0x8049454, which is the run-time address of the buf array.

The . t ext section in the swap. o module contains five absolute references that are relocated in a similar
way (See Problem 7.12). Figure 7.10 shows the relocated . t ext and . dat a sections in the final executable
object file.

544

CHAPTER 7. LINKING

1 080483b4 <nmi n>:

2 80483b4: 55 push %ebp

3 80483b5: 89 e5 nov %esp, Y%ebp

4 80483b7: 83 ec 08 sub $0x8, Y%esp

5 80483ba: €8 09 00 00 00 call 80483c8 <swap>
6 80483bf: 31 cO xor Yeax, Yeax

7 80483cl: 89 ec nov %ebp, Y%esp

8 80483c3: b&d pop %ebp

9 80483c4: c3 ret

10 80483c5: 90 nop

11 80483c6: 90 nop

12 80483c7: 90 nop

13 080483c8 <swap>:

14 80483c8: 55 push %ebp

15 80483c9: 8b 15 5c 94 04 08 nov 0x804945c, %edx
16 80483cf: al 58 94 04 08 nov 0x8049458, Yeax
17 80483d4: 89 e5 nov Y%esp, Y%ebp

18 80483d6: c7 05 48 95 04 08 58 novl $0x8049458, 0x8049548
19 80483dd: 94 04 08
20 80483e0: 89 ec nov %ebp, Y%esp
21 80483e2: 8b 0Oa nov (%dx), %ecx
22 80483e4: 89 02 nov Y%eax, (Yedx)
23 80483e6: al 48 95 04 08 nov 0x8049548, Y%eax
24 80483eb: 89 08 nov %ecx, (Yeax)
25 80483ed: b&d pop %ebp
26 80483ee: 3 ret

(a) Relocated . t ext section.

1 08049454 <buf >:

2 8049454: 01 00 00 00 02 00 00 00

3 0804945c <buf p0>:

4 804945c: 54 94 04 08 Rel ocat ed

(b) Relocated . dat a section.

code/link/p-exe.d

swap();

Get *buf p0
Get buf[1]

buf pl = &buf[1]

Get *bufpl

code/link/p-exe.d

code/link/pdata-exe.d

code/link/pdata-exe.d

Figure 7.10: Relocated .t ext and dat a sections for executable file p The original C code is in Fig-
ure 7.1.

7.8. EXECUTABLE OBJECT FILES 545

Practice Problem 7.4:
This problem concernsthe relocated programin Figure 7.10.

A. What isthe hex address of the relocated reference to swap in line 5?
B. What isthe hex value of the relocated referenceto swap in line 5?

C. Suppose the linker had decided for some reason to locate the . t ext section at 0x80483b8
instead of 0x80483b4. What would the hex value of the relocated referencein line 5 be in this
case?

7.8 Executable Object Files

We have seen how the linker merges multiple object modules into a single executable object file. Our C
program, which began life as a collection of ASCII text files, has been transformed into a single binary
file that contains all of the information needed to load the program into memory and run it. Figure 7.11
summarizes the kinds of information in a typical ELF executable file.

0

Maps contiguous file ELF header
sections to runtime Segment header table
memory segments Cinit Read-only memory segment
(code segment)
. text
.rodata
.data .
Read/write memory segment
. bss (data segment)
.synt ab
. debug
- Symbol table and
line debugging info are not
) strtab loaded into memory
Describes :
object file Section header table
sections

Figure 7.11: Typical ELF executable object file

The format of an executable object file is similar to that of a relocatable object file. The ELF header
describes the overall format of the file. It also includes the program’s entry point, which is the address of the
first instruction to execute when the program runs. The . t ext,. r odat a, and . dat a sections are similar
to those in a relocatable object file, except that these sections have been relocated to their eventual run-time
memory addresses. The . i ni t section defines a small function, called _i ni t, that will be called by the
program’s initialization code. Since the executable is fully linked (relocated), it needs no . r el o sections.

ELF executables are designed to be easy to load into memory, with contiguous chunks of the executable
file mapped to contiguous memory segments. This mapping is described by the segment header table.
Figure 7.12 shows the segment header table for our example executable p, as displayed by oBJDUMP.

