
1

COS 217: Introduction to
Programming Systems

Agenda

Course overview
•  Introductions
•  Course goals
•  Resources
•  Grading
•  Policies
•  Schedule

Getting started with C
•  History of C
•  Building and running C

programs
•  Characteristics of C
•  C details (if time)

5

Goal 1: “Pgmming in the Large”

Goal 1: “Programming in the large”
•  Help you learn how to compose

large computer programs

Topics
•  Modularity/abstraction, information hiding, resource management,

error handling, testing, debugging, performance improvement, tool
support

7

Goal 2: “Under the Hood”
Goal 2: “Look under the hood”

•  Help you learn what happens
“under the hood” of computer systems

Downward tours

C Language

Assembly Language

Machine Language

Application Program

Operating System

Hardware

language
levels
tour

service
levels
tour

8

Goals: Summary
Help you to become a...

Power Programmer!!!!

Goals: Why C?

Question: Why C instead of Java?

Answer 1: C supports Goal 2 better

Answer 2: C supports Goal 1 better

9

Agenda

Course overview
•  Introductions
•  Course goals
•  Resources
•  Grading
•  Policies
•  Schedule

Getting started with C
•  History of C
•  Building and running C

programs
•  Characteristics of C
•  C details (if time)

28

The C Programming Language

Who? Dennis Ritchie

When? ~1972

Where? Bell Labs

Why? Compose the Unix OS

29

30

Java vs. C: History

BCPL B C K&R C
ANSI C89
ISO C90

ISO C99
ANSI C99

1960 1970 1972 1978 1989 1999

LISP Smalltalk C++ Java

Not (yet?) popular;
our compiler
supports only
partially We will use

ISO C11

2011

Java vs. C: Design Goals

31

Java Design Goals C Design Goals
Language of the Internet Compose Unix
High-level; insulated from
hardware and OS

Low-level; close to HW and
OS

Good for application-level
programming

Good for system-level
programming

Support object-oriented
programming

Support structured
programming

Look like C!

Agenda

Course overview
•  Introductions
•  Course goals
•  Resources
•  Grading
•  Policies
•  Schedule

Getting started with C
•  History of C
•  Building and running C

programs
•  Characteristics of C
•  C details (if time)

32

HW (nobel)

OS (Linux)

Building Java Programs

33

MyPgm.java
(Java code)

javac MyPgm.class
(bytecode)

$ javac MyPgm.java Java compiler
(machine lang code)

HW (nobel)

OS (Linux)

Running Java Programs

34

data java data

$ java MyPgm

MyPgm.class
(bytecode)

Java interpreter
(Java virtual machine)
(machine lang code)

HW (nobel)

OS (Linux)

Building C Programs

35

mypgm.c
(C code)

gcc217
mypgm
(machine
lang code)

$ gcc217 mypgm.c –o mypgm C “compiler driver”
(machine lang code)

HW (nobel)

OS (Linux)

Running C Programs

36

data mypgm data

$ mypgm
mypgm
(machine lang code)

Agenda

Course overview
•  Introductions
•  Course goals
•  Resources
•  Grading
•  Policies
•  Schedule

Getting started with C
•  History of C
•  Building and running C

programs
•  Characteristics of C
•  C details (if time)

37

Java vs. C: Portability

38

Program Code Type Portable?
MyPgm.java Java source code Yes
mypgm.c C source code Mostly

MyPgm.class Bytecode Yes
mypgm Machine lang code No

javac (Java compiler) Machine lang code No
java (Java interpreter) Machine lang code No
gcc217 (C compiler driver) Machine lang code No

Conclusion: Java programs are more portable

Java vs. C: Efficiency

39

C programs run on “real”
machine

Java programs run on “virtual”
machine which runs on “real”
machine

Conclusion: C programs are faster

“Real” Machine

Java Virtual Machine

MyPgm.class

“Real” Machine

mypgm

“Real” Machine

Java Virtual Machine

Java vs. C: Safety

40

C programs run directly
on “real” machine

MyPgm.class

Java programs run on
“virtual” machine defined by
interpreter; can provide safe
environment
(e.g. array bounds checks)

Conclusion: Java programs are safer

“Real” Machine

mypgm

Java vs. C: Characteristics

41

Java C

Portability + -
Efficiency - +

Safety + -

Java vs. C: Characteristics

42

If this is Java…

Java vs. C: Characteristics

43

Then this is C

Agenda

Course overview
•  Introductions
•  Course goals
•  Resources
•  Grading
•  Policies
•  Schedule

Getting started with C
•  History of C
•  Building and running C

programs
•  Characteristics of C
•  C details (if time)

44

45

Java vs. C: Details

Remaining slides provide some details

Use for future reference

Slides covered now, as time allows…

46

Java vs. C: Details

Java C

Overall
Program
Structure

Hello.java:

public class Hello
{ public static void main
 (String[] args)
 { System.out.println(
 "hello, world");
 }
}

hello.c:

#include <stdio.h>

int main(void)
{ printf("hello, world\n");
 return 0;
}

Building $ javac Hello.java $ gcc217 hello.c –o hello

Running
$ java Hello
hello, world
$

$ hello
hello, world
$

47

Java vs. C: Details
Java C

Character type char // 16-bit Unicode char /* 8 bits */

Integral types

byte // 8 bits
short // 16 bits
int // 32 bits
long // 64 bits

(unsigned) char
(unsigned) short
(unsigned) int
(unsigned) long

Floating point
types

float // 32 bits
double // 64 bits

float
double
long double

Logical type boolean
/* no equivalent */
/* use integral type */

Generic pointer
type // no equivalent void*

Constants final int MAX = 1000;
#define MAX 1000
const int MAX = 1000;
enum {MAX = 1000};

48

Java vs. C: Details
Java C

Arrays
int [] a = new int [10];
float [][] b =
 new float [5][20];

int a[10];
float b[5][20];

Array bound
checking // run-time check /* no run-time check */

Pointer type // Object reference is an
// implicit pointer int *p;

Record type

class Mine
{ int x;
 float y;
}

struct Mine
{ int x;
 float y;
};

49

Java vs. C: Details
Java C

Strings
String s1 = "Hello";
String s2 = new
 String("hello");

char *s1 = "Hello";
char s2[6];
strcpy(s2, "hello");

String
concatenation

s1 + s2
s1 += s2

#include <string.h>
strcat(s1, s2);

Logical ops * &&, ||, ! &&, ||, !

Relational ops * =, !=, >, <, >=, <= =, !=, >, <, >=, <=

Arithmetic ops * +, -, *, /, %, unary - +, -, *, /, %, unary -

Bitwise ops >>, <<, >>>, &, |, ^ >>, <<, &, |, ^

Assignment ops
=, *=, /=, +=, -=, <<=,
>>=, >>>=, =, &=, ^=, |=,
%=

=, *=, /=, +=, -=, <<=,
>>=, =, &=, ^=, |=, %=

* Essentially the same in the two languages

50

Java vs. C: Details
Java C

if stmt *

if (i < 0)
 statement1;
else
 statement2;

if (i < 0)
 statement1;
else
 statement2;

switch stmt *

switch (i)
{ case 1:
 ...
 break;
 case 2:
 ...
 break;
 default:
 ...
}

switch (i)
{ case 1:
 ...
 break;
 case 2:
 ...
 break;
 default:
 ...
}

goto stmt // no equivalent goto someLabel;

* Essentially the same in the two languages

51

Java vs. C: Details
Java C

for stmt for (int i=0; i<10; i++)
 statement;

int i;
for (i=0; i<10; i++)
 statement;

while stmt * while (i < 0)
 statement;

while (i < 0)
 statement;

do-while stmt *
do
 statement;
while (i < 0)

do
 statement;
while (i < 0);

continue stmt * continue; continue;

labeled continue
stmt continue someLabel; /* no equivalent */

break stmt * break; break;

labeled break
stmt break someLabel; /* no equivalent */

* Essentially the same in the two languages

52

Java vs. C: Details
Java C

return stmt * return 5;
return;

return 5;
return;

Compound stmt
(alias block) *

{
 statement1;
 statement2;
}

{
 statement1;
 statement2;
}

Exceptions throw, try-catch-finally /* no equivalent */

Comments /* comment */
// another kind

/* comment */

Method / function
call

f(x, y, z);
someObject.f(x, y, z);
SomeClass.f(x, y, z);

f(x, y, z);

* Essentially the same in the two languages

53

Example C Program
#include <stdio.h>
#include <stdlib.h>

int main(void)
{ const double KMETERS_PER_MILE = 1.609;
 int miles;
 double kMeters;

 printf("miles: ");
 if (scanf("%d", &miles) != 1)
 { fprintf(stderr, "Error: Expected a number.\n");
 exit(EXIT_FAILURE);
 }

 kMeters = (double)miles * KMETERS_PER_MILE;
 printf("%d miles is %f kilometers.\n",
 miles, kMeters);
 return 0;
}

54

Summary

Course overview
•  Introductions
•  Course goals

•  Goal 1: Learn “programming in the large”
•  Goal 2: Look “under the hood”
•  Use of C and Linux supports both goals

•  Resources
•  Lectures, precepts, programming environment, Piazza, textbooks
•  Course website: access via http://www.cs.princeton.edu

•  Grading
•  Policies
•  Schedule

