
Big Java
Late Objects
Cay Horstmann

San Jose State University

John Wiley & Sons, Inc.

18C h a p t e r

817

Generic
Classes

To understand the objective of
generic programming

To implement generic classes and methods

To explain the execution of generic methods in the virtual machine

To describe the limitations of generic programming in Java

C h a p t e r G o a l s

C h a p t e r C o n t e n t s

18.1  Generic Classes and
Type Parameters  818

18.2  Implementing Generic Types  819

Syntax 18.1: Declaring a Generic Class  820

18.3  Generic Methods  823

Syntax 18.2: Declaring a Generic Method  824

18.4  Constraining Type
Parameters  825

Common Error 18.1: Genericity and
Inheritance  827

Common Error 18.2: The Array
Store Exception  827

Special Topic 18.1: Wildcard Types  828

18.5  Type Erasure  829

Common Error 18.3: Using Generic Types in
a Static Context  832

Special Topic 18.2: Reflection  832
Worked Example 18.1: Making a

Generic Binary Search Tree Class 

818

In the supermarket, a generic product can be sourced
from multiple suppliers. In computer science, generic
programming involves the design and implementation of
data structures and algorithms that work for multiple types.
You have already seen the generic ArrayList class that
can be used to collect elements of arbitrary types. In this
chapter, you will learn how to implement your own generic
classes and methods.

18.1  Generic Classes and Type Parameters
Generic programming is the creation of programming constructs that can be used
with many different types. For example, the Java library programmers who imple-
mented the ArrayList class used the technique of generic programming. As a result,
you can form array lists that collect elements of different types, such as Array­
List<String>, Array­List<BankAccount>, and so on.

The LinkedList class that we implemented in Section 16.1 is also an example of
generic programming—you can store objects of any class inside a LinkedList. That
LinkedList class achieves genericity by using inheritance. It uses references of type
Object and is therefore capable of storing objects of any class. For example, you can
add elements of type String because the String class extends Object. In contrast, the
ArrayList and LinkedList classes from the standard Java library are generic classes. Each
of these classes has a type parameter for specifying the type of its elements. For exam-
ple, an ArrayList<String> stores String elements.

When declaring a generic class, you supply a variable for each type parameter. For
example, the standard library declares the class ArrayList<E>, where E is the type vari-
able that denotes the element type. You use the same variable in the declaration of the
methods, whenever you need to refer to that type. For example, the ArrayList<E> class
declares methods

public void add(E element)
public E get(int index)

You could use another name, such as ElementType, instead of E. However, it is custom-
ary to use short, uppercase names for type parameters.

In order to use a generic class, you need to instantiate the type parameter, that is,
supply an actual type. You can supply any class or interface type, for example

ArrayList<BankAccount>
ArrayList<Measurable>

However, you cannot substitute any of the eight primitive types for a type parameter.
It would be an error to declare an ArrayList<double>. Use the corresponding wrapper
class instead, such as ArrayList<Double>.

When you instantiate a generic class, the type that you supply replaces all occur-
rences of the type variable in the declaration of the class. For example, the add method
for ArrayList<BankAccount> has the type variable E replaced with the type BankAccount:

public void add(BankAccount element)

Contrast that with the add method of the LinkedList class in Chapter 16:
public void add(Object element)

In Java, generic
programming can be
achieved with
inheritance or with
type parameters.

A generic class has
one or more type
parameters.

Type parameters
can be instantiated
with class or
interface types.

18.2 I mplementing Generic Types   819

The add method of the generic ArrayList class is safer. It is impossible to add a String
object into an ArrayL­ist<BankAccount>, but you can accidentally add a String into a
LinkedList that is intended to hold bank accounts:

ArrayList<BankAccount> accounts1 = new ArrayList<BankAccount>();
LinkedList accounts2 = new LinkedList(); // Should hold BankAccount objects
accounts1.add("my savings"); // Compile-time error
accounts2.addFirst("my savings"); // Not detected at compile time

The latter will result in a class cast exception when some other part of the code
retrieves the string, believing it to be a bank account:

BankAccount account = (BankAccount) accounts2.getFirst(); // Run-time error

Code that uses the generic ArrayList class is also easier to read. When you spot an
ArrayList<BankAccount>, you know right away that it must contain bank accounts.
When you see a LinkedList, you have to study the code to find out what it contains.

In Chapters 16 and 17, we used inheritance to implement generic linked lists, hash
tables, and binary trees, because you were already familiar with the concept of inheri-
tance. Using type parameters requires new syntax and additional techniques—those
are the topic of this chapter.

1.	 The standard library provides a class HashMap<K, V> with key type K and value
type V. Declare a hash map that maps strings to integers.

2.	 The binary search tree class in Chapter 17 is an example of generic programming
because you can use it with any classes that implement the Comparable interface.
Does it achieve genericity through inheritance or type parameters?

3.	 Does the following code contain an error? If so, is it a compile-time or run-time
error?
ArrayList<Integer> a = new ArrayList<Integer>();
String s = a.get(0);

4.	 Does the following code contain an error? If so, is it a compile-time or run-time
error?
ArrayList<Double> a = new ArrayList<Double>();
a.add(3);

5.	 Does the following code contain an error? If so, is it a compile-time or run-time
error?
LinkedList a = new LinkedList();
a.addFirst("3.14");
double x = (Double) a.removeFirst();

Practice It	 Now you can try these exercises at the end of the chapter: R18.4, R18.5, R18.6.

18.2  Implementing Generic Types
In this section, you will learn how to implement your own generic classes. We will
write a very simple generic class that stores pairs of objects, each of which can have an
arbitrary type. For example,

Pair<String, Integer> result = new Pair<String, Integer>("Harry Morgan", 1729);

ONLINE E x a m p l e

Sample programs
that demonstrate
safety problems
when using
collections without
type parameters.

Type parameters
make generic code
safer and easier
to read.

S e l f C h e c k

820  Chapter 18  Generic Classes

Syntax 18.1	 Declaring a Generic Class

modifier class GenericClassName<TypeVariable1, TypeVariable2, . . .>
{
 instance variables
 constructors
 methods
}

Syntax

public class Pair<T, S>
{
 private T first;
 private S second;
 . . .
 public T getFirst() { return first; }
 . . .
}

Supply a variable for each type parameter.

Instance variables with a variable data type
A method with a
variable return type

The getFirst and getSecond methods retrieve the first and second values of the pair:
String name = result.getFirst();
Integer number = result.getSecond();

This class can be useful when you implement a method that computes two values at
the same time. A method cannot simultaneously return a String and an Integer, but it
can return a single object of type Pair<String, Integer>.

The generic Pair class requires two type parameters, one for the type of the first
element and one for the type of the second element.

We need to choose variables for the type parameters. It is considered good form
to use short uppercase names for type variables, such as those in the following table:

Type Variable Meaning

E Element type in a collection

K Key type in a map

V Value type in a map

T General type

S, U Additional general types

You place the type variables for a generic class after the class name, enclosed in angle
brackets (< and >):

public class Pair<T, S>

When you declare the instance variables and methods of the Pair class, use the vari-
able T for the first element type and S for the second element type:

public class Pair<T, S>
{

Type variables of a
generic class follow
the class name and
are enclosed in
angle brackets.

18.2 I mplementing Generic Types   821

 private T first;
 private S second;

 public Pair(T firstElement, S secondElement)
 {
 first = firstElement;
 second = secondElement;
 }
 public T getFirst() { return first; }
 public S getSecond() { return second; }
}

Some people find it simpler to start out with a regular class, choosing some actual
types instead of the type parameters. For example,

public class Pair // Here we start out with a pair of String and Integer values
{
 private String first;
 private Integer second;

 public Pair(String firstElement, Integer secondElement)
 {
 first = firstElement;
 second = secondElement;
 }

 public String getFirst() { return first; }
 public Integer getSecond() { return second; }
}

Now it is an easy matter to replace all String types with the type variable T and all
Integer types with the type variable S.

This completes the declaration of the generic Pair class. It is ready to use whenever
you need to form a pair of two objects of arbitrary types.

The following sample program shows how to make use of a Pair for returning two
values from a method.

section_2/Pair.java

1 /**
2 This class collects a pair of elements of different types.
3 */
4 public class Pair<T, S>
5 {
6 private T first;
7 private S second;
8
9 /**

10 Constructs a pair containing two given elements.
11 @param firstElement the first element
12 @param secondElement the second element
13 */
14 public Pair(T firstElement, S secondElement)
15 {
16 first = firstElement;
17 second = secondElement;
18 }
19

Use type parameters
for the types of
generic instance
variables, method
parameter variables,
and return values.

822  Chapter 18  Generic Classes

20 /**
21 Gets the first element of this pair.
22 @return the first element
23 */
24 public T getFirst() { return first; }
25
26 /**
27 Gets the second element of this pair.
28 @return the second element
29 */
30 public S getSecond() { return second; }
31
32 public String toString() { return "(" + first + ", " + second + ")"; }
33 }

section_2/PairDemo.java

1 public class PairDemo
2 {
3 public static void main(String[] args)
4 {
5 String[] names = { "Tom", "Diana", "Harry" };
6 Pair<String, Integer> result = firstContaining(names, "a");
7 System.out.println(result.getFirst());
8 System.out.println("Expected: Diana");
9 System.out.println(result.getSecond());

10 System.out.println("Expected: 1");
11 }
12
13 /**
14 Gets the first String containing a given string, together
15 with its index.
16 @param strings an array of strings
17 @param sub a string
18 @return a pair (strings[i], i) where strings[i] is the first
19 strings[i] containing str, or a pair (null, -1) if there is no
20 match.
21 */
22 public static Pair<String, Integer> firstContaining(
23 String[] strings, String sub)
24 {
25 for (int i = 0; i < strings.length; i++)
26 {
27 if (strings[i].contains(sub))
28 {
29 return new Pair<String, Integer>(strings[i], i);
30 }
31 }
32 return new Pair<String, Integer>(null, -1);
33 }
34 }

Program Run

Diana
Expected: Diana
1
Expected: 1

18.3  Generic Methods   823

6.	 How would you use the generic Pair class to construct a pair of strings "Hello"
and "World"?

7.	 How would you use the generic Pair class to construct a pair containing “Hello”
and 1729?

8.	 What is the difference between an ArrayList<Pair<String, Integer>> and a
Pair<ArrayList<String>, Inte­ger>?

9.	 Write a method roots with a Double parameter variable x that returns both the
positive and negative square root of x if x ≥ 0 or null otherwise.

10.	 How would you implement a class Triple that collects three values of arbitrary
types?

Practice It	 Now you can try these exercises at the end of the chapter: P18.1, P18.2, P18.9.

18.3  Generic Methods
A generic method is a method with a type parameter. Such a method can occur in a
class that in itself is not generic. You can think of it as a template for a set of methods
that differ only by one or more types. For example, we may want to declare a method
that can print an array of any type:

public class ArrayUtil
{
 /**
 Prints all elements in an array.
 @param a the array to print
 */
 public static <T> void print(T[] a)
 {
 . . .
 }
 . . .
}

As described in the previous section, it is often easier to see how to implement a
generic method by starting with a concrete example. This method prints the elements
in an array of strings:

public class ArrayUtil
{
 public static void print(String[] a)
 {
 for (String e : a)
 {
 System.out.print(e + " ");
 }
 System.out.println();
 }
 . . .
}

S e l f C h e c k

A generic method
is a method with a
type parameter.

824  Chapter 18  Generic Classes

Syntax 18.2	 Declaring a Generic Method

modifiers <TypeVariable1, TypeVariable2, . . .> returnType methodName(parameters)
{
 body
}

Syntax

public static <E> String toString(ArrayList<E> a)
{
 String result = "";
 for (E e : a)
 {
 result = result + e + " ";
 }
 return result;
}

Supply the type variable before the return type.

Local variable with a
variable data type

In order to make the method into a generic method, replace String with a type param-
eter, say E, to denote the element type of the array. Add a type parameter list, enclosed
in angle brackets, between the modifiers (public static) and the return type (void):

public static <E> void print(E[] a)
{
 for (E e : a)
 {
 System.out.print(e + " ");
 }
 System.out.println();
}

When you call the generic method, you need not specify which type to use for the
type parameter. (In this regard, generic methods differ from generic classes.) Simply
call the method with appropriate arguments, and the compiler will match up the type
parameters with the argument types. For example, consider this method call:

Rectangle[] rectangles = . . .;
ArrayUtil.print(rectangles);

The type of the rectangles argument is Rectangle[], and the type of the parameter vari-
able is E[]. The compiler deduces that E is Rectangle.

This particular generic method is a static method in an ordinary class. You can also
declare generic methods that are not static. You can even have generic methods in
generic classes.

As with generic classes, you cannot replace type parameters with primitive types.
The generic print method can print arrays of any type except the eight primitive types.
For example, you cannot use the generic print method to print an array of type int[].
That is not a major problem. Simply implement a print(int[] a) method in addition to
the generic print method.

11.	 Exactly what does the generic print method print when you pass an array of
BankAccount objects containing two bank accounts with zero balances?

12.	 Is the getFirst method of the Pair class a generic method?

Supply the type
parameters of a
generic method
between the
modifiers and the
method return type.

When calling a
generic method, you
need not instantiate
the type parameters.

O n l i n e E x a m p l e

A sample program
with a generic
method for printing
an array of objects
and a non-generic
method for printing
an array of integers.

S e l f C h e c k

18.4  Constraining Type Parameters   825

13.	 Consider this fill method:
public static <T> void fill(List<T> lst, T value)
{
 for (int i = 0; i < lst.size(); i++) { lst.set(i, value); }
}

If you have an array list
ArrayList<String> a = new ArrayList<String>(10);

how do you fill it with ten "*"?
14.	 What happens if you pass 42 instead of "*" to the fill method?
15.	 Consider this fill method:

public static <T> fill(T[] arr, T value)
{
 for (int i = 0; i < arr.length; i++) { arr[i] = value; }
}

What happens when you execute the following statements?
String[] a = new String[10];
fill(a, 42);

Practice It	 Now you can try these exercises at the end of the chapter: P18.3, P18.4, P18.19.

18.4  Constraining Type Parameters
It is often necessary to specify what types can be
used in a generic class or method. Consider a generic
method that finds the average of the values in an array
list of objects. How can you compute averages when
you know nothing about the element type? You need
to have a mechanism for measuring the elements. In
Section 9.6, we designed an interface for that purpose:

public interface Measurable
{
 double getMeasure();
}

We can constrain the type of the elements, requiring
that the type implement the Measurable type. In Java,
this is achieved by adding the clause extends Measurable
after the type parameter:

public static <E extends Measurable> double average(ArrayList<E> objects)

This means, “E or one of its superclasses extends or implements Measurable”. In this
situation, we say that E is a subtype of the Measurable type.

Here is the complete average method:

public static <E extends Measurable> double average(ArrayList<E> objects)
{
 if (objects.size() == 0) { return 0; }
 double sum = 0;
 for (E obj : objects)
 {

You can place restrictions on
the type parameters of generic
classes and methods.

Type parameters
can be constrained
with bounds.

826  Chapter 18  Generic Classes

 sum = sum + obj.getMeasure();
 }
 return sum / objects.size();
}

Note the call obj.getMeasure(). The variable obj has type E, and E is a subtype of
Measurable. Therefore, we know that it is legal to apply the getMeasure method to obj.

If the BankAccount class implements the Measurable interface, then you can call the
average method with an array list of BankAccount objects. But you cannot compute the
average of an array list of strings because the String class does not implement the
Measurable interface.

Now consider the task of finding the minimum in an array list. We can return
the element with the smallest measure (see Self Check 17). However, the Measurable
interface was created for this book and is not widely used. Instead, we will use the
Comparable interface type that many classes implement. The Comparable interface is itself
a generic type. The type parameter specifies the type of the parameter variable of the
compareTo method:

public interface Comparable<T>
{
 int compareTo(T other);
}

For example, String implements Comparable<String>. You can compare strings with
other strings, but not with objects of different classes.

If the array list has elements of type E, then we want to require that E implements
Comparable<E>. Here is the method:

public static <E extends Comparable<E>> E min(ArrayList<E> objects)
{
 E smallest = objects.get(0);
 for (int i = 1; i < objects.size(); i++)
 {
 E obj = objects.get(i);
 if (obj.compareTo(smallest) < 0)
 {
 smallest = obj;
 }
 }
 return smallest;
}

Because of the type constraint, we know that obj has a method
int compareTo(E other)

Therefore, the call
obj.compareTo(smallest)

is valid.
Very occasionally, you need to supply two or more type bounds. Then you sepa-

rate them with the & character, for example
<E extends Comparable<E> & Measurable>

The extends reserved word, when applied to type parameters, actually means “extends
or implements”. The bounds can be either classes or interfaces, and the type param-
eter can be replaced with a class or interface type.

O n l i n e E x a m p l e

A sample program
that demonstrates a
constraint on a type
parameter.

18.4  Constraining Type Parameters   827

16.	 How would you constrain the type parameter for a generic BinarySearchTree
class?

17.	 Modify the min method to compute the minimum of an array list of elements that
implements the Measurable interface.

18.	 Could we have declared the min method of Self Check 17 without type param-
eters, like this?
public static Measurable min(ArrayList<Measurable> a)

19.	 Could we have declared the min method of Self Check 17 without type param-
eters for arrays, like this?
public static Measurable min(Measurable[] a)

20.	 How would you implement the generic average method for arrays?
21.	 Is it necessary to use a generic average method for arrays of measurable objects?

Practice It	 Now you can try these exercises at the end of the chapter: P18.5, P18.7, P18.20.

Genericity and Inheritance

If SavingsAccount is a subclass of BankAccount, is ArrayList<SavingsAccount> a subclass of Array­
List<BankAccount>? Perhaps surprisingly, it is not. Inheritance of type parameters does not lead
to inheritance of generic classes. There is no relationship between Array­List<Savings­Account>
and Array­List<Bank­Account>.

This restriction is necessary for type checking. Without the restriction, it would be pos-
sible to add objects of unrelated types to a collection. Suppose it was possible to assign an
ArrayList<SavingsAccount> object to a variable of type ArrayList<BankAccount>:

ArrayList<SavingsAccount> savingsAccounts = new ArrayList<SavingsAccount>();
ArrayList<BankAccount> bankAccounts = savingsAccounts;
 // Not legal, but suppose it was
BankAccount harrysChecking = new CheckingAccount();
 // CheckingAccount is another subclass of BankAccount
bankAccounts.add(harrysChecking); // OK—can add BankAccount object

But bankAccounts and savingsAccounts refer to the same array list! If the assignment was legal,
we would be able to add a CheckingAccount into an ArrayList<SavingsAccount>.

In many situations, this limitation can be overcome by using wildcards—see Special
Topic 18.1.

The Array Store Exception

In Common Error 18.1, you saw that one cannot assign a subclass list to a superclass list.
For example, an ArrayList<SavingsAccount> cannot be used where an ArrayList<BankAccount> is
expected.

This is surprising, because you can perform the equivalent assignment with arrays. For
example,

SavingsAccount[] savingsAccounts = new SavingsAccount[10];
BankAccount bankAccounts = savingsAccounts; // Legal

But there was a reason the assignment wasn’t legal for array lists—it would have allowed stor-
ing a CheckingAccount into savingsAccounts.

S e l f C h e c k

Common Error 18.1

Common Error 18.2

828  Chapter 18  Generic Classes

Let’s try that with arrays:

BankAccount harrysChecking = new CheckingAccount();
bankAccounts[harrysChecking]; // Throws ArrayStoreException

This code compiles. The object harrysChecking is a CheckingAccount and hence a BankAccount. But
bankAccounts and savingsAccounts are references to the same array—an array of type Savings­
Account[]. When the program runs, that array refuses to store a CheckingAccount, and throws an
ArrayStoreException.

Both ArrayList and arrays avoid the type error, but they do it in different ways. The Array­
List class avoids it at compile-time, and arrays avoid it at run-time. Generally, we prefer a
compile-time error notification, but the cost is steep, as you can see from Special Topic 18.1. It
is a lot of work to tell the compiler precisely which conversions should be permitted.

Wildcard Types

It is often necessary to formulate subtle constraints on type parameters. Wildcard types were
invented for this purpose. There are three kinds of wildcard types:

Name Syntax Meaning

Wildcard with lower bound ? extends B Any subtype of B

Wildcard with upper bound ? super B Any supertype of B

Unbounded wildcard ? Any type

A wildcard type is a type that can remain unknown. For example, we can declare the following
method in the LinkedList<E> class:

public void addAll(LinkedList<? extends E> other)
{
 ListIterator<E> iter = other.listIterator();
 while (iter.hasNext())
 {
 add(iter.next());
 }
}

The method adds all elements of other to the end of the linked list.
The addAll method doesn’t require a specific type for the element type of other. Instead,

it allows you to use any type that is a subtype of E. For example, you can use addAll to add a
LinkedList<SavingsAccount> to a LinkedList<BankAccount>.

To see a wildcard with a super bound, have another look at the min method:

public static <E extends Comparable<E>> E min(ArrayList<E> a)

However, this bound is too restrictive. Suppose the BankAccount class implements
Comparable<BankAccount>. Then the subclass SavingsAccount also implements Comparable<Bank­
Account> and not Comparable<SavingsAccount>. If you want to use the min method with a Savings­
Account array list, then the type parameter of the Comparable interface should be any supertype
of the array list’s element type:

public static <E extends Comparable<? super E>> E min(ArrayList<E> a)

Here is an example of an unbounded wildcard. The Collections class declares a method

public static void reverse(List<?> list)

Special Topic 18.1

18.5 T ype Erasure   829

You can think of that declaration as a shorthand for

public static <T> void reverse(List<T> list)

Common Error 18.2 compares this limitation with the seemingly more permissive behavior of
arrays in Java.

18.5  Type Erasure
Because generic types are a fairly recent addition to the Java language, the virtual
machine that executes Java programs does not work with generic classes or meth-
ods. Instead, type parameters are “erased”, that is, they are replaced with ordinary
Java types. Each type parameter is replaced with its bound, or with Object if it is not
bounded.

For example, the generic class Pair<T, S> turns into the following raw class:
public class Pair
{
 private Object first;
 private Object second;

 public Pair(Object firstElement, Object secondElement)
 {
 first = firstElement;
 second = secondElement;
 }
 public Object getFirst() { return first; }
 public Object getSecond() { return second; }
}

As you can see, the type parameters T and S have been replaced by Object. The result is
an ordinary class.

The same process is applied to generic methods. Consider this method:
public static <E extends Measurable> E min(E[] objects)
{
 E smallest = objects[0];
 for (int i = 1; i < objects.length; i++)
 {
 E obj = objects[i];
 if (obj.getMeasure() < smallest.getMeasure())
 {
 smallest = obj;
 }
 }
 return smallest;
}

In the Java virtual machine, generic types are erased.

O n l i n e E x a m p l e

A program that
demonstrates the
need for wildcards.

The virtual machine
erases type
parameters,
replacing them with
their bounds or
Objects.

830  Chapter 18  Generic Classes

When erasing the type parameter, it is replaced with its bound, the Measurable interface:
public static Measurable min(Measurable[] objects)
{
 Measurable smallest = objects[0];
 for (int i = 1; i < objects.length; i++)
 {
 Measurable obj = objects[i];
 if (obj.getMeasure() < smallest.getMeasure())
 {
 smallest = obj;
 }
 }
 return smallest;
}

Knowing about type erasure helps you understand the limitations of Java gener-
ics. For example, you cannot construct new objects of a generic type. The following
method, which tries to fill an array with copies of default objects, would be wrong:

public static <E> void fillWithDefaults(E[] a)
{
 for (int i = 0; i < a.length; i++)
 {
 a[i] = new E(); // ERROR
 }
}

To see why this is a problem, carry out the type erasure process, as if you were the
compiler:

public static void fillWithDefaults(Object[] a)
{
 for (int i = 0; i < a.length; i++)
 {
 a[i] = new Object(); // Not useful
 }
}

Of course, if you start out with a Rectangle[] array, you don’t want it to be filled with
Object instances. But that’s what the code would do after erasing types.

In situations such as this one, the compiler will report an error. You then need to
come up with another mechanism for solving your problem. In this particular exam-
ple, you can supply a default object:

public static <E> void fill(E[] a, E defaultValue)
{
 for (int i = 0; i < a.length; i++)
 {
 a[i] = defaultValue;
 }
}

Similarly, you cannot construct an array of a generic type:
public class Stack<E>
{
 private E[] elements;
 . . .
 public Stack()
 {
 elements = new E[MAX_SIZE]; // Error

You cannot construct
objects or arrays of a
generic type.

18.5 T ype Erasure   831

 }
}

Because the array construction expression new E[] would be erased to new Object[], the
compiler disallows it. A remedy is to use an array list instead:

public class Stack<E>
{
 private ArrayList<E> elements;
 . . .
 public Stack()
 {
 elements = new ArrayList<E>(); // Ok
 }
 . . .
}

Another solution is to use an array of objects and provide a cast when reading ele-
ments from the array:

public class Stack<E>
{
 private Object[] elements;
 private int currentSize;
 . . .
 public Stack()
 {
 elements = new Object[MAX_SIZE]; // Ok
 }
 . . .
 public E pop()
 {
 size--;
 return (E) elements[currentSize];
 }
}

The cast (E) generates a warning because it cannot be checked at run time.
These limitations are frankly awkward. It is hoped that a future version of Java will

no longer erase types so that the current restrictions due to erasure can be lifted.

22.	 Suppose we want to eliminate the type bound in the min method of Section 18.5,
by declaring the parameter variable as an array of Comparable<E> objects. Why
doesn’t this work?

23.	 What is the erasure of the print method in Section 18.3?
24.	 Could the Stack example be implemented as follows?

public class Stack<E>
{
 private E[] elements;
 . . .
 public Stack()
 {
 elements = (E[]) new Object[MAX_SIZE];
 }
 . . .
}

O n l i n e E x a m p l e

This program shows
how to implement a
generic stack as an
array of objects.

S e l f C h e c k

832  Chapter 18  Generic Classes

25.	 The ArrayList<E> class has a method
Object[] toArray()

Why doesn’t the method return an E[]?
26.	 The ArrayList<E> class has a second method

E[] toArray(E[] a)

Why can this method return an array of type E[]? (Hint: Special Topic 18.2.)
27.	 Why can’t the method

static <T> T[] copyOf(T[] original, int newLength)

be implemented without reflection?

Practice It	 Now you can try these exercises at the end of the chapter: R18.11, R18.14, P18.22.

Using Generic Types in a Static Context

You cannot use type parameters to declare static variables, static methods, or static inner
classes. For example, the following would be illegal:

public class LinkedList<E>
{
 private static E defaultValue; // ERROR
 . . .
 public static List<E> replicate(E value, int n) { . . . } // ERROR
 private static class Node { public E data; public Node next; } // ERROR
}

In the case of static variables, this restriction is very sensible. After the generic types are erased,
there is only a single variable LinkedList.defaultValue, whereas the static variable declaration
gives the false impression that there is a separate variable for each LinkedList<E>.

For static methods and inner classes, there is an easy workaround; simply add a type
parameter:

public class LinkedList<E>
{
 . . .
 public static <T> List<T> replicate(T value, int n) { . . . } // OK
 private static class Node<T> { public T data; public Node<T> next; } // OK
}

Reflection

As you have seen, type erasure makes it impossible for a generic method to construct a generic
array. There is an advanced technique called reflection that you can sometimes use to over-
come this limitation. Reflection lets you work with classes in a running program.

In Java, the virtual machine keeps a Class object for each class that has been loaded. That
object has information about each class, as well as methods to construct new objects of the
class.

Given an object, you can get its class object by calling getClass:

Class objsClass = obj.getClass();

Common Error 18.3

Special Topic 18.2

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

18.5 T ype Erasure   833

You can then make a new instance of that class by calling the newInstance method:

Object newObj = objsClass.newInstance();

This method throws an exception if it cannot access a constructor with no arguments.
Given an array, you can get the type of the elements this way:

Class arrayClass = array.getClass();
Class elementClass = arrayClass.getComponentType();

If you want to create a new array, use the Array.newInstance method:

Object[] newArray = Array.newInstance(elementClass, length);

Using these methods, you can implement the fillWithDefaults method:

public static <E> void fillWithDefaults(E[] a)
{
 Class arrayClass = a.getClass();
 Class elementClass = arrayClass.getComponentType();
 try
 {
 for (int i = 0; i < a.length; i++)
 {
 a[i] = elementClass.newInstance();
 }
 }
 catch (. . .) { . . . }
}

Note that we must ask for the element type of a. It does no good asking for a[0].getClass. The
array might have length 0, or a[0] might be null, or a[0] might be an instance of a subclass of E.

Here is another example. The Arrays class implements a method

static <T> T[] copyOf(T[] original, int newLength)

That method can’t simply call

T[] result = new T[newLength]; // Error

Instead, it must construct a new array with the same element type as the original:

Class arrayClass = original.getClass();
Class elementClass = arrayClass.getComponentType();
T[] newArray = (T[]) Array.newInstance(elementClass, newLength);

For this technique to work, you must have an element or array of the desired type. You
couldn’t use it to build a Stack<E> that uses an E[] array because the stack starts out empty.

Worked Example 18.1	 Making a Generic Binary Search Tree Class

In this Worked Example, we will turn the binary search tree class from Chapter 17 into a
generic BinarySearchTree<E> that stores elements of type E.

834  Chapter 18  Generic Classes

Describe generic classes and type parameters.

•	 In Java, generic programming can be achieved with inheritance or with type
parameters.

•	 A generic class has one or more type parameters.
•	 Type parameters can be instantiated with class or interface types.
•	 Type parameters make generic code safer and easier to read.

Implement generic classes and interfaces.

•	 Type variables of a generic class follow the class name and are enclosed in angle
brackets.

•	 Use type parameters for the types of generic instance variables, method parameter
variables, and return values.

Implement generic methods.

•	 A generic method is a method with a type parameter.
•	 Supply the type parameters of a generic method between the modifiers and the

method return type.
•	 When calling a generic method, you need not instantiate the type parameters.

Specify constraints on type parameters.

•	 Type parameters can be constrained with bounds.

Recognize how erasure of type parameters places limitations on generic programming in Java.

•	 The virtual machine erases type parameters, replacing them with their bounds
or Objects.

•	 You cannot construct objects or arrays of a generic type.

• R18.1	 What is a type parameter?

• R18.2	 What is the difference between a generic class and an ordinary class?

• R18.3	 What is the difference between a generic class and a generic method?

• R18.4	 Find an example of a non-static generic method in the standard Java library.

•• R18.5	 Find four examples of a generic class with two type parameters in the standard Java
library.

C h a p t e r Summ a r y

R e v i e w E x e r c i s e s

Programming Exercises  835

•• R18.6	 Find an example of a generic class in the standard library that is not a collection class.

• R18.7	 Why is a bound required for the type parameter T in the following method?
<T extends Comparable> int binarySearch(T[] a, T key)

•• R18.8	 Why is a bound not required for the type parameter E in the HashSet<E> class?

• R18.9	 What is an ArrayList<Pair<T, T>>?

•• R18.10	 Explain the type bounds of the following method of the Collections class.
public static <T extends Comparable<? super T>> void sort(List<T> a)

Why doesn’t T extends Comparable or T extends Comparable<T> suffice?

• R18.11	 What happens when you pass an ArrayList<String> to a method with an ArrayList
parameter variable? Try it out and explain.

••• R18.12	 What happens when you pass an ArrayList<String> to a method with an ArrayList
parameter variable, and the method stores an object of type BankAccount into the array
list? Try it out and explain.

•• R18.13	 What is the result of the following test?
ArrayList<BankAccount> accounts = new ArrayList<BankAccount>();
if (accounts instanceof ArrayList<String>) . . .

Try it out and explain.

•• R18.14	 The ArrayList<E> class in the standard Java library must manage an array of objects
of type E, yet it is not legal to construct a generic array of type E[] in Java. Locate the
implementation of the ArrayList class in the library source code that is a part of the
JDK. Explain how this problem is overcome.

• P18.1	 Modify the generic Pair class so that both values have the same type.

• P18.2	 Add a method swap to the Pair class of Exercise P18.1 that swaps the first and second
elements of the pair.

•• P18.3	 Implement a static generic method PairUtil.swap whose argument is a Pair object,
using the generic class declared in Section 18.2. The method should return a new
pair, with the first and second element swapped.

•• P18.4	 Write a static generic method PairUtil.minmax that computes the minimum and max
imum elements of an array of type T and returns a pair containing the minimum and
maximum value. Require that the array elements implement the Measurable interface
of Chapter 9.

•• P18.5	 Repeat Exercise P18.4, but require that the array elements implement the Comparable
interface.

••• P18.6	 Repeat Exercise P18.5, but refine the bound of the type parameter to extend the
generic Comparable type.

•• P18.7	 Implement a generic version of the binary search algorithm.

•• P18.8	 Implement a generic version of the selection sort algorithm.

P r o g r a mm i n g E x e r c i s e s

836  Chapter 18  Generic Classes

••• P18.9	 Implement a generic version of the merge sort algorithm. Your program should
compile without warnings.

• P18.10	 Implement a generic version of the LinkedList class of Chapter 16.

•• P18.11	 Turn the HashSet implementation of Chapter 16 into a generic class. Use an array list
instead of an array to store the buckets.

•• P18.12	 Provide suitable hashCode and equals methods for the Pair class of Section 18.2 and
implement a HashMap class, using a HashSet<Pair<K, V>>.

••• P18.13	 Implement a generic version of the permutation generator in Section 13.5. Generate
all permutations of a List<E>.

•• P18.14	 Write a generic static method print that prints the elements of any object that
implements the Iterable<E> interface. The elements should be separated by commas.
Place your method into an appropriate utility class.

•• P18.15	 Turn the MinHeap class of Chapter 17 into a generic class. As with the TreeSet class
of the standard library, allow a Comparator to compare elements. If no comparator is
supplied, assume that the element type implements the Comparable interface.

•• P18.16	 Make the Measurable interface from Chapter 9 into a generic class. Provide a static
method that returns the largest element of an ArrayList<T>, provided that the ele-
ments are instances of Measurable<T>. Be sure to return a value of type T.

••• P18.17	 Enhance Exercise P18.16 so that the elements of the ArrayList<T> can implement
Measurable<U> for appropriate types U.

•• P18.18	 Make the Measurer interface from Chapter 9 into a generic class. Provide a static
method T max(T[] values, Measurer<T> meas).

• P18.19	 Provide a static method void append(ArrayList<T> a, ArrayList<T> b) that appends the
elements of b to a.

•• P18.20	 Modify the method of Exercise P18.19 so that the second array list can contain ele-
ments of a subclass. For example, if people is an ArrayList<Person> and students is an
ArrayList<Student>, then append(people, students) should compile but append(students,
people) should not.

•• P18.21	 Modify the method of Exercise P18.19 so that it leaves the first array list unchanged
and returns a new array list containing the elements of both array lists.

•• P18.22	 Modify the method of Exercise P18.21 so that it receives and returns arrays, not
array lists. Hint: Arrays.copyOf.

• P18.23	 Provide a static method that reverses the elements of a generic array list.

• P18.24	 Provide a static method that returns the reverse of a generic array list, without
modifying the original list.

•• P18.25	 Provide a static method that checks whether a generic array list is a palindrome; that
is, whether the values at index i and n - 1 - i are equal to each other, where n is the
size of the array list.

•• P18.26	 Provide a static method that checks whether the elements of a generic array list are in
increasing order. The elements must be comparable.

Answers to Self-Check Questions  837

A n s w e r s t o S e l f - C h e c k Q u e s t i o n s

1.	 HashMap<String, Integer>
2.	 It uses inheritance.
3.	 This is a compile-time error. You cannot assign

the Integer expression a.get(0) to a string.
4.	 This is a compile-time error. The compiler

won’t convert 3 to a Double. Remedy: Call
a.add(3.0).

5.	 This is a run-time error. a.removeFirst() yields
a String that cannot be converted into a Double.
Remedy: Call a.addFirst(3.14);

6.	 new Pair<String, String>("Hello", "World")
7.	 new Pair<String, Integer>(“Hello”, 1729)

8.	 An ArrayList<Pair<String, Integer>> contains
multiple pairs, for example [(Tom, 1), (Harry,
3)]. A Pair<ArrayList<String>, Integer> contains
a list of strings and a single integer, such as
([Tom, Harry], 1).

9.	 public static Pair<Double, Double> roots(
 Double x)
{
 if (x >= 0)
 {
 double r = Math.sqrt(x);
 return new Pair<Double, Double>(r, -r);
 }
 else { return null; }
}

10.	 You have three type parameters: Triple<T, S, U>.
Add an instance variable U third, a construc-
tor argument for initializing it, and a method
U getThird() for returning it.

11.	 The output depends on the implementation of
the toString method in the Bank­­Account class.

12.	 No—the method has no type parameters. It is
an ordinary method in a generic class.

13.	 fill(a, "*")

14.	 You get a compile-time error. An integer can-
not be converted to a string.

15.	 You get a run-time error. Unfortunately, the
call compiles, with T = Object. This choice is
justified because a String[] array is convertible
to an Object[] array, and 42 becomes new Inte­
ger(42), which is convertible to an Object. But
when the program tries to store an Integer in
the String[] array, an exception is thrown.

16.	 public class BinarySearchTree<E
 extends Comparable<E>>

or, if you read Special Topic 18.1,
public class BinarySearchTree<E
 extends Comparable<? superE>>

17.	 public static <E extends Measurable> E min(
 ArrayList<E> objects)
{
 E smallest = objects.get(0);
 for (int i = 1; i < objects.size(); i++)
 {
 E obj = objects.get(i);
 if (obj.getMeasure()
 < smallest.getMeasure())
 {
 smallest = obj;
 }
 }
 return smallest;
}

18.	 No. As described in Common Error 18.1, you
cannot convert an ArrayList<BankAccount> to an
ArrayList<Measurable>, even if BankAccount imple-
ments Measurable.

19.	 Yes, but this method would not be as useful.
Suppose accounts is an array of BankAccount
objects. With this method, min(accounts) would
return a result of type Measurable, whereas the
generic method yields a BankAccount.

20.	 public static <E extends Measurable> ­
 double average(E[] objects)
{
 if (objects.length == 0) { return 0; }
 double sum = 0;
 for (E obj : objects)
 {
 sum = sum + obj.getMeasure();
 }
 return sum / objects.length;
}

21.	 No. You can define
public static double average(­
 Measurable[] objects)
{
 if (objects.length == 0) { return 0; }
 double sum = 0;
 for (Measurable obj : objects)
 {
 sum = sum + obj.getMeasure();
 }
 return sum / objects.length;

838  Chapter 18  Generic Classes

}

For example, if BankAccount implements
Measurable, a BankAccount[] array is convert-
ible to a Measurable[] array. Contrast with Self
Check 19, where the return type was a generic
type. Here, the return type is double, and there
is no need for using generic types.

22.	 public static <E> Comparable<E> min(
 Comparable<E>[] objects)

is an error. You cannot have an array of a
generic type.

23.	 public static void print(Object[] a)
{
 for (Object e : a)
 {
 System.out.print(e + " ");
 }
 System.out.println();
}

24.	 This code compiles (with a warning), but it is
a poor technique. In the future, if type erasure
no longer happens, the code will be wrong.
The cast from Object[] to String[] will cause a
class cast exception.

25.	 Internally, ArrayList uses an Object[] array.
Because of type erasure, it can’t make an E[]
array. The best it can do is make a copy of its
internal Object[] array.

26.	 It can use reflection to discover the element
type of the parameter a, and then construct
another array with that element type (or just
call the Arrays.copyOf method).

27.	 The method needs to construct a new array of
type T. However, that is not possible in Java
without reflection.

