
 Chapter 6 introduces the

stack data type.

 Several example

applications of stacks are

given in that chapter.

 This presentation shows

another use called

backtracking to solve the

N-Queens problem.

Using a Stack

Data Structures

and Other Objects

Using Java

The N-Queens Problem

 Suppose you have 8

chess queens...

 ...and a chess board

The N-Queens Problem

Can the queens be

placed on the board so

that no two queens are

attacking each other
?

The N-Queens Problem

Two queens are not

allowed in the same

row...

The N-Queens Problem

Two queens are not

allowed in the same

row, or in the same

column...

The N-Queens Problem

Two queens are not

allowed in the same

row, or in the same

column, or along the

same diagonal.

The N-Queens Problem

The number of queens,

and the size of the board

can vary.

N Queens

N columns

The N-Queens Problem

We will write a program

which tries to find a way

to place N queens on an

N x N chess board.

If you can run ega or

vga graphics,

you can double click on

this icon with the left

mouse button:

How the program works

The program

uses a stack to

keep track of

where each

queen is placed.

How the program works

Each time the

program decides

to place a queen

on the board,

the position of

the new queen is

stored in a

record which is

placed in the

stack.

ROW 1, COL 1

How the program works

We also have an

integer variable

to keep track of

how many rows

have been filled

so far.
ROW 1, COL 1

1
filled

How the program works

Each time we try

to place a new

queen in the next

row, we start by

placing the

queen in the first

column... ROW 1, COL 1

1
filled

ROW 2, COL 1

How the program works

...if there is a

conflict with

another queen,

then we shift the

new queen to the

next column.
ROW 1, COL 1

1
filled

ROW 2, COL 2

How the program works

If another

conflict occurs,

the queen is

shifted rightward

again.

ROW 1, COL 1

1
filled

ROW 2, COL 3

How the program works

When there are

no conflicts, we

stop and add one

to the value of

filled.

ROW 1, COL 1

2
filled

ROW 2, COL 3

How the program works

Let's look at the

third row. The

first position we

try has a

conflict...

ROW 1, COL 1

2
filled

ROW 2, COL 3

ROW 3, COL 1

How the program works

...so we shift to

column 2. But

another conflict

arises...

ROW 1, COL 1

2
filled

ROW 2, COL 3

ROW 3, COL 2

How the program works

...and we shift to

the third column.

Yet another

conflict arises...

ROW 1, COL 1

2
filled

ROW 2, COL 3

ROW 3, COL 3

How the program works

...and we shift to

column 4.

There's still a

conflict in

column 4, so we

try to shift

rightward

again...

ROW 1, COL 1

2
filled

ROW 2, COL 3

ROW 3, COL 4

How the program works

...but there's

nowhere else to

go.

ROW 1, COL 1

2
filled

ROW 2, COL 3

ROW 3, COL 4

How the program works

When we run out of

room in a row:

 pop the stack,

 reduce filled by 1

 and continue

working on the

previous row.

ROW 1, COL 1

1
filled

ROW 2, COL 3

How the program works

Now we

continue

working on row

2, shifting the

queen to the

right.
ROW 1, COL 1

1
filled

ROW 2, COL 4

How the program works

This position has

no conflicts, so

we can increase

filled by 1, and

move to row 3.

ROW 1, COL 1

2
filled

ROW 2, COL 4

How the program works

In row 3, we

start again at the

first column.

ROW 1, COL 1

2
filled

ROW 2, COL 4

ROW 3, COL 1

Pseudocode for N-Queens

Œ Initialize a stack where we can keep track of our

decisions.

• Place the first queen, pushing its position onto the

stack and setting filled to 0.

Ž repeat these steps

 if there are no conflicts with the queens...

 else if there is a conflict and there is room to

shift the current queen rightward...

 else if there is a conflict and there is no room

to shift the current queen rightward...

Pseudocode for N-Queens

Ž repeat these steps

 if there are no conflicts with the queens...

Increase filled by 1. If filled is now N, then

the algorithm is done. Otherwise, move to

the next row and place a queen in the

first column.

Pseudocode for N-Queens

Ž repeat these steps

 if there are no conflicts with the queens...

 else if there is a conflict and there is room to

shift the current queen rightward...

Move the current queen rightward,

adjusting the record on top of the stack

to indicate the new position.

Pseudocode for N-Queens

Ž repeat these steps

 if there are no conflicts with the queens...

 else if there is a conflict and there is room to

shift the current queen rightward...

 else if there is a conflict and there is no room

to shift the current queen rightward...

Backtrack!

Keep popping the stack, and reducing filled

 by 1, until you reach a row where the queen

 can be shifted rightward. Shift this queen right.

Pseudocode for N-Queens

Ž repeat these steps

 if there are no conflicts with the queens...

 else if there is a conflict and there is room to

shift the current queen rightward...

 else if there is a conflict and there is no room

to shift the current queen rightward...

Backtrack!

Keep popping the stack, and reducing filled

 by 1, until you reach a row where the queen

 can be shifted rightward. Shift this queen right.

Watching the program work

You can double

click the left mouse

button here to run

the demonstration

program a second

time:

 Stacks have many applications.

 The application which we have shown is called

backtracking.

 The key to backtracking: Each choice is recorded

in a stack.

 When you run out of choices for the current

decision, you pop the stack, and continue trying

different choices for the previous decision.

 Summary

THE END

Presentation copyright 2012, Pearson Education,

For use with Data Structures and Other Objects Using Java

by Michael Main.

Some artwork in the presentation is used with permission from Presentation Task Force

(copyright New Vision Technologies Inc) and Corel Gallery Clipart Catalog (copyright

Corel Corporation, 3G Graphics Inc, Archive Arts, Cartesia Software, Image Club

Graphics Inc, One Mile Up Inc, TechPool Studios, Totem Graphics Inc).

Students and instructors who use Data Structures and Other Objects Using Java are welcome

to use this presentation however they see fit, so long as this copyright notice remains

intact.

