
Goal. Evaluate infix expressions.

Two-stack algorithm. [E. W. Dijkstra]

• Value: push onto the value stack.

• Operator: push onto the operator stack.

• Left parenthesis: ignore.

• Right parenthesis: pop operator and two values;
push the result of applying that operator
to those values onto the operand stack.

Context. An interpreter!

(1 + ((2 + 3) * (4 * 5)))

53

Arithmetic expression evaluation

5734.3 Stacks and Queues

it is easy to convince yourself that it computes the proper value: any time the algo-
rithm encounters a subexpression consisting of two operands separated by an op-
erator, all surrounded by parentheses, it leaves the result of performing that opera-
tion on those operands on the operand stack. The result is the same as if that value
had appeared in the input instead of the sub-
expression, so we can think of replacing the
subexpression by the value to get an expression
that would yield the same result. We can apply
this argument again and again until we get a
single value. For example, the algorithm com-
putes the same value of all of these expres-
sions:

(1 + ((2 + 3) * (4 * 5)))
(1 + (5 * (4 * 5)))
(1 + (5 * 20))
(1 + 100)
101

Evaluate (PROGRAM 4.3.5) is an implemen-
tation of this method. This code is a simple
example of an interpreter : a program that in-
terprets the computation specified by a given
string and performs the computation to ar-
rive at the result. A compiler is a program that
converts the string into code on a lower-level
machine that can do the job. This conversion
is a more complicated process than the step-
by-step conversion used by an interpreter, but
it is based on the same underlying mechanism.
Initially, Java was based on using an interpret-
er. Now, however, the Java system includes a
compiler that converts arithmetic expressions
(and, more generally, Java programs) into code
for the Java virtual machine, an imaginary ma-
chine that is easy to simulate on an actual com-
puter. Trace of expression evaluation (Program 4.3.5)

(1 + ((2 + 3) * (4 * 5)))

+ ((2 + 3) * (4 * 5)))

((2 + 3) * (4 * 5)))

+ 3) * (4 * 5)))

3) * (4 * 5)))

) * (4 * 5)))

* (4 * 5)))

(4 * 5)))

* 5)))

5)))

)))

))

)

 1

 1
 +

 1 2
 +

 1 2
 + +

 1 2 3
 + +

 1 5
 +

 1 5
 + *

 1 5 4
 + *

 1 5 4
 + * *

 1 5 4 5
 + * *

 1 5 20
 + *

 1 100
 +

 101

introJava.indb 573 1/3/08 4:16:56 PM

operand operator

value stack
operator stack

55

Arithmetic expression evaluation

public class Evaluate
{
 public static void main(String[] args)
 {
 Stack<String> ops = new Stack<String>();
 Stack<Double> vals = new Stack<Double>();
 while (!StdIn.isEmpty()) {
 String s = StdIn.readString();
 if (s.equals("(")) ;
 else if (s.equals("+")) ops.push(s);
 else if (s.equals("*")) ops.push(s);
 else if (s.equals(")"))
 {
 String op = ops.pop();
 if (op.equals("+")) vals.push(vals.pop() + vals.pop());
 else if (op.equals("*")) vals.push(vals.pop() * vals.pop());
 }
 else vals.push(Double.parseDouble(s));
 }
 StdOut.println(vals.pop());
 }
}

% java Evaluate
(1 + ((2 + 3) * (4 * 5)))
101.0

56

Correctness

Q. Why correct?
A. When algorithm encounters an operator surrounded by two values within
parentheses, it leaves the result on the value stack.

as if the original input were:

Repeating the argument:

Extensions. More ops, precedence order, associativity.

(1 + ((2 + 3) * (4 * 5)))

(1 + (5 * (4 * 5)))

(1 + (5 * 20))
(1 + 100)
101

