
ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

56

//new to java /

Welcome back to the discussion of generic types in Java.
In my previous article, I started discussing generics

types—why they are useful, what you can do with them, and
how to use them. The introductory part of this topic was quite
straightforward, but at the end of that discussion I mentioned
a problem: generic collections and subtyping.

In short, I wanted to write a general printList method such
as this:

private void printList(List<Person> list)

And I wanted it to print out lists of subtypes of Person, such
as List<Student> or List<Faculty>. In other words, given that
Student is a subtype of Person, I wanted to call the method
above like this:

List<Student> students = getStudentList();

printList(students);

This does not work in Java. The reason is that List<Student>
is not considered a subtype of List<Person> even though
Student is a subtype of Person.

What’s the Problem?

So why is List<Student> not a subtype of List<Person>? If
you think only about printing out the list, there seems to be
no problem. The printList method could call, for instance,
a print method on all the list’s elements (which might be

deined in Person and redeined appropriately in the sub-
types). All seems well.

The problem becomes apparent when you consider that
the printList method could also modify the list. It could, for
example, include the following line:

list.add(new Faculty());

Because the static type of the list variable (the formal
parameter to the method) is List<Person>, and Faculty is a
subtype of Person, adding this object causes no type prob-
lems. However, if the actual list passed to the printList
method were a list of students, then I have now added a
Faculty object to the Student list! This is a clear error and
should not be allowed to happen.

The only solution is to declare that List<Student> is not a
subtype of List<Person>, and to prevent student lists from
being passed in to the printList method. Type safety is pre-
served, but I am back to square one: How can I now write my
general printList method?

Wildcards to the Rescue

The solution to this problem is the use of wildcards. I can
write my printList method like this:

private void printList(List<?> list)

Note the question mark in place of the element type of

MICHAEL KÖLLING

Generics: The Hard Parts
Wildcards, subtyping, and type erasure in generics

PHOTOGRAPH BY

JOHN BLYTHE

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

57

//new to java /

the list. The question mark is the wildcard symbol, and it
denotes a type called unknown. My parameter is now a list of

unknown type.
There is an obvious beneit to this construct. I can now do

what I intended to do: I can call my printList method with
both List<Student> and List<Faculty> as parameters:

List<Student> students = getStudentList();

List<Faculty> professors = getFacultyList();

printList(students);

printList(professors);

Every list type is considered to be a subtype of the list of this
unknown type, so this code now works. The trade-of is that I
cannot add to the list when the element type is unknown, so
I avoid the type problem discussed earlier when I tried to add
to the list.

What Is Known About the Unknown Type?

The wildcard is a good step forward, but it does not solve all
my problems. You can see this if you think about what I can
do with my list elements now. What if my Person superclass
had a method printAddressDetails that I want to use as part
of my printList method:

private void printList(List<?> list) {

 for (Person p: list) {

 ...

 p.printAddressDetails();

 }

}

This will now not work. The advantage of using the unknown
type is that you can pass in lists of any type, but you pay by
virtue of the fact that you don’t know much about that type.
All you know, in fact, is that it is a subtype of Object (because

every type is a subtype of Object). So I cannot treat element
types as Persons.

Not knowing much about the element type can still be OK
in some cases. I could still use all list operations that do not
depend on the element type, such as size() and clear(). I
could also do anything that I can do with the Object type,
such as using the toString method (maybe implicitly by call-
ing System.out.println).

But to call type-speciic methods, I need something else.
In using the wildcard, I went from saying that my parameter
is exactly a List of Person to saying that it is a List of anything.
Instead, I would like to say that it is a List of any subtype of

Person. I can do this with a bounded wildcard.

Bounded Wildcards

Generic parameters can have bounds, which restrict what
kind of actual types can be used for them. Consider this next
version of my printList method:

private void printList(List<? extends Person> list)

This deinition now allows lists of Person or subtypes of
Person (and only these) as parameters, just as I intended.
Because I am using a wildcard, I am still not allowed to add to
the list, but I know that all elements are of type Person (or its
subtypes). I can now treat elements as Person objects and call
the appropriate methods. This inally solves my problem.

Other Bounded Types

Wildcards are not the only place where bounds can be used
and are useful. Type bounds can also be employed in the dec-
laration of generic types and in methods without wildcards.
For example, I can deine a generic type PersonList that
accepts only Person and its subtypes as parameters:

class PersonList<T extends Person>

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

58

//new to java /

This is similar to the deinition of ArrayList that I showed in
the last issue of Java Magazine, but this time only subtypes of
Person can be used to instantiate the type:

PersonList<Student> students =

 new PersonList<Students>();

PersonList<Faculty> professors =

 new PersonList<Faculty>();

In return, all methods from the Person type can now be used
on objects of type T in my implementation of the PersonList
class, because I have a guarantee that any concrete instantia-
tion of T will have these methods.

Generic Methods

This is a good time to introduce another generic feature:
generic methods. In the previous examples, the generic
type parameter was introduced in the class header when
we declared a generic class. It is also possible to have single
generic methods, without making the whole class generic. In
that case, the single method can handle generic types. Generic
methods are often combined with bounded generic types.

Consider the following example. Here, I attempt to write a
method that prints all elements from a list that are smaller
than a given limit:

public <T> void underLimit(List<T> myList, T limit) {

 for (T e : myList) {

 if (e < limit)

 System.out.println(e);

 }

}

The new syntax here is the type parameter <T> in the header
after the keyword public and before the return type. I am
assuming that this method is in a class that is not generic,

so no type parameter has previously been declared. To use a
generic type in the parameter list, I need to declare this type
irst—that is the efect of writing the type <T> in the header.

 This code will fail, however, because the less-than operator
cannot be applied to any unspeciied type T. Instead, I can
use the compareTo method, but this works only when T is a
subtype of Comparable. I can enforce this by changing my
method as follows:

public <T extends Comparable<T>> void underLimit(

 List<T> myList, T limit) {

 for (T e : myList) {

 if (e.compareTo(limit) < 0)

 System.out.println(e);

 }

}

Here, I have declared that I only accept types for type T that
are subtypes of Comparable so that the methods needed are
guaranteed to be available.

Upper Bounds and Lower Bounds

So far, I have discussed bounded types only by showing an
upper bound to establish a supertype (an upper bound) for the
wildcard parameter, for example:

List<? extends Person>

The efect is that only the named type or its subtypes can
be used to instantiate the type. In other words, the concrete
type at the point of use must extend (or implement) Person.
If we were to draw a typical inheritance hierarchy around
Person, only Person or the classes below it in the hierarchy
can be used.

I can also restrict the type in the other direction, by declar-
ing a lower bound:

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

59

//new to java /

List<? super Person>

By using the super keyword for my declaration, I am stating
that the type has to be Person or a supertype of Person. If you
picture this in an inheritance hierarchy, you can use Person
or the types above it in the hierarchy. This is less often used
than upper bounds but can be helpful in some situations.

Implementation

In addition to knowing how to use generic types, it is also
useful to know a little bit about how they are implemented
in the Java compiler and the JVM. If you ever talked with
anyone about the implementation, it is likely that the term
type erasure came up at some stage. It is important to know
what this means, because it afects not only the eiciency of
implementation but also the semantics of your code in cer-
tain cases.

Type Erasure

At the core of type erasure is the fact that type parameters
exist only at compile time; they are completely removed
at runtime. They are a construct exclusively used for type
checking during compilation to ensure type safety, but they
are not carried through into the Java bytecode.

To understand generics at irst, it is often helpful to think of
generic classes as expanded at instantiation time. For exam-
ple, consider the following type:

class List<T> {

 public void add(T elem);

 ...

}

If it is then instantiated by using the concrete type
List<String>, it can be thought of as having every occur-
rence of T in the source text replaced by String, so that the

parameter type in the add method becomes String. For
List<Integer>, each T would be replaced by Integer, and
so on.

This is a useful mental model to start understanding
generics, but it is ultimately false. It is useful, because it is
easy to understand, and it gives a good approximation of
how generics behave. It is important to know, however, how
things really work, because sometimes that makes a notice-
able diference.

Generic types are never expanded into their concrete
instantiations: not in source code, not in binary code, not on
disk, and not in memory. This is diferent than templates in
C++, for example, where this expansion actually happens. In
Java, the generated code will just insert Object as the type for
each unbounded type parameter, or the bounding type for
types that have bounds. Thus, List<String>, List<Integer>,
and List<Person> are all represented by a single class
List<Object> by the time your program executes. By then,
the compiler has made sure that you used the class in a type-
safe manner, and type problems have been prevented. You
used many types but get only one class.

Discarding type parameter information at runtime has
advantages and disadvantages. One of the advantages is that
it saves time and space: the class ile needs to exist only once
for every generic class. It does not need to be stored or com-
piled multiple times. This is a clear beneit.

On the downside, type erasure makes life harder for tool
writers, such as creators of development environments. It
is hard, for example, for a debugger to igure out the correct
type for an object at runtime if that type is derived from a
generic class. No information is kept in the class ile about
the full type information.

More important for you as a programmer is the fact that type
erasure can inluence the behavior of your code. The following
sections describe examples where it is necessary to understand
type erasure to understand the behavior of the Java system.

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

60

//new to java /

No instanceof for Types with Type Parameters

The instanceof operator cannot be used with parameterized
types. Consider the following attempt to use List<T> as
deined in the previous section:

if (list instanceof List<Person>) {

 List<Person> pl = (List<Person>) list;

}

This code looks entirely reasonable, but if you consult the
previous section on type erasure, you will see why it does
not work: the runtime system has no idea whether a type
is List<Person>, because it does not keep this information
around. (All it knows about is List<Object> but nothing more
speciic.) So it cannot perform this check and give you the
answer. You will see an error saying illegal generic type
for instanceof.

The same problem shows up when you use the getClass
method:

List<Student> sl = new ArrayList<Student>();

List<Faculty> fl = new ArrayList<Faculty>();

if (sl.getClass() == fl.getClass())

 ...

At irst glance, you might think that the condition in the if-
statement is false, but because of type erasure, it will actually
evaluate to true. As far as the runtime system is concerned,
the class of both objects is ArrayList.

Generic Classes and Static Attributes

One of the areas where type erasure becomes most visible
in source code is when you use static attributes in generic
classes. Static methods and static ields are shared between
all instantiations of a generic class. The reason is again the
same: only one copy of the generic class actually exists. You

have to be aware of this to write correct code. A side efect
of this is that it is not possible to declare a static ield of a
generic parameter type:

class MyClass<T> {

 private static T value; // error

 ...

}

Because this ield is shared between all variants of the type, it
cannot refer to the type parameter of speciic instantiations.

Java Trivia: Arrays and Type Safety

If you are interested in the details of Java and type safety, you
might like this little bit of Java trivia: the implementation of
arrays in Java has a hole in its type system. This is one of the
rare cases where Java is not statically type-safe.

The problem is the same problem I discussed earlier in
this article: If B is a subtype of A, is then List a subtype of
List<A>? For lists, the answer is no. Earlier in this article, I
explained why this is and how it could go wrong if we were to
consider List a subtype. However, for arrays (a very simi-
lar situation), Java does consider the list to be a subtype. This
introduces a potential type problem. Consider the following
code:

A[] aa;

B[] ba = new B[3];

aa = ba; // allowed! B[] is subtype of A[]

aa[0] = new B();

aa[1] = new A(); // java.lang.ArrayStoreException: A

The last line in this example represents a type error: I am
trying to insert an A object into an array of B. The problem is
that the assignment in the third line is allowed. This problem

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

61

//new to java /

is picked up only at runtime, not at compile time, breaking
Java’s static type safety. When it designed generic classes,
the Java team decided to be more conservative and detect the
equivalent problem at compile time.

Conclusion

Generic types are easy to understand in principle and gener-
ally quite easy to use. However, when you start writing more
sophisticated code—particularly if you’re writing libraries—
you might run into a whole range of situations where you need
to understand the advanced constructs in generics.

When you put all of the concepts together, the class and
method deinitions can become quite tricky to read even for
experienced programmers. Have a look at the max method of
class Collections in the standard library, for example, or the
deinition of methods in the Class class. You will see that it
can take some time to get your head around the combination
of all the constructs. Do not let this discourage you; these
complex constructs are rare, and with the concepts I have
discussed here and some practice, you should be able to work
out most of it. More importantly, you should be able to write
correct and lexible code yourself. </article>

Michael Kölling is a Java Champion and a professor at the

University of Kent, England. He has published two Java textbooks

and numerous papers on object orientation and computing educa-

tion topics, and he is the lead developer of BlueJ and Greenfoot,

two educational programming environments. Kölling is also a

Distinguished Educator of the ACM.

The Java Tutorial on generic types

learn more

For most readers, the idea of a linker for Java might
seem very peculiar indeed. Linker functions, which are
part of a build tool associated with native languages, are
performed by the JVM in its class-loading mechanism.
In particular, these functions are executed in the algo-
rithms for inding JARs that contain referred-to classes
and methods and then loading them into the current JVM
memory space. [For more information on this process,
download a PDF of our article “How the JVM Locates,
Loads, and Runs Libraries” by Oleg Šelajev. —Ed.]

What JEP 282 proposes is not the traditional linker but,
rather, a generic tool that runs where a linker does in the
build process—after the compiler but before creation of
the executable. The tool would deine a plugin interface,
by which a variety of tools could be inserted into the build
process. The most obvious of these would be an optimizer,
especially a whole-program optimizer that could iden-
tify opportunities to improve performance and reduce
code size that are not visible to the compiler on a class
basis. Other plugins suggested in the JEP document could
remove debug information, reorder resources so that they
can be loaded faster, and even compress generated iles.

In theory, many other reinements to generated code
could be performed—including those from third parties.
Some examples are insertion of instrumentation data,
supplementation of debugging data, conversion of byte-
codes to other formats, intraclass optimization, and so
on. All of this could be done through plugins to the pro-
posed jlink technology.

JEP 282 jlink: The Java Linker

FEATURED JDK ENHANCEMENT PROPOSAL

//java proposals of interest /

