
ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

45

//new to java /

In this installment of the “New to Java” series, I want to talk

about generics.

If you have programmed for a little while in Java, it is

likely that you have come across generics, and you have

probably used them. (They are hard to avoid when using

collections, and it is hard to do anything really interesting

without collections.) If you are coming to Java from C++, you

might have encountered the same concept as generics under

the name of parameterized types or templates. (Templates in

C++ are not the same as generics in all aspects, but they are

closely related.)

Many novice Java programmers use generics without a full

understanding of how they work and what they can do. This

gap is what I address in this article.

In Java, the concept of generics is simple and straight-

forward in principle but tricky in the details. There is much

to say about the corner cases, and it is also interesting to look

into how generics are implemented in the Java compiler and

the JVM. This knowledge helps you understand and anticipate

some of the more surprising behaviors.

My discussion is spread over two parts. In this issue, I

discuss the principles and fundamental ideas of generic

types. I look at the deinition and use of generics and pro-

vide a basic, overall understanding. In the next issue of Java

Magazine, I will look at the more subtle parts, advanced uses,

and implementation. If you read both articles, you will arrive

at a good understanding of how generics can help you write

better code.

A Bit of History
Before Java 5 was released in 2004, Java did not have generic

types. Instead, it had what are called heterogeneous collections.

Here is what an example of a heterogeneous list looked like in

those days:

List students = new ArrayList();

(Knowing this history is important, because you can still

write this code in Java today—even though you shouldn’t.

And you might come across these collections in legacy code

you maintain.)

In the example above, I intend to create a list of Student

objects. I am using subtyping—the declared type of the vari-

able is the interface List, a supertype of ArrayList, which

is the actual object type created. This approach is a good idea

because it increases lexibility. I can then add my student
objects to the list:

students.add(new Student("Fred"));

When the time comes to get the student object out of my list

again, the most natural thing to write would be this:

Student s = students.get(0);

This, however, does not work. In Java, in order to give the

List type the ability to hold elements of any type, the add

method was deined to take a parameter of type Object, and

MICHAEL KÖLLING

PHOTOGRAPH BY

JOHN BLYTHE

Understanding Generics
Use generics to increase type safety and readability.

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

46

//new to java /

the get method equally returns an Object type. This makes

the previous statement an attempt to assign an expression

of type Object to a variable of type Student—which is

an error.

In the early days of Java, this was ixed with a cast:

Student s = (Student) students.get(0);

Now, writing this cast was always a mild annoyance. You usu-

ally know what types of objects are stored in any particular

list—why can’t the compiler keep track of them as well?

But the problem goes deeper than mere annoyance.

Because the element type of the list is declared to be Object,

you can actually add objects of any type to the same list:

students.add(new Integer(42));
students.add("a string");

The fact that this is possible—that the same list can hold

objects of diferent types—is the reason it is referred to as
heterogeneous: a list can contain mixed element types.

Having lists of diferent, unrelated element types is rarely
useful, but it is easily done in error.

The problem with heterogeneous

lists is that this error cannot be

detected until runtime. Nothing

prevents you from accidentally

inserting the wrong element

type into the student list. Worse,

even if you get the element out of

the list and cast it to a Student,

the code compiles. The error sur-

faces only at runtime, when the

cast fails. Then a runtime type

error is generated.

The problem with this runtime

error is not only that it occurs late

(at runtime, when the application might already have been

delivered to a customer), but also that the source location

of the detected error might be far removed from the actual

mistake: you are notiied about the problem when getting the
element out, while the actual error was made when putting

the element in. This might well be in a diferent part of the
program entirely.

Java and Type Safety
Java was always intended to be a type-safe language. This

means that type errors should be detected at compile time,

and runtime type errors should not be possible. This aim was

never achieved completely, but it’s a goal that the language

designers strove for as much as possible. Casting breaks this

goal: every time you use a cast, you punch a hole in type

safety. You tell the type checker to look the other way and

just trust you. But there is no guarantee that you will get

things right.

Many times, when a cast is used, the code can be rewrit-

ten: often better object-oriented techniques can be used to

avoid casting and maintain type safety. However, collections

presented a diferent problem. There was no way to use them
without casting, and this jarred with the philosophy of Java.

That such an important area of programming could not be

used in a type-safe way was a real annoyance. Thus in 2004,

the Java language team ixed this problem by adding generics
to the Java language.

Type Loss
The term for the problem with heterogeneous collections is

type loss. In order to construct collections of any type, the ele-

ment type of all collections was deined to be Object. The

add method, for example, might be deined as follows:

public void add(Object element)

It is useful to
understand one
aspect that changed
slightly when
generics entered
the Java language:
the relationship
between classes
and types.

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

47

//new to java /

This works very well to put elements—say, objects of type

Student—into the collection, but it creates a problem when

you want to get them out again. Even though the runtime

system will know that the element is of type Student, the

compiler does not keep track of this. When you later use a

get method to retrieve the element, all the compiler knows is

that the element type is Object. The compiler loses track of

the actual element type—thus the term type loss.

Introduction to Generics
The solution to avoid type loss was to give the compiler

enough information about the element type. This was done

by adding a type parameter to the class or interface deini-
tion. Consider an (incomplete and simpliied) deinition of an
ArrayList. Before generics, it might have looked like this:

class ArrayList {
 public void add(Object element);
 public Object get(int index);
}

The element type here is Object. Now, with the generic

parameter, the deinition looks as follows:

class ArrayList<E> {
 public void add(E element);
 public E get(int index);
}

The E in the angle brackets is a type parameter: here, you can

specify what the element type of the list should be. You no

longer create an ArrayList object for the Student elements

by writing this:

new ArrayList()

Instead, you now write this:

new ArrayList<Student>()

Just as with parameters for

methods, you have a formal

parameter speciication in the
deinition (the E) and an actual

parameter at the point of use

(Student). Unlike method

parameters, the actual parameter

is not a value but a type.

By creating an ArrayList

<Student> (which is usually

read out loud as “an ArrayList of

Student”), the other mentions

of the type parameter E in the

speciication are also replaced
with the actual type parameter

Student. Thus, the parameter type of the add method and

the return type of the get method are now both Student.

This is very useful: now only Student objects can be added

as elements, and you retrieve Student objects when you get

them out again—no casting is needed.

Abstraction over Types
It is useful to understand one aspect that changed slightly

when generics entered the Java language: the relationship

between classes and types. Prior to generics, each class

deined a type. For example, if you deine a class Hexagon,

then you automatically get a type called Hexagon to use in

variable and parameter deinitions. There is a very simple
one-to-one relationship.

With generic classes, this is diferent. A generic
class does not deine a type—it deines a set of types.
For example, the class ArrayList<E> deines the
types ArrayList<Student>, ArrayList<Integer>,

ArrayList<String>, ArrayList<ArrayList<String>>,

When generics
were introduced,
a useful shortcut
notation—the
diamond notation—
was provided to ensure
that the increased
readability does not
lead to unnecessary
verboseness.

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

48

//new to java /

and any other type that can be speciied by replacing the type
parameter E with a concrete type.

In other words, generics introduce an abstraction over

types—a powerful new feature.

The Benefits
One beneit of using generic classes should now be obvious:
improved correctness. Incorrect types of objects can no lon-

ger be entered into a list. While erroneous attempts to insert

an element could previously be detected only during testing

(and testing can never be complete), they are now detected at

compile time, and type correctness is guaranteed. In addition,

if there is such an error, it will be reported at the point of the

incorrect insertion—not at the

point of retrieving the element,

which is far removed from the

actual error location.

There is, however, a sec-

ond beneit: readability. By
explicitly specifying the ele-

ment type of collections,

you are providing useful information to human readers of

your program as well. Explicitly saying what type of ele-

ment a collection is intended for can make life easier for a

maintenance programmer.

The Diamond Notation
When generics were introduced, a useful shortcut nota-

tion—the diamond notation—was provided to ensure that

the increased readability does not lead to unnecessary

verboseness.

Consider the very common case of declaring a variable and

initializing it with a newly created object:

ArrayList<String> myList =
 new ArrayList<String>();

In some generic types, especially when there is more than

one generic parameter, this line can get rather long:

HashSet<Integer, String> mySet =
 new HashSet<Integer, String>();

And it can get worse if a type parameter itself is generic:

HashSet<Integer, ArrayList<String>> mySet =
 new HashSet<Integer, ArrayList<String>>();

In each of these examples, the same lengthy generic type is

spelled out twice: once on the left for the variable declaration

and once on the right for the object creation. In this situation,

the Java compiler allows you to omit part of the second men-

tion of the type and instead write this:

HashSet<Integer, String> mySet = new HashSet<>();

Here, the generic parameters are omitted from the right side

(leaving the angle brackets to form a diamond shape, thus the

term diamond notation). This is allowed in this situation and

means that the generic parameters on the right are the same

as those on the left. It just saves some typing and makes the

line easier to read. The semantics are exactly the same as

they would be had you written out the types in full.

Summary—So Far
This was the easy part. The use of generics can make code

safer and easier to read. Writing a simple generic class is

quite straightforward, and creating objects of generic types

is as well. You should also be able to read the documentation

of simple generic types, such as the List interface’s Javadoc

page or the Javadoc page of the Collection interface.

However, the story does not end here. So far, I have ignored

some problems that arise with generics, and understand-

ing the mechanisms to solve them gets a little trickier. This

The use of generics
can make code safer and
easier to read.

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

49

//new to java /

is where things become really interesting. Let’s look at the

problem irst.

Generics and Subtyping
Assume that you have a small inheritance hierarchy. To

model people in a university, you have classes Student and

Faculty, and a common superclass Person (Student and

Faculty are both subclasses of Person). So far, so good.

Now you also create types for lists of each of these:

List<Student>, List<Faculty>, and List<Person>.

The student and faculty lists are held in the parts of

your program that hold and process the student and fac-

ulty objects. The Person list type can be useful as a formal

parameter for a method that you want to use with both fac-

ulty and students, for example:

private void printList(List<Person> list)

The idea is that you want to be able to call printList with

both the student and faculty lists as actual parameters.

This will work if the types of these lists are subtypes of

List<Person>. But are they?

In other words, if Student is a subtype of Person, is then

List<Student> a subtype of List<Person>?

Intuitively, you might say yes. Unfortunately, the correct

answer is no.

You can see the problem when you imagine that the

printList method not only prints, but also modiies the
list passed as a parameter. Assume that this method inserts

an object of type Faculty into the list. (Because the list is

declared in the parameter as List<Person>, and Faculty

is a subtype of Person, this is perfectly legal.) However,

the actual list passed in to this method might have been a

List<Student>. Then, suddenly, a Faculty object has been

inserted into the student list! This is clearly a problem.

The only way to avoid this problem is to avoid consider-

ing lists of subtypes and lists of supertypes to be in a sub-

type/supertype relationship themselves. In other words,

List<Student> is not a subtype of List<Person>.

Conclusion
There are many situations in which you need subtyping with

generic types, such as the above attempt to deine the gen-

eralized printList method. You have seen that it does not

work with the constructs I have discussed so far, but just

saying it can’t be done is not good enough—you do need to be

able to write such code.

The solutions entail additional constructs for generics:

bounded types and wildcards. These concepts are powerful, but

have some rather tricky corner cases. I will discuss them in

the upcoming installment in the next issue of Java Magazine.

Until then, study the generic classes available in the Java

library—especially the collections—and get used to the

notation discussed in this article. I will dive deeper next

time! </article>

Michael Kölling is a Java Champion and a professor at the

University of Kent, England. He has published two Java textbooks

and numerous papers on object orientation and computing educa-

tion topics, and he is the lead developer of BlueJ and Greenfoot,

two educational programming environments. Kölling is also a

Distinguished Educator of the ACM.

Oracle’s Java tutorial on generics

Wikipedia article on Java generics

learn more

