
91

3 Container Classes
(I am large. I contain multitudes.)

WALT WHITMAN

Song of Myself

3.1 THE BAG CLASS
3.2 PROGRAMMING PROJECT: THE SEQUENCE CLASS
3.3 INTERACTIVE TEST PROGRAMS

CHAPTER SUMMARY
SOLUTIONS TO SELF-TEST EXERCISES
PROGRAMMING PROJECTS

The throttle and point classes in Chapter 2 are good examples
of abstract data types. But their applicability is limited to a few specialized pro-
grams. This chapter begins the presentation of several classes with broad appli-
cability in programs large and small. The two particular classes in this chapter—
bags and sequences—are examples of container classes. Intuitively, a container
class is a class where each object contains a collection of items. For example,
one program might keep track of a collection of integers, perhaps the ages of all
the people in your family. Another program, perhaps a cryptography program,
can use a collection of characters.

The bag and sequence classes are both simple versions of more complex
classes from the C++ Standard Library. The goal is for you to understand and use
the bag and sequence classes as a bridge to understanding and using the Standard
container classes. Over the next few chapters, variations of the bag and sequence
classes will teach you how to write your own container classes that are compliant

a class in which
each object
contains a
collection of items

91

Data Structures and Other Objects Using C++
Second Edition
Release date: July 30, 2000
ISBN 0-201-70297-5
Addison Wesley

Michael Main and Walter Savitch
main@colorado.edu
Supplements:

http://www.cs.colorado.edu/~main/dsoc.html

92 Chapter 3 / Container Classes

with the C++ Standard Library, and therefore your own classes can take advan-
tage of standard algorithms for such tasks as searching and sorting.

A key feature of a good container class is that it should be easy to change the
type of item in the container so that a new application can use the container. With
this kind of “easy reuse,” many different applications can use the same container
class. The same container class can be used by one program for a collection of
integers, and by another program for a collection of characters or some other data
type. In this chapter we use typedef statements to provide the ability to easily
change the type of item in a container class. In Chapter 6, which focuses explic-
itly on software reusability, we’ll use a different technique called templates,
which is also used by the Standard Library container classes.

3.1 THE BAG CLASS

This section provides an example of a container class, called a bag of integers.
To define the new bag data type, think about an actual bag—a grocery bag or a
garbage bag—and imagine writing integers on slips of paper and putting them
in the bag. A bag of integers is similar to this imaginary bag: a container that
can hold a collection of integers that we place into it. A bag of integers can be
used by any program that needs to store a collection of integers for later use. For
example, later we will write a program that keeps track of the ages of your fam-
ily’s members. If you have a large family with ten people, the program keeps
track of ten ages—and these ages are kept in a bag of integers.

The Bag Class—Specification

We’ve given an intuitive description of a bag of integers, but for a more precise
specification of the bag class, we must describe the collection of functions to
manipulate a bag object. We’ll do this by providing a prototype for each of the
functions, most of which are member functions. With each prototype we also
specify the precise action that the function will perform. These specifications
will later become our precondition/postcondition contracts. Let’s look at the
functions one at a time.

The constructor. The bag class has a default constructor to initialize a bag so
that it is empty. The name of the constructor must be the same as the name of the
class itself, so the prototype for our constructor is the following:

bag();

The value semantics. As part of our specification, we require that bag objects
can be copied with an assignment statement. Also, a newly declared bag can be
initialized as a copy of another bag, using the copy constructor such as:

The Bag Class 93

bag b;
b.insert(42);

At this point, because we are only specifying which operations can manipulate a
bag, we don’t need to say anything more about the value semantics.

A typedef for the value_type. So far we have considered only bags of inte-
gers. But to be more flexible, we won’t actually use the name int when we refer
to the types of the items in the bag. Instead, we will use the name value_type
for the data type of the items in a bag. Some programs might need a bag of inte-
gers, and those programs will set the value_type to an int. Other programs
might use a different value_type. In order for the bag to have this flexible
value_type, we will place the following statement at the top of the public
section of the bag’s class definition:

class bag
{
public:

...

This statement is a typedef statement. It consists of the keyword typedef fol-
lowed by a data type (such as int) and then a new identifier, such as
value_type. We are not required to use the specific name value_type; we
could have used any meaningful name. But the Standard Library container
classes use the name value_type, so we have done so for consistency.

The effect of the typedef statement is that bag functions can use the name
value_type as a synonym for the data type int. Wherever a bag member func-
tion uses the name value_type, the compiler will recognize it as simply another
name for int. Other functions, which are not bag member functions, can use the
name bag::value_type as the type of the items in a bag. Moreover, if we want
a new kind of bag, we can simply change the word int to a new data type and
recompile. No other changes will be needed anywhere in our program. For exam-
ple, to declare a bag of double numbers we change the typedef statement to the
following:

class bag
{
public:

typedef value_type;
...

In Chapter 6, we will use an alternative way to define value_type. The alterna-
tive, called a template class, is more cumbersome, but it overcomes some draw-
backs of the typedef statement. Meanwhile, the top of the next page shows a
summary of how we used the C++ typedef statement.

b now contains a 42.

c is initialized
with the copy constructor
to be a copy of b.bag c(b);

typedef int value_type;

double

94 Chapter 3 / Container Classes

C++ Feature: Typedef Statements within a Class Definition

Within a class definition, we can place a typedef statement of the following form:

class
{
public:

typedef
...

This statement is a typedef statement. It consists of the keyword typedef followed
by a data type (such as int) and then a new identifier (such as value_type). The
effect of this typedef statement is that member functions can use the new name
value_type as a synonym for the data type. Functions that are not member func-
tions can also use the name, but its use must be preceded by the class name and
“::” (for example bag::value_type).

The size_type. In addition to the value_type, our bag defines another data
type that can be used for variables that keep track of how many items are in a
bag. This type will be called size_type, with its definition near the top of the
bag class definition:

class bag
{
public:

typedef int value_type;
typedef size_type;
...

Once we have provided the size_type definition, we can use size_type for
any variable that’s counting how many items are in a bag. This is another pro-
gramming idea that we got from the Standard Library containers—they all have
a built-in size_type as part of the class.

Of course, we still must decide which data type to use for “an integer type of
some kind” in the typedef statement. We could use an ordinary int, but C++ pro-
vides a better alternative: the size_t data type, described here.

C++ Feature: The std::size_t Data Type

The data type size_t is an integer data type that can hold only non-negative num-
bers. Each C++ implementation guarantees that the values of the size_t type are
sufficient to hold the size of any variable that can be declared on your machine.
Therefore, when you want to describe the size of some array or other variable, the
best choice is the size_t data type. The size_t type is part of the std
namespace from the Standard Library facility, cstdlib. To use size_t in a header
file, we must include cstdlib and use the full name std::size_t.

FEATURE++
< Name of the class >

< A data type such as int or double >< A new name >

<an integer type of some kind>

FEATURE++

The Bag Class 95

Our bag definition uses size_t as shown here:

class bag
{
public:

typedef int value_type;
typedef size_type;
...

With the bag definition, or within an implementation of a bag member function
we can use the type size_type. Other programmers can also use this data type,
but they must write the full name bag::size_type.

The size member function. The bag has a constant member function called
size. The prototype uses the bag’s size_type:

size_type size() const;

As you might guess, the return value of the size function tells how many items
are currently in the bag. To illustrate the use of the function, suppose first_bag
contains one copy of the number 4 and two copies of the number 8. Then
first_bag.size() returns 3.

The insert member function. This is a member function that places a new
integer, called entry, into a bag. Here is the prototype:

void insert(const value_type& entry);

As an example, here is a sequence of function calls for a bag called first_bag:

bag first_bag;
first_bag.insert(8);
first_bag.insert(4);
first_bag.insert(8);

After these statements are executed, first_bag contains three integers: the
number 4 and two copies of the number 8. It is important to realize that a bag
can contain many copies of the same integer, such as this example with two cop-
ies of 8.

Notice that the entry parameter is a const reference parameter. This may
seem strange since the usual purpose of a const reference parameter is to improve
efficiency when a parameter is a large object. Integers are not large, but we may
later change the value_type to something that is large. With this in mind, we
will use const reference parameters for value_type parameters, whenever this is
possible (i.e., whenever the function’s implementation does not change the value
of the parameter).

std::size_t

After these statements, first_bag
contains two 8s and a 4.

96 Chapter 3 / Container Classes

The count member function. This is a constant member function that deter-
mines how many copies of a particular number are in a bag. The prototype uses
size_type:

size_type count(const value_type& target) const;

The activation of count(n) returns the number of occurrences of n in a bag. For
example, if first_bag contains the number 4 and two copies of the number 8,
then we will have these values:

cout << first_bag.count(1) << endl;
cout << first_bag.count(4) << endl;
cout << first_bag.count(8) << endl;

The erase_one and erase member functions. These two member functions
have the following prototypes:

bool erase_one(const value_type& target);
size_type erase(const value_type& target);

Provided that the target is actually in the bag, the erase_one function
removes one copy of target and returns true. If target is not in the bag,
attempting to erase one copy has no effect on the bag, and the function returns
false. The erase function removes all copies of the target; its return value tells
how many copies were removed (which could be zero).

Union operator. The union of two bags is a new larger bag that contains all the
numbers in the first bag plus all the numbers in the second bag, as shown here:

In the drawing we wrote “+” for “union.” To implement the union, we will over-
load the + operator as a nonmember function with this prototype:

bag operator +(const bag& b1, const bag& b2);

The function is not a member function because of our guidelines about over-
loading binary operators (see page 82).

Prints 0

Prints 1

Prints 2

+ is

The Bag Class 97

Overloading the += operator. The + operator is defined for bags, so it is sen-
sible to also overload +=. The overloaded += will allow us to add the contents of
one bag to the existing contents of another bag in much the same way that +=
works for integers or real numbers. We intend to use += as shown here:

bag first_bag, second_bag;
first_bag.insert(8);
second_bag.insert(4);
second_bag.insert(8);
first_bag += second_bag;

After these statements first_bag contains one 4 and two 8s.
overload += as a
member function

Our style preference is to overload += as a member function. The reason is that
the first argument (to the left of the +=) has special significance: It is the argu-
ment that actually has its value changed. The second argument (to the right of the
+=) never has its value changed. By making the operator += into a member func-
tion, we place special emphasis on the left argument in a statement such as:

first_bag += second_bag;

This statement means “activate the += member function of first_bag, and use
second_bag as the argument.” Here is the prototype of the member function:

void operator +=(const bag& addend);

There are several points to notice:

• This is a void function. It does not return a value. It only alters the con-
tents of the bag that activates the function.

• The function has only one parameter, addend. This is the right-hand bag
in an expression such as . The left-hand bag
is the bag that activates += and that has its contents altered.

• We use the name addend for the parameter, meaning “something to be
added,” but you may use whatever name you like.

The bag’s CAPACITY. That’s the end of our list of functions, and we’re
almost ready to write the header file. But first, we describe one more handy C++
feature that is related to how we will store the items in a bag.

Our plan is for bounded bags that can hold 30 items each. (Later we will
remove this restriction, providing an unbounded bag class.) There is nothing
magic about the number 30—we just picked it as a conveniently small size for
our first bags. Later, we might want to change the size 30, allowing bags that hold
42 or 5000 or some other number of items. To make it easy to change the bag’s
size, and also to make our programs more readable, we will use a name such as
CAPACITY rather than simply using the number 30.

This adds the contents of
second_bag to what’s
already in first_bag.

first_bag += second_bag

98 Chapter 3 / Container Classes

The best way to define CAPACITY is as a static member constant, as shown in
the example here:.

class bag
{
public:

typedef int value_type;
typedef std::size_t size_type;

...

The keyword const has the same meaning that we have seen with other con-
stant declarations, so that the value of CAPACITY is defined once and cannot be
changed while the program is running.

The keyword static modifies the definition in a useful way. Usually each
object has its own copy of each member variable. But when the keyword static
is used with a class member, it means that all of the class’s objects use the same
value. This is different! For example, with the bag’s static member constant,
every bag has the same CAPACITY of 30. In fact, the only reason that we can set
the CAPACITY to 30 within the class definition is because every bag has the same
value for CAPACITY. When a program declares a bag b, the program can refer to
the capacity with the usual notation for selecting a member: b.CAPACITY.
Because every bag has the same capacity, a program can also refer to a bag’s
capacity using the bag:: “scope resolution operator,” as shown in this example:

bag b;
cout << "The capacity of b is " << << endl;
cout << “Every bag has capacity " << << endl;

As shown in this example, we recommend all uppercase letters for the name of
any constant. This makes it easy to recognize which values are constant.

In addition to declaring the static member constant within the class definition,
the program must also repeat the declaration of the constant in the implementa-
tion file. In our example, the following single line must appear in the implemen-
tation file:

const bag::size_type bag::CAPACITY;

We have described the general format of a static member constant, but there are
a few pitfalls to beware of:

• The keyword static is not repeated in the implementation file because
static has a different meaning outside of the class definition.

• When the constant is declared in the implementation file, we must use the
full type name (such as bag::size_type) rather than the short version
(such as size_type) because the short version may be used only in the
class definition or within an implementation of a member function.

static const size_type CAPACITY = 30;

b.CAPACITY

bag::CAPACITY

The Bag Class 99

• In the implementation file, we must also use the full name of the constant
(such as bag::CAPACITY) rather than the short version (such as CAPACITY);
otherwise the compiler won’t know that this is a member of a class.

For future reference, here is a summary of static
member constants, including a note about where
the initial value must appear for different types of
constants.

Older Compilers Do Not Support Initialization
of Static Member Constants

The ability to initialize and use a static member constant within the class defini-
tion is a relatively new feature. If you have an older compiler that does not sup-
port static constant members, then Appendix E, “Dealing with Older
Compilers,” provides an alternative for your programming.

CLARIFYING THE CONST KEYWORD
Part 4: Static Member Constants

A static member constant has the two
keywords static and const before its
declaration in a class. For example, in
our bag class definition:

static const size_type CAPACITY = 30;

The keyword static indicates that the entire class has only one
copy of this member, and the keyword const indicates that a
program cannot change the value (which is just like ordinary
declared constants).

In addition to declaring the static member constant within the
class definition, the constant must be redeclared in the
implementation file without the keyword static. For example:

const bag::size_type bag::CAPACITY;

Notice that the initial value (such as 30), is given only in the header
file, not the implementation file. However, this technique of defining
the value in the header file is allowed only for integer types such as
int and size_t. Non-integer types must be done the other way
around, leaving the value out of the header file and defining this
value in the implementation file. The reason for this difference is
that integral values are often used within the class definition to
define something such as an array size.

1. DECLARED CONSTANTS: PAGE 12

2. CONSTANT MEMBER FUNCTIONS: PAGE 35

3. CONST REFERENCE PARAMETERS: PAGE 69

4. STATIC MEMBER CONSTANTS

5. CONST PARAMETERS THAT ARE POINTERS OR

ARRAYS: PAGE 157

6. THE CONST KEYWORD WITH A POINTER TO A

NODE, AND THE NEED FOR TWO VERSIONS OF

SOME MEMBER FUNCTIONS: PAGE 212

7. CONST ITERATORS: PAGE 298

100 Chapter 3 / Container Classes

The Bag Class—Documentation

We now know enough about the bag class to write the documentation of the
header file, as shown in Figure 3.1. We’ve used the name bag1.h for this header
file because it is the first of several different kinds of bags that we plan to
implement.

The documentation includes information about the two typedef statements
(value_type and size_type) and the static member constant (CAPACITY).
In particular, notice that we have been very specific about what sort of data type
is required for the value_type. The value_type may be any of the C++
built-in data types (such as int or char), or it may be a class with a default
constructor, an assignment operator, and operators to test for equality (x == y)
and non-equality (x != y).

Take a moment to read and understand all of the preconditions in Figure 3.1,
such as this precondition for the += operator:

Precondition: size() + addend.size() <= CAPACITY.

In this precondition, size() refers to the size of the bag that activates the func-
tion, and CAPACITY refers to the capacity of the bag that activates the function.
On the other hand, addend.size() refers to the size of the addend, which is a
parameter of the function.

Documenting the Value Semantics

One of the requirements for the value_type may seem peculiar—why do we
require that value_type “must have an assignment operator”? Doesn’t every
data type permit assignments such as x = y? Won’t there always be an automatic
assignment operator? No! For example, x = y is forbidden when x and y are
arrays. Later we will see other data types that forbid assignments, or at least
require care in defining what the assignment operator actually means.

Documentation for a Header File

// FILE: bag1.h
// CLASS PROVIDED: bag (part of the namespace main_savitch_3)
//
// TYPEDEFS and MEMBER CONSTANTS for the bag class:
//
// bag::value_type is the data type of the items in the bag. It may be any of the C++
// built-in types (int, char, etc.), or a class with a default constructor, an assignment
// operator, and operators to test for equality (x == y) and non-equality (x != y).

(continued)

 FIGURE 3.1 Documentation for the Bag Header File

typedef ____ value_type

The Bag Class 101

 (FIGURE 3.1 continued)

//
// bag::size_type is the data type of any variable that keeps track of how many items
// are in a bag.
//
//
// bag::CAPACITY is the maximum number of items that a bag can hold.
//
// CONSTRUCTOR for the bag class:
//
// Postcondition: The bag has been initialized as an empty bag.
//
// MODIFICATION MEMBER FUNCTIONS for the bag class:
//
// Postcondition: All copies of target have been removed from the bag.
// The return value is the number of copies removed (which could be zero).
//
//
// Postcondition: If target was in the bag, then one copy has been removed;
// otherwise the bag is unchanged. A true return value indicates that one
// copy was removed; false indicates that nothing was removed.
//
//
// Precondition: size() < CAPACITY.
// Postcondition: A new copy of entry has been added to the bag.
//
//
// Precondition: size() + addend.size() <= CAPACITY.
// Postcondition: Each item in addend has been added to this bag.
//
// CONSTANT MEMBER FUNCTIONS for the bag class:
//
// Postcondition: The return value is the total number of items in the bag.
//
//
// Postcondition: The return value is number of times target is in the bag.
//
// NONMEMBER FUNCTIONS for the bag class:
//
// Precondition: b1.size() + b2.size() <= bag::CAPACITY.
// Postcondition: The bag returned is the union of b1 and b2.
//
// VALUE SEMANTICS for the bag class:
// Assignments and the copy constructor may be used with bag objects.

typedef ____ size_type

static const size_type CAPACITY = _____

bag()

size_type erase(const value_type& target)

bool erase_one(const value_type& target)

void insert(const value_type& entry)

void operator +=(const bag& addend)

size_type size() const

size_type count(const value_type& target) const

bag operator +(const bag& b1, const bag& b2)

www.cs.colorado.edu/~main/chapter3/bag1.h WWW

102 Chapter 3 / Container Classes

The Bag Class—Demonstration Program

With the documentation in hand, we can write a program that uses a bag. We
don’t need to know how the functions are implemented. As an example, a dem-
onstration program appears in Figure 3.2. The program asks a user about the
ages of family members. The user enters the ages followed by a negative num-
ber to indicate the end of the input, and these ages are put into a bag. The pro-
gram then asks the user to type the ages again, as a simple test. A typical
dialogue with the program looks like this:

Type the ages in your family.
Type a negative number when you are done:
5 19 47 -1
Type those ages again. Press return after each age:
19
Yes, I’ve found that age and removed it.
36
No, that age does not occur!
5
Yes, I’ve found that age and removed it.
47
Yes, I’ve found that age and removed it.
May your family live long and prosper.

A Program

// FILE: bag_demo.cxx
// This is a small demonstration program showing how the bag class is used.
#include <iostream> // Provides cout and cin
#include <cstdlib> // Provides EXIT_SUCCESS
#include "bag1.h" // With value_type defined as an int
using namespace std;
using namespace main_savitch_3;

// PROTOTYPES for functions used by this demonstration program:

// Postcondition: The user has been prompted to type in the ages of family members. These
// ages have been read and placed in the ages bag, stopping when the bag is full or when the
// user types a negative number.

// Postcondition: The user has been prompted to type in the ages of family members again.
// Each age is removed from the ages bag when it is typed, stopping when the bag is empty.

(continued)

 FIGURE 3.2 Demonstration Program for the Bag Class

void get_ages(bag& ages);

void check_ages(bag& ages);

The Bag Class 103

 (FIGURE 3.2 continued)

{
bag ages;

get_ages(ages);
check_ages(ages);
cout << "May your family live long and prosper." << endl;
return EXIT_SUCCESS;

}

{
int user_input;

cout << "Type the ages in your family." << endl;
cout << "Type a negative number when you are done:" << endl;
cin >> user_input;

 while (user_input >= 0)
{

if (ages.size() < ages.CAPACITY)
ages.insert(user_input);

else
cout << "I have run out of room and can’t add that age." << endl;

cin >> user_input;
}

}

{
int user_input;

cout << "Type those ages again. Press return after each age:" << endl;
while (ages.size() > 0)
{

cin >> user_input;
if (ages.erase_one(user_input))

 cout << "Yes, I've found that age and removed it." << endl;
 else
 cout << "No, that age does not occur!" << endl;

}
}

int main()

void get_ages(bag& ages)

void check_ages(bag& ages)

www.cs.colorado.edu/~main/chapter3/bag_demo.cxx WWW

104 Chapter 3 / Container Classes

The Bag Class—Design

There are several ways to design the bag class. For now, we’ll keep things sim-
ple and design a somewhat inefficient data structure using an array. The data
structure will be redesigned several times to allow more efficient functions.

We start the design by thinking about the data structure—the actual configu-
ration of private member variables used to implement the class. The primary
structure for our design is an array that stores the items of a bag. Or, to be more
precise, we use the beginning part of a large array. Such an array is called a
partially filled array . For example, if the bag contains the integer 4 and two cop-
ies of 8, then the first part of the array could look this way:

This array will be one of the private member variables of the bag class. The
length of the array will be determined by the constant CAPACITY, but as the pic-
ture indicates, when we are using the array to store a bag with just three items,
we don’t care what appears beyond the first three components. Starting at index
3, the array might contain all zeros, or it might contain garbage, or our favorite
number—it really doesn’t matter.

Because part of the array can contain garbage, the bag class must keep track
of one other item: How much of the array is currently being used? For example,
in the picture above, we are using only the first three components of the array
because the bag contains three items. The amount of the array being used can be
as small as zero (an empty bag) or as large as CAPACITY (a full bag). The amount
increases as items are added to the bag, and it decreases as items are removed. In
any case, we will keep track of the amount in a private member variable called
used. With this approach, there are two private members for a bag. Notice that
the total size of the array is determined by the CAPACITY constant.

class bag
{
public:

// TYPEDEFS and MEMBER CONSTANTS
typedef int value_type;
typedef std::size_t size_type;
static const size_type CAPACITY = 30;

private:

};

use the
beginning part
of an array

[2][0] [1]

data
8 4 8Components of

the partially filled
array contain the
items of the bag. [3] [4] [5]

Parts
Unknown

the bag’s
member
variables

two private
member variables
for the bag

The rest of the public members will be listed later.

value_type data[CAPACITY]; // An array to store items
size_type used; // How much of the array is used

The Bag Class 105

Pitfall: The value_type Type Must Have a Default Constructor

The value_type is used as the component type of an array in the private member
variable shown here:

class bag
{
...
private:

...

If the value_type is a class with constructors (rather than one of the C++ built-in
types), then the compiler must initialize each component of the data array using the
item’s default constructor. This is why our bag documentation includes the state-
ment that the value_type type must be “a class with a default constructor . . .”

The point to remember is that when an array has a component type that is a
class, the compiler uses the default constructor to initialize the array components.

The Invariant of a Class

We’ve defined the bag data structure, and we have a good intuitive idea of how
the structure will be used to represent a bag of items. But as an aid in imple-
menting the class we should also write down an explicit statement of how the
data structure is used to represent a bag. In the case of the bag, we need to state
how the member variables of the bag class are used to represent a bag of items.
There are two rules for our bag implementation:

rules that dictate
how the member
variables are
used to represent
a value

1. The number of items in the bag is stored in the member variable used.
2. For an empty bag, we do not care what is stored in any of data; for a

non-empty bag, the items in the bag are stored in data[0] through
data[used-1], and we don’t care what is stored in the rest of data.

The rules that dictate how the member variables of a class represent a value
(such as a bag of items) are called the invariant of the class. The knowledge of
these rules is essential to the correct implementation of the class’s functions.
With the exception of the constructors, each function depends on the invariant
being valid when the function is called. And each function, including the con-
structors, has a responsibility of ensuring that the invariant is valid when the
function finishes. In some sense, the invariant of a class is a condition that is an
implicit part of every function’s postcondition. And (except for the constructors)
it is also an implicit part of every function’s precondition. The invariant is not
usually written as an explicit part of the preconditions and postconditions
because the programmer who uses the class does not need to know about these
conditions. But to the implementor of the class, the invariant is indispensable. In
other words, the invariant is a critical part of the implementation of a class, but it
has no effect on the way the class is used.

PITFALL

value_type data[CAPACITY]; // An array to store items

The invariant is
a critical part of
a class’s
implementation.

Key Design
Concept

106 Chapter 3 / Container Classes

The Bag Class—Implementation
Once the invariant of the bag is stated, the implementation of the functions is
relatively simple because there is no interaction between the functions—except
for their cooperation at keeping the invariant valid. Let’s discuss each function
along with its implementation.

The constructor. The default constructor initializes a bag as an empty bag,
and does no other work. The only task involved is to set the member used to
zero, which can be accomplished with an inline member function:

implementing the
constructor

bag() { used = 0; }

The value semantics. Our documentation indicates that assignments and the
copy constructor may be used with a bag. Our plan is to use the automatic assign-
ment operator and the automatic copy constructor, each of which simply copies
the member variables from one bag to another. This is fine because the copying
process will copy both the data array and the member variable used.

For example, if a programmer has two bags x and y, then the statement
will invoke the automatic assignment operator to copy all of x.data to y.data,
and to copy x.used to y.used. This is exactly what we want the assignment
operator to do, and the automatic copy constructor is also correct.

So, our only “work” for the value semantics is confirming that the automatic
operations are correct. Don’t you wish all implementations were that easy?

The count member function. To count the number of occurrences of a partic-
ular item in a bag, we step through the used portion of the partially filled array.
Remember that we are using locations data[0] through data[used-1], so the
correct loop is shown in this implementation:

bag::size_type bag::count(const value_type& target) const
implementing the
count function

{
size_type answer;
size_type i;
answer = 0;

return answer;
}

The Invariant of a Class

Always make an explicit statement of the rules that dictate
how the member variables of a class are used. These rules
are called the invariant of the class . All of the functions
(except the constructors) can count on the invariant being
valid when the function is called. Each function also has the
responsibility of ensuring that the invariant is valid when the
function finishes.

y = x

for (i = 0; i < used; ++i)
if (target == data[i])

++answer;

The Bag Class 107

Pitfall: When to Use the Full Type Name bag::size_type

When we implement the count function, we must take care to write the return
type as shown here:

 bag::count(const value_type& target)

We have used the completely specified type rather than just
size_type. This is because many compilers do not recognize that you are
implementing a bag member function until after seeing bag::count. In the
implementation, after bag::count, we may use simpler names such as
size_type and value_type, but before bag::count, we should use the full
type name bag::size_type.

The insert member function. The insert function checks that there is room to
insert a new item. If so, then the item is placed in the next available location of
the array. What is the index of the next available location? For example, if used
is 3, then data[0], data[1], and data[2] are already occupied, and the next
location is data[3]. In general, the next available location is data[used]. We
can place the new item in data[used], as shown in this implementation:

void bag::insert(const value_type& entry)
implementing
insert

// Library facilities used: cassert
{

assert(size() < CAPACITY);

++used;
}

Within a member function we can refer to the static member constant CAPACITY
with no extra notation. This refers to the CAPACITY member constant of the bag
that activates the insert function.

Programming Tip: Make Assertions Meaningful

At the start of the insert member function we wrote the assertion:

assert(size() < CAPACITY);

Of course, we could have written “used < CAPACITY” instead, but it is better to
write assertions with public members (such as the size function). The public mem-
ber is better because it has meaning to the programmer who uses our class. If the
assertion fails, that programmer will understand the message “Assertion failed:
size() < CAPACITY.”

The erase_one member function. The erase_one function takes several
steps to remove an item named target from a bag. In the first step, we find the
index of target in the bag’s array, and store this index in a local variable named
index. For example, suppose that target is the number 6 in the five-item bag
drawn at the top of the next page.

PITFALL

bag::size_type

bag::size_type

data[used] = entry;

See Self-Test Exercise 7 for an
alternative approach to these
steps.

TIP

108 Chapter 3 / Container Classes

In this example, target is a parameter to the erase_one member function,
index is a local variable in the erase_one member function, and used is the
familiar bag member variable. As you can see in the drawing, the first step of
erase_one was to locate the target (6) and place the index of the target in the
local variable named index.

Once the index of the target is found, the second step is to take the final item
in the bag and copy it to data[index]. The reason for this copying is so that all
the bag’s items stay together at the front of the partially filled array, with no
holes. In our example, the number 8 is copied to data[index] as shown here:

The third step is to reduce the value of used by one—in effect reducing the used
part of the array by one. In our example, used is reduced from 5 to 4:

index
1

data
3 6 4 9 8

used
5

target
6

[2][0] [3] [4] [5][1]

. . .
The index of the target
is found and placed in
a local variable
named index.

index
1

data
3 6 4 9

used
5

target
6

[2][0] [3] [4] [5][1]

8
8 . . .

The final item
is copied onto
the item that
we are
removing.

index
1

data
3 8 4 9

usedtarget
6

[2][0] [3] [4] [5][1]

. . .The value of used

5
4

is reduced by
one to indicate
that one item
has been
removed.

The Bag Class 109

The code for the erase_one function, shown in Figure 3.3, follows these three
steps. The only item added is a check that the target is actually in the bag. If we
discover that the target is not in the bag, then we do not need to remove anything
(and the function returns false). Also note that our function works correctly for
the boundary values of removing the first or last item in the array.

implementing
erase_one

Before we continue, we want to point out some programming techniques.
Look at the following while-loop from Figure 3.3:

index = 0;
while ((index < used) && (data[index] != target))

 ++index;

To begin, the index is set to zero. The boolean expression indicates that the
loop continues as long as index is still a location in the used part of the array
(i.e., index < used) and we have not yet found the target (i.e., data[index]
!= target). Each time through the loop, the index is incremented by one

A Member Function Implementation

void bag::erase_one(const value_type& target)
// Postcondition: If target was in the bag, then one copy has been removed;
// otherwise the bag is unchanged. A true return value indicates that one
// copy was removed; false indicates that nothing was removed.
{

size_type index; // The location of target in the data array

// First, set index to the location of target in the data array, which could be as small as
// 0 or as large as used-1. If target is not in the array, then index will be set equal to
// used.
index = 0;
while ((index < used) && (data[index] != target))

 ++index;

if (index == used)
return false; // target isn’t in the bag, so no work to do.

// When execution reaches here, target is in the bag at data[index].
// So, reduce used by 1 and copy the last item onto data[index].
--used;
data[index] = data[used];

 return true;
}

 FIGURE 3.3 Implementation of the Member Function to Remove an Item

See Self-Test Exercise 7 for an
alternative approach to this step.

www.cs.colorado.edu/~main/chapter3/bag1.cxx WWW

110 Chapter 3 / Container Classes

(++index). No other work is needed in the loop, so the body of the loop has no
other statements.

An important programming technique concerns the boolean expression shown
here:

index = 0;
while ()

++index;

Look at the expression data[index] in the second part of the test. The valid
indexes for data range from 0 to used-1. But, if the target is not in the array,
then index will eventually reach used, which could be an invalid index. At that
point, with index equal to used, we must not evaluate the expression
data[index]. In some situations, trying to evaluate data[index] with an
invalid index can even cause your program to crash. The general rule: Never
use an invalid index with an array.

short-circuit
evaluation of
logical operations

Avoiding the invalid index is the reason for the first part of the logical test
(i.e., index < used). Moreover, the test for (index < used) must appear before
the other part of the test. Placing (index < used) first ensures that only valid
indexes are used. The insurance comes from a technique called short-circuit
evaluation, which C++ uses to evaluate boolean expressions. In short-circuit
evaluation a boolean expression is evaluated from left to right, and the evalua-
tion stops as soon as there is enough information to determine the value of the
expression. In our example, if index equals used, then the first part of the logical
expression (index < used) is false, so the entire && expression must be false. It
doesn’t matter whether the second part of the && expression is true or false.
Therefore, C++ doesn’t bother to evaluate the second part of the expression, and
the potential error of an invalid index is avoided.

The operator +=. The operator += is a member function. Most of the work of
this function is accomplished by a loop that copies each of the items from
addend.data to the data array of the object that activates +=. One possible
implementation uses a loop, something like this:

void bag::operator +=(const bag& addend)
{

...
for (i = 0; i < number of items to copy; ++i)
{

++used;
}

}

implementing
operator +=

The key assignment statement in the loop is highlighted. On the left of the
assignment we have written data[used], which is the next available location of
the data array for the object that activated the function. On the right of the
assignment we have written addend.data[i], which is item number i from the
data array that we are copying.

(index < used) && (data[index] != target)

data[used] = addend.data[i];

The Bag Class 111

There’s nothing wrong with the loop-based implementation, but an alternative
that avoids an explicit loop is shown in Figure 3.4. The implementation uses the
copy function from the <algorithm> Standard Library. This function can copy
items from one array to another, as described in the following C++ Feature.

C++ Feature: The Copy Function from the C++ Standard Library

The Standard Library contains a copy function for easy copying of items from one
location to another. The function is part of the std namespace in the <algorithm>
facility, and is used as follows:

copy(<beginning location>, <ending location>, <destination>);

The function starts at the specified beginning location and copies an item to the
destination. It continues beyond the beginning location, copying more and more
items to the next spot of the destination, until we are about to copy the ending loca-
tion. The ending location is not copied. All three parameters are often locations
within arrays. For example, suppose that b and c are arrays. To copy the items
b[0]...b[9] into locations c[40]...c[49], we could write:

copy(b, b + 10, c + 40);

This call to copy starts copying items from b[0], b[1], b[2], It stops when it
reaches b[10] (and b[10] is not copied). The copied items go into array c, at
locations c[40], c[41], c[42], The destination must not overlap the source.

As shown in this example, to specify a location that is at the start of an array, just
use the array name (such as b). To specify a location at index i of an array, write
the array name followed by “+ i” (such as b + 10 or c + 40).

The statement copy(addend.data, addend.data + addend.used, data + used)
is used in Figure 3.4 to copy items from addend.data into the data array. The
copied items come from the start of addend.data, continuing up to but not including
addend.data[addend.used]. The copied items are placed in the data array
starting at location data[used].

A Member Function Implementation

void bag::operator +=(const bag& addend)
// Precondition: size() + addend.size() <= CAPACITY.
// Postcondition: Each item in addend has been added to this bag.
// Library facilities used: algorithm, cassert
{

assert(size() + addend.size() <= CAPACITY);

copy(addend.data, addend.data + addend.used, data + used);
used += addend.used;

}

 FIGURE 3.4 Implementation of the Operator += Member Function

The copy function is from the
<algorithm> part of the C++
Standard Library

www.cs.colorado.edu/~main/chapter3/bag1.cxx WWW

FEATURE ++

112 Chapter 3 / Container Classes

The operator +. The operator + is different from our other functions. It is an
ordinary function rather than a member function. The function must take two
bags, add them together into a third bag, and return this third bag. The “third bag”
is declared as a local variable called answer in this implementation:

bag operator +(const bag& b1, const bag& b2)
// Library facilities used: cassert
{

bag answer;

assert(b1.size() + b2.size() <= bag::CAPACITY);

answer += b1;
answer += b2;
return answer;

}

Notice that this function does not need to be a friend function. Why not? (See
the answer to Self-Test Exercise 5.) Also, the function implementation can
access the static member constant with the notation bag::CAPACITY.

The Bag Class—Putting the Pieces Together

Only the erase and size functions remain to be implemented. We’ll leave
erase as an exercise (it is similar to erase_one), and size will be an inline
function of the class definition shown in the completed header file of Figure 3.5
on page 113. Notice that in the header file we also list the prototype of the bag’s
operator + function. This is not a member function, so the prototype appears
after the end of the bag class definition.

All the function implementations are collected in the implementation file of
Figure 3.6 on page 114.

Programming Tip: Document the Class Invariant in the
Implementation File

We wrote the invariant for the bag class at the top of the implementation file in
Figure 3.6. This is the best place to document the class’s invariant. In particular, do
not write the invariant in the header file, because a programmer who uses the class
does not need to know about how the invariant dictates the use of private fields. But
the programmer who implements the class does need to know about the invariant.

Add in the items of b1.

Add in the items of b2.

TIP

The Bag Class 113

A Header File

// FILE: bag1.h
// CLASS PROVIDED: bag (part of the namespace main_savitch_3)

#ifndef MAIN_SAVITCH_BAG1_H
#define MAIN_SAVITCH_BAG1_H
#include <cstdlib> // Provides size_t

namespace main_savitch_3
{

class bag
{
public:

// TYPEDEFS and MEMBER CONSTANTS
typedef int value_type;
typedef std::size_t size_type;
static const size_type CAPACITY = 30;
// CONSTRUCTOR
bag() { used = 0; }
// MODIFICATION MEMBER FUNCTIONS
size_type erase(const value_type& target);
bool erase_one(const value_type& target);
void insert(const value_type& entry);
void operator +=(const bag& addend);
// CONSTANT MEMBER FUNCTIONS
size_type size() const { return used; }
size_type count(const value_type& target) const;

private:
value_type data[CAPACITY]; // The array to store items
size_type used; // How much of array is used

};

// NONMEMBER FUNCTIONS for the bag class
bag operator +(const bag& b1, const bag& b2);

}

#endif

 FIGURE 3.5 Header File for the Bag Class

See Figure 3.1 on page 100 for the other documentation that goes here.

If your compiler does not permit
initialization of static constants,
see Appendix E.

www.cs.colorado.edu/~main/chapter3/bag1.h WWW

114 Chapter 3 / Container Classes

An Implementation File

// FILE: bag1.cxx
// CLASS IMPLEMENTED: bag (see bag1.h for documentation)
// INVARIANT for the bag class:
// 1. The number of items in the bag is in the member variable used.
// 2. For an empty bag, we do not care what is stored in any of data; for a non-empty bag,
// the items in the bag are stored in data[0] through data[used-1], and we don’t care
// what’s in the rest of data.

#include <algorithm> // Provides copy function
#include <cassert> // Provides assert function
#include "bag1.h"
using namespace std;

namespace main_savitch_3
{

const bag::size_type bag::CAPACITY;

{

}

{
size_type index; // The location of target in the data array

// First, set index to the location of target in the data array,
// which could be as small as 0 or as large as used-1.
// If target is not in the array, then index will be set equal to used.
index = 0;
while ((index < used) && (data[index] != target))

++index;

if (index == used) // target isn’t in the bag, so no work to do
return false;

// When execution reaches here, target is in the bag at data[index].
// So, reduce used by 1 and copy the last item onto data[index].
--used;
data[index] = data[used];
return true;

} (continued)

 FIGURE 3.6 Implementation File for the Bag Class

See “Static Member Constants” on
page 99 for an explanation of this
line.

bag::size_type bag::erase(const value_type& target)

See the solution to Self-Test Exercise 6 on page 134.

bool bag::erase_one(const value_type& target)

See Self-Test Exercise 7 for an
alternative approach to this step.

The Bag Class 115

 (FIGURE 3.6 continued)

// Library facilities used: cassert
{

assert(size() < CAPACITY);

data[used] = entry;
++used;

}

// Library facilities used: algorithm, cassert
{

assert(size() + addend.size() <= CAPACITY);

copy(addend.data, addend.data + addend.used, data + used);
used += addend.used;

}

{
size_type answer;
size_type i;

answer = 0;
for (i = 0; i < used; ++i)

if (target == data[i])
++answer;

return answer;
}

// Library facilities used: cassert
{

bag answer;

assert(b1.size() + b2.size() <= bag::CAPACITY);

answer += b1;
answer += b2;
return answer;

}
}

void bag::insert(const value_type& entry)

See Self-Test Exercise 7 for an
alternative approach to these
steps.

void bag::operator +=(const bag& addend) The copy function is from
the <algorithm> part of
the C++ Standard
Library

bag::size_type bag::count(const value_type& target) const

bag operator +(const bag& b1, const bag& b2)

www.cs.colorado.edu/~main/chapter3/bag1.cxx WWW

116 Chapter 3 / Container Classes

The Bag Class—Testing

Thus far, we have focused on the design and implementation of new classes,
including new member functions and operator overloading. But it’s also impor-
tant to continue practicing the other aspects of software development, particu-
larly testing. Each of the bag’s new functions must be tested, including the
overloaded operators. As shown in Chapter 1, it is important to concentrate the
testing on boundary values. At this point, we will alert you to only one potential
pitfall, leaving the complete testing to Programming Project 1 on page 136.

Pitfall: An Object Can Be an Argument to Its Own Member Function

The same variable is sometimes used on both sides of an assignment or other
operator. For example, the value of an integer d is doubled by the highlighted state-
ment here:

int d = 5;

A similar technique can be used with a bag, as shown here:

bag b;
b.insert(5);
b.insert(2);

The highlighted statement takes all the items in b (the 5 and the 2) and adds them
to what’s already in b, so b ends up with two copies of each number.

In the += statement, the bag b is activating the += operator, but this same bag b
is the actual argument to the operator. This is a situation that must be carefully
tested. As an example of the danger, consider the incorrect implementation of +=
in Figure 3.7. Do you see what goes wrong with ? (See the answer to Self-
Test Exercise 8.)

PITFALL

d += d;

Add the current value of d
to d, giving it a value of 10.

b += b;

b now contains a 5 and a 2.

Now b contains two 5s and two 2s.

b += b

The situation: A member function has a parameter type
that is the same as the member function’s class. For exam-
ple, the bag’s += operator has a parameter that is itself a bag.

The danger: The member function might fail when an object
activates the member function, and the same object is used
as the actual argument. For example, a bag b could be used
in the statement: .

Always test this special situation.

b += b

The Bag Class 117

The Bag Class—Analysis

We finish this section with a time analysis of the bag’s functions. We’ll use the
number of items in a bag as the input size. For example, if b is a bag containing
n integers, then the number of operations required by b.count is a formula
involving n. To count the operations, we’ll count the number of statements exe-
cuted by the function, although we won’t need an exact count since our answer
will use big-O notation. Except for the return statement, all of the work in count
happens in this loop:

for (i = 0; i < used; ++i)
if (target == data[i])

++answer;

We can see that the body of the loop will be executed exactly n times—once for
each item in the bag. The body of the loop also has another important property:
The body contains no other loops or calls to functions that contain loops.
This is enough to conclude that the total number of statements executed by
count is no more than:

The “+3” at the end is for the initialization of i, the final test of (i < used), and
the return statement. Regardless of how many statements are actually in the
loop, the time expression is always O(n)—so the count function is linear.

A Wrong Member Function Implementation

// Library facilities used: cassert
{

size_type i; // An array index

assert(size() + addend.size() <= CAPACITY);

for (i = 0; i < addend.used; ++i)
{

data[used] = addend.data[i];
++used;

}
}

 FIGURE 3.7 Wrong Implementation of the Bag’s += Operator

void bag::operator +=(const bag& addend)

WARNING!

There is a bug in this
implementation. See Self-Test
Exercise 8.

n (number of statements in the loop) 3+×

118 Chapter 3 / Container Classes

A similar analysis shows that erase_one is also linear, although its loop
sometimes executes fewer than n times. However, the fact that erase_one some-
times requires fewer than does not
change the fact that the function is O(n). In the worst case, the loop does execute
a full n iterations, therefore the correct time analysis is no better than O(n).

constant time
O(1)

Several of the other bag functions do not contain any loops at all, and do not
call any functions with loops. This is a pleasant situation because the time
required for any of these functions does not depend on the number of items in the
bag. For example, when an item is added to a bag, the new item is always placed
at the end of the array, and the insert function never looks at the items that were
already in the bag. When the time required by a function does not depend on the
size of the input, the procedure is called constant time, which is written O(1).
But be careful in analyzing the += operator. Its call to the copy function requires
time that is proportional to the size of the addend bag, so it is not constant time.

The time analyses of all the functions are summarized in Figure 3.8.

Self-Test Exercises

1. The bag’s documentation in Figure 3.1 on page 100 says that the
value_type may be a class, but only if it has a default constructor and
several operators. Why?

2. Draw a picture of mybag.data after these statements:
bag mybag;
mybag.insert(1);
mybag.insert(2);
mybag.insert(3);
mybag.erase_one(1);

3. Write the invariant of the bag class.

4. Use the copy function to copy six elements from the start of an array x
into an array y starting at y[42].

5. Why isn’t the bag’s operator + function a friend function?

6. Implement the bag’s erase member function.

n (number of statements in the loop)×

FIGURE 3.8 Time Analysis for the Bag Functions (First Version)

Operation Time Analysis Operation Time Analysis

Default
constructor

O(1) Constant time += another
bag

O(n) n is the size of
the other bag

count O(n) n is the size of
the bag

b1 + b2 O(n1 + n2) n1 and n2 are the
sizes of the bags

erase_one O(n) Linear time insert O(1) Constant time

erase O(n) Linear time size O(1) Constant time

Programming Project: The Sequence Class119

7. Rewrite the last two statements of erase_one (Figure 3.3 on page 109)
as a single statement, using the expression --used as the index. (If you
are unsure of the meaning of --used as an index, then go ahead and peek
at our answer at the back of the chapter.) Use used++ as the index to
make a similar alteration to the insert function member.

8. Suppose we implement the += operator as shown in Figure 3.7 on
page 117. What goes wrong with ?

3.2 PROGRAMMING PROJECT: THE SEQUENCE CLASS

You are ready to tackle a container class implementation on your own. The class
is a container class called a sequence. A sequence is similar to a bag—both con-
tain a bunch of items. But unlike a bag, the items in a sequence are arranged in
an order, one after another.

how a sequence
differs from a bag

How does this differ from a bag? After all, aren’t the bag items arranged one
after another in the partially filled array that implements the bag? Yes, but that’s
a quirk of our particular bag implementation, and the order is just haphazard.

internal iterators
versus
external iterators

In contrast, the items of a sequence are kept one after another, and member
functions will allow a program to step through the sequence one item at a time.
Member functions also permit a program to control precisely where items are
inserted and removed within the sequence. The technique of using member func-
tions to access items is called an internal iterator , which differs from external
iterators of the Standard Library containers. Later, in Chapter 6, we will exam-
ine external iterators in detail and add them to both the bag and the sequence.

The Sequence Class—Specification

Our sequence is a class that depends on an underlying value_type, and the
class also provides a size_type. It’s a good habit to use these particular names
for all our classes since you’ll find the same names for the Standard Library
container classes. At the moment, a sequence will be limited to no more than 30
items. As with our bag, the value_type, size_type, and sequence capacity
will be defined in the public section of the class definition. Throughout the dis-
cussion, we will use examples in which the items are double numbers, and the
sequence has no more than 30 items. So the header file has these definitions:

class sequence
{
public:

// TYPEDEF and MEMBER CONSTANTS

...

b += b

typedef double value_type;
typedef std::size_t size_type;
static const size_type CAPACITY = 30;

120 Chapter 3 / Container Classes

Keep in mind that the capacity and item type can easily be changed and recom-
piled if we need other kinds of sequences. Also, remember the alternatives if
your compiler does not support this way of initializing a static constant in a
class definition (see Appendix E).

The class that we implement will be called sequence. We’ll now specify the
member functions of this new class:

Default constructor. The sequence class has just one constructor—a default
constructor that creates an empty sequence.

The size member function. The size member function returns the number of
items in the sequence. The prototype is given here along with the postcondition:

size_type size() const;
// Postcondition: The return value is the number of items in the sequence.

For example, if scores is a sequence containing the values 10.1, 40.2, and 1.1,
then scores.size() returns 3. Throughout our examples, we will draw
sequences vertically, with the first item on top, as shown in the picture in the
margin (where the first item is 10.1).

Member functions to examine a sequence. We will have member functions
to build a sequence, but it will be easier to first explain the member functions
that examine a sequence which has already been built. Now, with the bag class,
all that we can do is inquire how many copies of a particular item are in the bag.
A sequence is more flexible, allowing us to examine the items one after another.
The items must be examined in order, from the front to the back of the sequence.
Three member functions work together to enforce the in-order retrieval rule.
The functions’ prototypes are given here:

void start();
value_type current() const;
void advance();

When we want to retrieve the items in a sequence, we begin by activating
start. After activating start, the current function returns the first item in the
sequence. Each time we call advance, the current function changes so that it
returns the next item in the sequence. For example, if a sequence named num-
bers contains the four numbers 37, 10, 83, and 42, then we can write the fol-
lowing code to print the first three numbers:

numbers.start();
start,
current,
advance

cout << numbers.current() << endl;
numbers.advance();
cout << numbers.current() << endl;
numbers.advance();
cout << numbers.current() << endl;

10.1
40.2
1.1

Prints 37

Prints 10

Prints 83

Programming Project: The Sequence Class121

One other member function cooperates with current. The function, called
is_item, returns a boolean value to indicate whether there actually is another
item for current to provide, or whether current has advanced right off the
end. The is_item prototype is given here with a postcondition:

bool is_item() const;
// Postcondition: A true return value indicates that there is a valid
// “current” item that can be obtained from the current member function.
// A false return value indicates that there is no valid current item.

Using all four of the member functions in a for-loop, we can print an entire
sequence, as shown here for the numbers sequence:

for (numbers.start(); numbers.is_item(); numbers.advance())
cout << numbers.current() << endl;

The insert and attach member functions. There are two member functions to
add new items to a sequence. One of the functions, called insert, places a new
item before the current item. For example, suppose that we have created the
sequence shown to the right with three items, and that the current item is 8.8. In
this example, we want to add 10.0, immediately before the current item. When
10.0 is inserted before the current item, other items—such as 8.8 and 99.0—will
move down to make room for the new item. After the insertion, the sequence has
the four items shown in the lower box.

If there is no current item, then insert places the new item at the front of the
sequence. In any case, after the insert function returns, the newly inserted item
will be the current item, as specified in this precondition/postcondition contract:

void insert(const value_type& entry);
// Precondition: size() < CAPACITY.
// Postcondition: A new copy of entry has been inserted in the sequence
// before the current item. If there was no current item, then the new entry
// has been inserted at the front. In either case, the new item is now the
// current item of the sequence.

A second member function, called attach, also adds a new item to a
sequence, but the new item is added after the current item, as specified here:

void attach(const value_type& entry);
// Precondition: size() < CAPACITY.
// Postcondition: A new copy of entry has been inserted in the sequence
// after the current item. If there was no current item, then the new entry
// has been attached to the end. In either case, the new item is now the
// current item of the sequence.

42.1

99.0
8.8

42.1

8.8
99.0

10.0

The
sequence
grows by
inserting
10.0 before
the current
item.

122 Chapter 3 / Container Classes

If there is no current item, then the attach function places the new item at the
end of the sequence (rather than the front). Either insert or attach can be used
to place the first item on a sequence.

The remove_current member function. The current item can be removed
from a sequence. The member function for a removal has no parameters:

void remove_current();
// Precondition: is_item returns true.
// Postcondition: The current item has been removed from the sequence,
// and the item after this (if there is one) is now the new current item.

The function’s precondition requires that there is a current item; it is this current
item that is removed. For example, suppose scores is the four-item sequence
shown at the top of the box in the margin, and the highlighted 8.3 is the current
item. After activating scores.remove_current(), the 8.3 has been deleted,
and the 4.1 is now the current item.

The Sequence Class—Documentation

The header file for this first version of our sequence class is shown in
Figure 3.9 on page 124. The header file includes the class definition with our
suggestion for three member variables. We discuss these member variables next.

The Sequence Class—Design

Our suggested design for the sequence class has three private member variables.
The first variable, data, is an array that stores the items of the sequence. Just
like the bag, data is a partially filled array. A second member variable, called
used, keeps track of how much of the data array is currently being used. There-
fore, the used part of the array extends from data[0] to data[used-1]. The
third member variable, current_index, gives the index of the “current” item in
the array (if there is one). If there is no valid current item in the sequence, then
current_index will be the same number as used (since this is larger than any
valid index). Here is the complete invariant of our class, stated as three rules:

1. The number of items in the sequence is stored in the member variable
used.

2. For an empty sequence, we do not care what is stored in any of data; for a
non-empty sequence, the items are stored in their sequence order from
data[0] to data[used-1], and we don't care what is stored in the rest of
data.

3. If there is a current item, then it lies in data[current_index]; if there is
no current item, then current_index equals used.

3.7

4.1
3.1

8.3

3.7

3.1
4.1

Before
the
removal

After
the
removal

Programming Project: The Sequence Class123

As an example, suppose that a sequence contains four numbers, with the current
item at data[2]. The member variables of the object might appear as shown
here:

In this example, the current item is at data[2], so the current() function
would return the number 6. At this point, if we called advance(), then
current_index would increase to 3, and current() would then return 9.

Normally, a sequence has a “current” item, and the member variable
current_index contains the location of that current item. But if there is no cur-
rent item, then current_index contains the same value as used. In our example,
if current_index was 4, then that would indicate that there is no current item.
Notice that this value (4) is beyond the used part of the array (which stretches
from data[0] to data[3]).

invariant of the
class

The stated requirements for the member variables form the invariant of the
sequence class. You should place this invariant at the top of your implementation
file (sequence1.cxx). We will leave most of this implementation file up to you,
but we will offer some hints and a bit of pseudocode.

The Sequence Class—Pseudocode for the Implementation

The remove_current function. This function removes the current item from
the sequence. First check that the precondition is valid (use is_item() in an
assertion). Then remove the current item by shifting each of the subsequent
items leftward one position. For example, suppose we are removing the current
item from the sequence drawn here:

What is the current item in this picture? It is the 1.4 since current_index is 1,
and data[1] contains the 1.4.

(text continues on page 126)

current_index
2

data

3 1.4 6 9

used
4

[2][0] [3] [4] [5][1]

. . .

current_index
1

data

3 1.4 6 9

used
5

[2][0] [3] [4] [5][1]

. . .1.1

124 Chapter 3 / Container Classes

A Header File

// FILE: sequence1.h
// CLASS PROVIDED: sequence (part of the namespace main_savitch_3)
//
// TYPEDEF and MEMBER CONSTANTS for the sequence class:
//
// sequence::value_type is the data type of the items in the sequence. It may be any of the
// C++ built-in types (int, char, etc.), or a class with a default constructor, an assignment
// operator, and a copy constructor
//
//
// sequence::size_type is the data type of any variable that keeps track of how many
// items are in a sequence.
//
//
// sequence::CAPACITY is the maximum number of items that a sequence can hold.
//
// CONSTRUCTOR for the sequence class:
//
// Postcondition: The sequence has been initialized as an empty sequence.
//
// MODIFICATION MEMBER FUNCTIONS for the sequence class:
//
// Postcondition: The first item in the sequence becomes the current item (but if the
// sequence is empty, then there is no current item).
//
//
// Precondition: is_item returns true.
// Postcondition: If the current item was already the last item in the sequence, then there
// is no longer any current item. Otherwise, the new item is the item immediately after
// the original current item.
//
//
// Precondition: size() < CAPACITY.
// Postcondition: A new copy of entry has been inserted in the sequence before the
// current item. If there was no current item, then the new entry has been inserted at the
// front. In either case, the new item is now the current item of the sequence.
//
//
// Precondition: size() < CAPACITY.
// Postcondition: A new copy of entry has been inserted in the sequence after the current
// item. If there was no current item, then the new entry has been attached to the end of
// the sequence. In either case, the new item is now the current item of the sequence.
//
//
// Precondition: is_item returns true.
// Postcondition: The current item has been removed from the sequence, and the
// item after this (if there is one) is now the new current item. (continued)

 FIGURE 3.9 Header File for the Sequence Class

typedef ____ value_type

typedef ____ size_type

static const size_type CAPACITY = _____

sequence()

void start()

void advance()

void insert(const value_type& entry)

void attach(const value_type& entry)

void remove_current()

124

Programming Project: The Sequence Class125
 (FIGURE 3.9 continued)

// CONSTANT MEMBER FUNCTIONS for the sequence class:
//
// Postcondition: The return value is the number of items in the sequence.
//
//
// Postcondition: A true return value indicates that there is a valid “current” item that
// may be retrieved by the current member function (listed below). A false return value
// indicates that there is no valid current item.
//
//
// Precondition: is_item() returns true.
// Postcondition: The item returned is the current item in the sequence.
//
// VALUE SEMANTICS for the sequence class:
// Assignments and the copy constructor may be used with sequence objects.

#ifndef MAIN_SAVITCH_SEQUENCE_H
#define MAIN_SAVITCH_SEQUENCE_H
#include <cstdlib> // Provides size_t

namespace main_savitch_3
{

class sequence
 {
 public:

// TYPEDEFS and MEMBER CONSTANTS
typedef double value_type;
typedef std::size_t size_type;
static const size_type CAPACITY = 30;
// CONSTRUCTOR
sequence();
// MODIFICATION MEMBER FUNCTIONS
void start();
void advance();
void insert(const value_type& entry);
void attach(const value_type& entry);
void remove_current();
// CONSTANT MEMBER FUNCTIONS
size_type size() const;
bool is_item() const;
value_type current() const;

private:
value_type data[CAPACITY];
size_type used;
size_type current_index;

};
}

#endif

size_type size() const

bool is_item() const

value_type current() const

If your compiler does not permit
initialization of static constants, see
Appendix E.

The three private member
variables are discussed in the
section “The Sequence Class—
Design” on page 122.

www.cs.colorado.edu/~main/chapter3/sequence1.h WWW

125

126 Chapter 3 / Container Classes

In the case of the bag, we could remove an element such as 1.4 by copying the
final item (1.1) onto the 1.4. But this approach won’t work for the sequence
because the items would lose their sequence order. Instead, each item after the
1.4 must be moved leftward one position. The 6 moves from data[2] to
data[1]; the 9 moves from data[3] to data[2]; the 1.1 moves from data[4]
to data[3]. This is a lot of movement, but a simple for-loop suffices to carry out
all the work. This is the pseudocode:

for (i = the index after the current item; i < used; ++i)
Move an item from data[i] back to data[i-1];

do not use the
copy function

You should not use the copy function from <algorithm> since that function
forbids the overlap of the source with the destination.

When the loop completes, you should reduce used by one. The final result for
our example is shown here:

After the removal, the current_index is unchanged. In effect, this means
that the item that was just after the removed item is now the current item. You
should check that the function works correctly for boundary values—removing
the first item and removing the final item. In fact, both these cases do work fine.
When the final item is removed, current_index will end up with the same value
as used, indicating that there is no longer a current item.

The insert function. If there is a current item, then the insert function must
take care to insert the new item just before the current position. Items that are
already at or after the current position must be shifted rightward to make room
for the new item. We suggest that you start by checking the precondition. Then
shift items at the end of the array rightward one position each until you reach the
position for the new item.

For example, suppose you are inserting 1.4 at the location data[1] in this
sequence:

current_index
1

data

3 6 9 1.1

used
4

[2][0] [3] [4] [5][1]

. . .

data

3 6 9 1.1

used
4

[2][0] [3] [4] [5][1]

. . .

current_index
1

Programming Project: The Sequence Class127

You would begin by shifting the 1.1 rightward from data[3] to data[4]; then
move the 9 from data[2] to data[3]; then the 6 moves from data[1] right-
ward to data[2]. At this point, the array looks like this:

Of course, data[1] actually still contains a 6 since we just copied the 6 from
data[1] to data[2]. But we have drawn data[1] as an empty box to indicate
that data[1] is now available to hold the new item (that is, the 1.4 that we are
inserting). At this point we can place the 1.4 in data[1] and add one to used, as
shown here:

The pseudocode for shifting the items rightward uses a for-loop. Each itera-
tion of the loop shifts one item, as shown here:

for (i = used; ; --i)
data[i] = data[i-1];

The key to the loop is the test . How do
we test whether a position is the wrong spot for the new item? A position is
wrong if (i > current_index). Can you now write the entire member function
in C++? (See the solution to Self-Test Exercise 9, and don’t forget to handle the
special case when there is no current item.)

Other Member Functions. The other member functions are straightforward;
for example, the attach function is similar to insert. You’ll need to watch out
for the pitfall about using full names (see page 107). Some additional useful
member functions are described in Programming Projects 3 and 4 on page 136.

data

3 6 9

[2][0] [3] [4] [5][1]

. . .1.1

data

3 1.4 6 9

used
5

[2][0] [3] [4] [5][1]

. . .1.1

current_index
1

data[i] is the wrong spot for entry

data[i] is the wrong spot for entry

128 Chapter 3 / Container Classes

Self-Test Exercises

9. Write the insert function for the sequence. Why should this implemen-
tation avoid using the copy function from <algorithm>?

10. Suppose that a sequence has 24 items, and there is no current item.
According to the invariant of the class, what is current_index?

11. Suppose g is a sequence with 10 items. You activate g.start(), then acti-
vate g.advance() three times. What value is then in g.current_index?

12. What are good boundary values to test the remove_current function?
13. Write a demonstration program that asks the user for a list of family

member ages, then prints the list in the same order that it was given.

14. Write a new member function to remove a specified item from a
sequence. The function has one parameter (the item to remove).

15. For a sequence of numbers, suppose that you attach 1, then 2, then 3, and
so on up to n. What is the big-O time analysis for the combined time of
attaching all n numbers? How does the analysis change if you insert n
first, then n-1, and so on down to 1—always using insert instead of
attach?

3.3 INTERACTIVE TEST PROGRAMS

Your sequence class is a good candidate for an interactive test program that fol-
lows a standard format. The format, illustrated by the program of Figure 3.10,
can be used with any class. The start of the main program declares an object—in
this case, a sequence object. The rest of the main program is an interactive loop
that continues as long as the user wants. Three things occur inside the loop:

1. A small menu of choices is written for the user. Each choice is printed
along with a letter or other meaningful character to allow the user to select
the choice.

2. The user’s selection from the menu is read.

3. Based on the user’s selection, some action is taken on the sequence
object.

Our example interactive test program for the sequence is shown in Figure
3.10, with part of a sample dialogue in Figure 3.11 on page 132. Some of the
techniques used in the test program are familiar. For example, subtasks, such as
printing the menu, are accomplished with functions. Two techniques in the test
program may be new to you: converting input to uppercase letters, and acting on
the input via a switch statement. We’ll discuss these two techniques after you’ve
looked through the program.

Interactive Test Programs129

C++ Feature: Converting Input to Uppercase Letters

Even small test programs should have some flexibility regarding user input. For
example, the program should accept either upper- or lowercase letters for each
menu choice. We accomplish this by reading the user’s input and then, if neces-
sary, converting a lowercase letter to the corresponding uppercase letter. The con-
version is carried out by a function toupper with this specification:

char toupper(char c);
// Postcondition: If c is a lowercase letter, then the return value is the
// uppercase equivalent of c. Otherwise the return value is just c itself.

The toupper function is part of the <cctype> facility. In our main program, we use
toupper to convert the result of the get_user_command function, as shown here:

choice = toupper(get_user_command());

A Program

// FILE: sequence_test.cxx
// An interactive test program for the new sequence class
#include <cctype> // Provides toupper
#include <iostream> // Provides cout and cin
#include <cstdlib> // Provides EXIT_SUCCESS
#include "sequence1.h" // With value_type defined as double
using namespace std;
using namespace main_savitch_3;

// PROTOTYPES for functions used by this test program:

// Postcondition: A menu of choices for this program has been written to cout.

// Postcondition: The user has been prompted to enter a one-character command.
// The next character has been read (skipping blanks and newline characters),
// and this character has been returned.

// Postcondition: The items on display have been printed to cout (one per line).

// Postcondition: The user has been prompted to enter a real number. The
// number has been read, echoed to the screen, and returned by the function. (continued)

 FIGURE 3.10 Interactive Test Program for the Sequence Class

void print_menu();

char get_user_command();

void show_sequence(sequence display);

double get_number();

FEATURE ++

130 Chapter 3 / Container Classes

 (FIGURE 3.10 continued)

{
sequence test; // A sequence that we’ll perform tests on
char choice; // A command character entered by the user

cout << "I have initialized an empty sequence of real numbers." << endl;

do
{

print_menu();
choice = toupper(get_user_command());
switch (choice)
{

case '!': test.start();
break;

case '+': test.advance();
break;

case '?': if (test.is_item())
cout << "There is an item." << endl;

else
cout << "There is no current item." << endl;

break;
case 'C': if (test.is_item())

cout << "Current item is: " << test.current() << endl;
else

cout << "There is no current item." << endl;
break;

case 'P': show_sequence(test);
break;

case 'S': cout << "Size is " << test.size() << '.' << endl;
break;

case 'I': test.insert(get_number());
break;

case 'A': test.attach(get_number());
break;

case 'R': test.remove_current();
cout << "The current item has been removed." << endl;
break;

case 'Q': cout << "Ridicule is the best test of truth." << endl;
 break;

default: cout << choice << " is invalid." << endl;
}

}
while ((choice != 'Q'));

return EXIT_SUCCESS;
} (continued)

int main()

Interactive Test Programs131

 (FIGURE 3.10 continued)

// Library facilities used: iostream
{

cout << endl; // Print blank line before the menu
cout << "The following choices are available: " << endl;
cout << " ! Activate the start() function" << endl;
cout << " + Activate the advance() function" << endl;
cout << " ? Print the result from the is_item() function" << endl;
cout << " C Print the result from the current() function" << endl;
cout << " P Print a copy of the entire sequence" << endl;
cout << " S Print the result from the size() function" << endl;
cout << " I Insert a new number with the insert(...) function" << endl;
cout << " A Attach a new number with the attach(...) function" << endl;
cout << " R Activate the remove_current() function" << endl;
cout << " Q Quit this test program" << endl;

}

// Library facilities used: iostream
{

char command;

cout << "Enter choice: ";
cin >> command; // Input of characters skips blanks and newline character

 return command;
}

// Library facilities used: iostream
{

for (display.start(); display.is_item(); display.advance())
cout << display.current() << endl;

}

// Library facilities used: iostream
{

double result;

cout << "Please enter a real number for the sequence: ";
cin >> result;
cout << result << " has been read." << endl;
return result;

}

void print_menu()

char get_user_command()

void show_sequence(sequence display)

double get_number()

www.cs.colorado.edu/~main/chapter3/sequence_test.cxx WWW

132 Chapter 3 / Container Classes

A Sample Dialogue

I have initialized an empty sequence of real numbers.

The following choices are available:
 ! Activate the start() function
 + Activate the advance() function
 ? Print the result from the is_item() function
C Print the result from the current() function

 P Print a copy of the entire sequence
S Print the result from the size() function

 I Insert a new number with the insert(...) function
 A Attach a new number with the attach(...) function
 R Activate the remove_current() function
 Q Quit this test program
Enter choice: A
Please enter a real number for the sequence: 3.14
3.14 has been read.

The following choices are available:
 ! Activate the start() function
 + Activate the advance() function
 ? Print the result from the is_item() function
 C Print the result from the current() function
 P Print a copy of the entire sequence
 S Print the result from the size() function
 I Insert a new number with the insert(...) function
 A Attach a new number with the attach(...) function
 R Activate the remove_current() function
 Q Quit this test program
Enter choice: S
Size is 1.

 FIGURE 3.11 Part of a Sample Dialogue from the Program of Figure 3.10

The dialogue continues until the user types Q to stop the program.

Interactive Test Programs133

C++ Feature: The Switch Statement

After the user’s choice is read, the main program takes an action. The action
depends on the single character that the user typed from the menu. An effective
statement to select among many possible actions is the switch statement, with the
general form:

switch ()
{

}

When the switch statement is reached, the control value is evaluated. The program
then looks through the body of the switch statement for a matching case label. For
example, if the control value is the character 'A', then the program looks for a case
label of the form . If a matching case label is found, then the program
goes to that label and begins executing statements. Statements are executed one
after another—but if a break statement (of the form) occurs, then the pro-
gram skips to the end of the body of the switch statement.

If the control value has no matching case label, then the program will look for a
default label of the form . This label handles any control values that
don’t have their own case label.

If there is no matching case label and no default label, then the whole body of
the switch statement is skipped.

For an interactive test program, the switch statement has one case label for
each of the menu choices. For example, one of the menu choices is the character
'A', which allows the user to attach a new number to the sequence. In the switch
statement, the 'A' command is handled as shown here:

switch (choice)
{

...

...
}

Self-Test Exercises

16. What are the values of toupper('a'), toupper('A'), and
toupper('+')?

17. What situation calls for a switch statement?

18. The show_sequence function on page 131 uses a value parameter rather
than a reference parameter. Why?

FEATURE ++

<Control value>

<Body of the switch statement>

case 'A':

break;

default:

case 'A': test.attach(get_number());
break;

134 Chapter 3 / Container Classes

CHAPTER SUMMARY

• A container class is a class where each object contains a collection of
items. Bags and sequences are two examples of container classes; the C++
Standard Library also provides a variety of flexible container classes.

• A container class should be implemented in a way that makes it easy to
alter the data type of the underlying items. In C++, the simple approach to
this problem uses a typedef statement to define the type of the container’s
item.

• The simplest implementations of container classes use a partially filled
array. Using a partially filled array requires each object to have at least
two member variables: the array itself and another variable to keep track
of how much of the array is being used.

• When you design a class, always make an explicit statement of the rules
that dictate how the member variables are used. These rules are called the
invariant of the class, and should be written at the top of the implementa-
tion file for easy reference.

• Small classes can be tested effectively with an interactive test program
that follows the standard format of our sequence test program.

SOLUTIONS TO SELF-TEST EXERCISES? Solutions to Self-Test Exercises

1. The default constructor is required because
value_type is used as the component type of
an array. Each of the required operators (=,
==, and !=) is used with the value_type in at
least one of the bag’s member functions.

2.

3. See the two rules on page 105.

4. copy(x, x+6, y+42);

5. It does not need to be a friend function
because it does not directly access any private
members of the bag.

[0] [1]

3 2 We don’t care what
appears beyond
data[1].

6. bag::size_type
bag::erase(const value_type& target)
{

size_type index = 0;
size_type many_removed = 0;

while (index < used)
{

 if (data[index] == target)
 {

--used;
data[index] = data[used];
++many_removed;

 }
 else

++index;
}

return many_removed;
}

Solutions to Self-Test Exercises135

7. The two statements can be replaced by one
statement: data[index] = data[--used];
When --used appears as an expression, the
variable used is decremented by one, and the
resulting value is the value of the expression.
(On the other hand, if used-- appears as an
expression, the value of the expression is the
value of used prior to subtracting one.) Simi-
larly, the last two statements of insert can be
combined to data[used++] = entry;. In this
case, we have the expression used++ as the
index because we want to use the old value of
used (before adding one) as the index.

8. If we activate b += b, then the private member
variable used is the same variable as
addend.used. Each iteration of the loop adds
1 to used, and hence addend.used is also in-
creasing, and the loop never ends. To correct
the problem, you could store the initial value
of addend.used in a local variable, and use
this local variable to determine when the loop
ends.

9. void sequence::insert
(const value_type& entry)
{
size_type i;

assert(size() < CAPACITY);

if (!is_item())
current_index = 0;

for (i = used; i > current_index; --i)
data[i] = data[i-1];

data[current_index] = entry;
++used;

}

10. 24

11. g.current_index will be 3 (since the 4th
item occurs at data[3]).

12. The remove_current function should be
tested when the sequence size is just 1, and

when the sequence is at its full capacity. At
full capacity you should try removing the first
item, and the last item in the sequence.

13. Your program can be similar to Figure 3.2 on
page 102.

14. Here is our function’s prototype, with a post-
condition:
void

remove(const value_type& target);
// Postcondition: If target was in the
// sequence then the first copy of target has
// been removed, and the item after
// the removed item (if there is one)
// becomes the new current item; otherwise
// the sequence remains unchanged.

The easiest implementation searches for the
index of the target. If this index is found, then
set current_index to this index, and activate
the ordinary remove_current function.

15. The total time to attach 1, 2, ... , n is O(n). The
total time to insert n, n-1, ... , 1 is O(n2). The
larger time for the insert is because an inser-
tion at the front of the sequence requires all of
the existing items to be shifted right to make
room for the new item. Hence, on the second
insertion, one item is shifted. On the third
insertion, two items are shifted. And so on to
the nth item, which needs n-1 shifts. The total
number of shifts is 1+2+...+(n-1), which is
O(n2). (To show that this sum is O(n2), use a
technique similar to that used in Figure 1.2 on
page 17.)

16. The first two calls return 'A'. The function
call toupper('+') returns '+'.

17. Use a switch statement when a single control
value determines which of several possible
actions is to be taken.

18. With a reference parameter, the advancing of
the current element through the sequence
would alter the actual argument.

136 Chapter 3 / Container Classes

PROGRAMMING PROJECTS
PROGRAMMING PROJECTS
For more in-depth projects, please see www.cs.colorado.edu/~main/projects/

A black box test of a class is a program
that tests the correctness of the class’s mem-
ber functions without directly examining the

private members of the class. You can imagine that
the private members are inside an opaque black box
where they cannot be seen, so all testing must occur
only through activating the public member func-
tions.

Write a black box test program for the bag class.
Make sure that you test the boundary values, such as
an empty bag, a bag with one item, and a full bag.

Implement operators for - and -= for the
bag class from Section 3.1. For two bags x
and y, the bag x-y contains all the items of

x, with any items from y removed. For example,
suppose that x has seven copies of the number 3,
and y has two copies of the number 3. Then x-y
will have five copies of the number 3 (i.e., 7 - 2
copies of the number 3). In the case where y has
more copies of an item than x does, the bag x-y will
have no copies of that item. For example, suppose
that x has nine copies of the number 8, and y has ten
copies of the number 8. Then x-y will have no 8s.
The statement x -= y should have the same effect as
the assignment x = x-y;

Implement the sequence class from Section
3.2. You may wish to provide some addi-
tional useful member functions, such as:

(1) a function to add a new item at the front of the
sequence; (2) a function to remove the item from the
front of the sequence; (3) a function to add a new
item at the end of the sequence; (4) a function that
makes the last item of the sequence become the cur-
rent item; (5) operators for + and +=. For the + oper-
ator, x + y contains all the items of x, followed by all
the items of y. The statement x += y appends all of
the items of y to the end of what’s already in x.

For a sequence x, we would like to be able to
refer to the individual items using the usual
C++ notation for arrays. For example, if

1

2

3

4

x has three items, then we want to be able to write
x[0], x[1], and x[2] to access these three items.
This use of the square brackets is called the sub-
script operator. The subscript operator may be
overloaded as a member function, with the proto-
type shown here as part of the sequence class:

class sequence
{
public:
...
value_type operator [] (size_type index)
const;
...

As you can see, the operator [] is a member func-
tion with one parameter. The parameter is the index
of the item that we want to retrieve. The implemen-
tation of this member function should check that the
index is a valid index (i.e., index is less than the
sequence size), and then return the specified item.

For this project, specify, design, and implement
this new subscript operator for the sequence.

A bag can contain more than one copy of an
item. For example, the chapter describes a
bag that contains the number 4 and two cop-

ies of the number 8. This bag behavior is different
from a set, which can contain only a single copy of
any given item. Write a new container class called
set, which is similar to a bag, except that a set can
contain only one copy of any given item. You’ll
need to change the interface a bit. For example, in-
stead of the bag’s count function, you’ll want a con-
stant member function such as this:

bool set::contains
(const value_type& target) const;
// Postcondition: The return value is true if
// target is in the set; otherwise the return
// value is false.

Make an explicit statement of the invariant of the set
class. Do a time analysis for each operation. At this

5

Programming Projects 137

point, an efficient implementation is not needed. For
example, just adding a new item to a set will take lin-
ear time because you’ll need to check that the new
item isn’t already present. Later we’ll explore more
efficient implementations (including the implemen-
tation of set in the C++ Standard Library).

You may also want to add additional operations
to your set class, such as an operator for subtraction.

Suppose that you implement a sequence
where the value_type has a comparison
operator < to determine when one item is

“less than” another item. For example, integers,
double numbers, and characters all have such a com-
parison operator (and classes that you implement
yourself may also be given such a comparison). Re-
write the sequence class using a new class name,
sorted_sequence. In a sorted sequence, the insert
function always inserts a new item so that all the
items stay in order from smallest to largest. There is
no attach function. All the other functions are the
same as the original sequence class.

In this project, you will implement a new
class called a bag with receipts. This new
class is similar to an ordinary bag, but the

way that items are added and removed is different.
Each time an item is added to a bag with receipts, the
insert function returns a unique integer called the
receipt. Later, when you want to remove an item,
you must provide a copy of the receipt as a parame-
ter to the remove function. The remove function re-
moves the item whose receipt has been presented,
and also returns a copy of that item through a refer-
ence parameter.

Here’s an implementation idea: A bag with re-
ceipts can have two private arrays, like this:

class bag_with_receipts
{
...
private:

value_type data[CAPACITY];
bool in_use[CAPACITY];

};

Arrays such as these, which have the same size, are

6

7

called parallel arrays. The idea is to keep track of
which parts of the data array are being used by plac-
ing boolean values in the second array. When
in_use[i] is true, then data[i] is currently being
used; when in_use[i] is false, then data[i] is cur-
rently unused. When a new item is added, we will
find the first spot that is currently unused and store
the new item there. The receipt for the item is the in-
dex of the location where the new item is stored.

Another way to store a collection of items is
called a keyed bag. In this type of bag,
whenever an item is added, the programmer

using the bag also provides an integer called the key.
Each item added to the keyed bag must have a
unique key; two items cannot have the same key. So,
the insertion function has the specification shown
here:

void keyed_bag::insert
(const value_type& entry, int key);
// Precondition: size() < CAPACITY, and the
// bag does not yet contain any item with
// the given key.
// Postcondition: A new copy of entry has
// been added to the bag, with the given key.

When the programmer wants to remove an item
from a keyed bag, the key of the item must be spec-
ified, rather than the item itself. The keyed bag
should also have a boolean member function that
can be used to determine whether the bag has an
item with a specified key.

A keyed bag differs from the bag with receipts
(in the previous project). In a keyed bag, the pro-
grammer using the class specifies a particular key
when an item is inserted. In contrast, for a bag with
receipts, the insert function returns a receipt, and the
programmer using the class has no control over what
that receipt might be.

For this project, do a complete specification, de-
sign, and implementation of a keyed bag.

This is a simple version of a longer project
that will be developed in Chapter 4. The
project starts with the definition of a one-

variable polynomial, which is an arithmetic

8

9

138 Chapter 3 / Container Classes

expression of the form:

The highest exponent, k, is called the degree of the
polynomial, and the constants are the
coefficients. For example, here are two polynomials
with degree three:

Specify, design, and implement a class for polyno-
mials. The class may contain a static member con-
stant, MAXDEGREE, which indicates the maximum
degree of any polynomial. (This allows you to store
the coefficients in an array with a fixed size.) Spend
some time thinking about operations that make
sense on polynomials. For example, you can write
an operation that adds two polynomials. Another op-
eration should evaluate the polynomial for a given
value of x.

Specify, design, and implement a class that
can be one player in a game of tic-tac-toe.
The constructor should specify whether the

object is to be the first player (X’s) or the second
player (O’s). There should be a member function to
ask the object to make its next move, and a member
function that tells the object what the opponent’s
next move is. Also include other useful member
functions, such as a function to ask whether a given
spot of the tic-tac-toe board is occupied, and if so,
whether the occupation is with an X or an O. Also,
include a member function to determine when the
game is over, and whether it was a draw, an X win,
or an O win.

Use the class in two programs: a program that
plays tic-tac-toe against the program’s user, and a
program that has two tic-tac-toe objects that play
against each other.

Specify, design, and implement a container
class that can hold up to five playing cards.
Call the class pokerhand, and overload the

boolean comparison operators to allow you to com-
pare two poker hands. For two hands x and y, the re-
lation x > y means that x is a better hand than y. If
you do not play in a weekly poker game yourself,

a0 a1x a2x2 … akx
k+ + + +

a0 a1 …, ,

2.1 4.8x 0.1x2 7.1–()x3+ + +

2.9 0.8x 10.1x2 1.7x3+ + +

10

11

then you may need to consult a card rule book for the
rules on the ranking of poker hands.

Specify, design, and implement a class that
keeps track of rings stacked on a peg, rather
like phonograph records on a spindle. An

example with five rings is shown here:

The peg may hold up to 64 rings, with each ring
having its own diameter. Also, there is a rule that re-
quires each ring to be smaller than any ring under-
neath it, as shown in our example. The class’s
member functions should include: (a) a constructor
that places n rings on the peg (where n may be as
large as 64); use 64 for a default argument. These n
rings have diameters from n inches (on the bottom)
to one-inch (on the top). (b) a constant member
function that returns the number of rings on the peg.
(c) a constant member function that returns the di-
ameter of the topmost ring. (d) a member function
that adds a new ring to the top (with the diameter of
the ring as a parameter to the function). (e) a mem-
ber function that removes the topmost ring. (f) an
overloaded output function that prints some clever
representation of the peg and its rings. Make sure
that all functions have appropriate preconditions to
guarantee that the rule about ring sizes is enforced.
Also spend time designing appropriate private data
fields.

In this project, you will design and imple-
ment a class called towers, which is part
of a program that lets a child play a game

called Towers of Hanoi. The game consists of three
pegs and a collection of rings that stack on the pegs.
The rings are different sizes. The initial configura-
tion for a five-ring game is shown here, with the first
tower having rings from one-inch (on the top) to
five-inches (on the bottom).

12

Rings stacked
on a peg

13

Initial configuration for
a five-ring game of

Towers of Hanoi

Programming Projects 139

The rings are stacked in decreasing order of their
size, and the second and third towers are initially
empty. During the game, the child may transfer
rings one-at-a-time from the top of one peg to the top
of another. The object of the game is to move all the
rings from the first peg to the second peg. The diffi-
culty is that the child may not place a ring on top of
one with a smaller diameter. There is the one extra
peg to hold rings temporarily, but the prohibition
against a larger ring on a smaller ring applies to it as
well as to the other two pegs. A solution for a three-
ring game is shown here:

The towers class must keep track of the status of
all three pegs. You might use an array of three pegs,
where each peg is an object from the previous
project. The towers functions are specified here:

towers::towers(size_t n = 64);
// Precondition: 1 <= n <= 64.
// Postcondition: The towers have been initialized
// with n rings on the first peg and no rings on
// the other two pegs. The diameters of the first
// peg’s rings are from one-inch (on the top) to n
// inches (on the bottom).

size_t towers::many_rings
(int peg_number) const;
// Precondition: peg_number is 1, 2, or 3.
// Postcondition: The return value is the number
// of rings on the specified peg.

At game start After 1 move

After 2 moves After 3 moves

After 5 movesAfter 4 moves

After 7 movesAfter 6 moves

size_t towers::top_diameter
(int peg_number) const;
// Precondition: peg_number is 1, 2, or 3.
// Postcondition: If many_rings(peg_number) > 0,
// then the return value is the diameter of the top
// ring on the specified peg; otherwise the return
// value is zero.

void towers::move
(int start_peg; int end_peg);
// Precondition: start_peg is a peg number
// (1, 2, or 3), and many_rings(start_peg) > 0;
// end_peg is a different peg number (not equal
// to start_peg), and top_diameter(end_peg) is
// either 0 or more than top_diameter(start_peg).
// Postcondition: The top ring has been moved
// from start_peg to end_peg.

Also overload the output operator so that a towers
object may be displayed easily.

Use the towers object in a program that allows a
child to play Towers of Hanoi. Make sure that you
don’t allow the child to make any illegal moves.

Specify, design, and implement a class
where each object keeps track of a large
integer with up to 100 digits in base 10. The

digits can be stored in an array of 100 elements and
the sign of the number can be stored in a separate
member variable, which is +1 for a positive number
and –1 for a negative number.

The class should include several convenient con-
structors, such as a constructor to initialize an object
from an ordinary int. Also overload the usual arith-
metic operators and comparison operators (to carry
out arithmetic and comparisons on these big num-
bers) and overload the input and output operators.

14

For more in-depth projects, please see www.cs.colorado.edu/~main/projects/

