
3

A clone of an object is an exact copy of the object. The emphasis here is on
both exact and copy. A clone should have exactly the same data values as the
original object, and it should be a distinct object and not simply another name
for the original one.

A clone is made by invoking the method named clone. Recall from Chapter 8
that this method is defined in the class Object but needs to be overridden—
that is, redefined before it will behave correctly for a specific class.

The standard class ArrayList is a class that defines its own clone method,
as Chapter 12 mentioned. Suppose we define a list of strings using ArrayList,
as follows:

ArrayList<String> aList = new ArrayList<String>();
<Some code to fill aList>

We then can make an identical copy of aList, so that we have two separate
copies, by invoking ArrayList's method clone:

ArrayList<String> duplicateList =
				 (ArrayList<String>)aList.clone();

Although the method clone returns a copy of aList, it always returns it as an
object of type Object. So we normally need a type cast.

For lists of objects other than strings, using the method clone can be more
complicated and can lead to a few pitfalls. Let’s examine this problem by first
seeing how we can add a clone method to our own classes. For example, con-
sider the class Pet in Listing 6.1 of Chapter 6. After we make suitable revisions
to the class definition, we will be able to make a copy of an object of type Pet
as follows:

Pet originalData = new Pet("Fido", 2, 5.6);
Pet duplicateData = (Pet)originalData.clone();

Be sure to notice the type cast of the clone from Object to Pet. Now let’s make
the necessary revisions to Pet.

First, the class must implement the standard interface Cloneable. We do
that by beginning the class definition for Pet as follows:

public class Pet implements Cloneable

Cloning

Appendix

10

Z10_SAVI6626_07_SE_App10.indd 3 27/01/14 9:45 AM

4	 appendix 10 / Cloning

This interface is actually empty, but it requires that you add a definition of the
method clone to the class definition. The heading for the method clone in the
class Object is

protected Object clone()

Pet will override this method with the following public version:

public Object clone()

If a class’s instance variables have either primitive types or class types
whose objects cannot be changed by their methods, such as the type String,
the definition of clone need only invoke the inherited version of clone. Since
Pet is such a class—it has one instance variable of type String and two that
have primitive types—the method clone shown in Listing A10.11 will work
fine. In that definition, the method clone invokes the version of clone in the
class Object,2 which simply makes a bit-by-bit copy of the memory used to
store the calling object’s instance variables. The try-catch blocks are required
because the method clone can throw the exception CloneNotSupportedEx-
ception if the class does not implement the Cloneable interface. Of course, in
these classes, we are implementing the Cloneable interface, so the exception
will never be thrown, but the compiler will still insist on the try-catch blocks.

LISTING A10.I   �A Simple Implementation of the Method
clone

public Object clone()
{

try

{

return super.clone();//Invocation of Object's clone
}

catch(CloneNotSupportedException e)
{//This should not happen.

return null; //To keep the compiler happy.
}

}

Works correctly for a class like Pet, in which each
instance variable has either a primitive type or
the type String. Will not work correctly in most
other cases.

1. The source code on the book’s Website contains a version of the class Pet that
includes this definition of the method clone.
2. If your class is a derived class of some class (other than Object), we are assuming
that the base class has a well-defined clone method, since super.clone will then
refer to the base class.

Z10_SAVI6626_07_SE_App10.indd 4 27/01/14 9:45 AM

	A ppendix	 5

Note that the Cloneable interface and clone method behave in more
complicated ways than most interfaces and inherited methods. Although the
class Object has a method named clone, it is not inherited automatically. You
must include implements Cloneable in the definition of the class, and you
must include a definition of clone, even if it is simply defined as in Listing
A10.1. This version of clone behaves as clone would if it were inherited from
Object in the normal way.

If your class has instance variables of a class type whose objects can be
changed by their methods, the definition of clone in Listing A10.1—although
legal—probably will not do what you want a clone method to do. This version
produces a clone that has a copy of each instance variable’s memory address,
rather than a copy of the instance variable’s data. For a class like String, whose
objects cannot be changed—that is, has no set methods—this condition is not
a problem. Such was the case when we cloned a Pet object or the list of strings
earlier in this appendix.

For most other classes, this condition would allow access to private data
in the way we described in Section 6.5, entitled “Information Hiding Revis-
ited,” of Chapter 6. For these classes, your definition of clone should make a
clone of each instance variable of a changeable class type. Of course, this task
requires that those class types for the instance variables have a suitable clone
method themselves. The way to define such a clone method is illustrated in
Listing A10.2. Let’s go over some of the details in that listing.

LISTING A10.2   A Class and Its clone Method

public class Neighbor implements Cloneable
{

private String name;

private int numberOfChildren;

private Pet familyPet;

public Object clone()
{

try
{

Neighbor copy = (Neighbor)super.clone();
copy.familyPet = (Pet)familyPet.clone();

return copy;
}

catch(CloneNotSupportedException e)
{//This should not happen.

return null; //To keep the compiler happy.
}

}

Z10_SAVI6626_07_SE_App10.indd 5 27/01/14 9:45 AM

6	 appendix 10 / Cloning

public Pet getPet()
{

return (Pet)familyPet.clone();
}

<There are presumably other methods that are not shown.>

}

The class Neighbor has three instance variables. Two—name and num-
berOfChildren—are not a concern when we define a clone method, since
their data types are String and int, respectively. But familyPet's data type is
Pet, which is a class that has set methods. Let’s see how this affects Neighbor's
clone method.

The following statement in clone makes a bit-by-bit copy of the memory
used to store the receiving object’s instance variables:

Neighbor copy = (Neighbor)super.clone();

This sort of copy works fine for the instance variables name of type String and
numberOfChildren of type int. However, the value it gives to copy’s instance
variable familyPet—that is, copy.familyPet is the address of the instance
variable familyPet in the receiving object. We want a copy of that instance vari-
able, not its address. To get a copy, we call Pet's clone method as follows:

copy.familyPet = (Pet)familyPet.clone();

Neighbor’s clone method then returns copy as the clone.
We have included Neighbor's accessor method getPet in Listing A10.2.

To avoid the privacy leak described in Section 6.5 of Chapter 6, getPet returns
a clone of the instance variable familyPet instead of familyPet itself.

Let’s return briefly to our opening example, where we cloned an object of
ArrayList. This class’s clone method does not clone the objects in the list. So
while aList and duplicateList are two distinct objects, they share the same
strings as their elements. For example, the first string in aList is also the first
string in duplicateList. We do not have two separate but equal first strings.
The good news is that the strings on the lists cannot be modified, so it is per-
fectly safe for the two lists to share the same collection of strings.

Z10_SAVI6626_07_SE_App10.indd 6 27/01/14 9:45 AM

