Joshua Bloch B W

Updated for
JavaSE 6

Effective Java

Second Edition




54

CHAPTER 3 METHODS COMMON TO ALL OBJECTS

Item 11: Override clone judiciously

The Cloneable interface was intended as a mixin interface (Item 18) for objects to
advertise that they permit cloning. Unfortunately, it fails to serve this purpose. Its
primary flaw is that it lacks a clone method, and Object’s clone method is pro-
tected. You cannot, without resorting to reflection (Item 53), invoke the clone
method on an object merely because it implements Cloneable. Even a reflective
invocation may fail, as there is no guarantee that the object has an accessible
clone method. Despite this flaw and others, the facility is in wide use so it pays to
understand it. This item tells you how to implement a well-behaved clone
method, discusses when it is appropriate to do so, and presents alternatives.

So what does CloneabTle do, given that it contains no methods? It determines
the behavior of Object’s protected clone implementation: if a class implements
Cloneable, Object’s clone method returns a field-by-field copy of the object;
otherwise it throws CloneNotSupportedException. This is a highly atypical use
of interfaces and not one to be emulated. Normally, implementing an interface
says something about what a class can do for its clients. In the case of Cloneable,
it modifies the behavior of a protected method on a superclass.

If implementing the CloneabTe interface is to have any effect on a class, the
class and all of its superclasses must obey a fairly complex, unenforceable, and
thinly documented protocol. The resulting mechanism is extralinguistic: it creates
an object without calling a constructor.

The general contract for the c1one method is weak. Here it is, copied from the
specification for java.lang.0Object [JavaSE6]:

Creates and returns a copy of this object. The precise meaning of “copy” may
depend on the class of the object. The general intent is that, for any object x,
the expression

x.clone() !'= x
will be true, and the expression
x.clone().getClass() == x.getClass()

will be true, but these are not absolute requirements. While it is typically the
case that

x.clone().equals(x)

will be true, this is not an absolute requirement. Copying an object will typi-
cally entail creating a new instance of its class, but it may require copying of
internal data structures as well. No constructors are called.



ITEM 11: OVERRIDE CLONE JUDICIOUSLY

There are a number of problems with this contract. The provision that “no
constructors are called” is too strong. A well-behaved c1one method can call con-
structors to create objects internal to the clone under construction. If the class is
final, cTone can even return an object created by a constructor.

The provision that x.clone() .getClass() should generally be identical to
x.getClass (), however, is too weak. In practice, programmers assume that if
they extend a class and invoke super.clone from the subclass, the returned object
will be an instance of the subclass. The only way a superclass can provide this
functionality is to return an object obtained by calling super.clone. If a clone
method returns an object created by a constructor, it will have the wrong class.
Therefore, if you override the clone method in a nonfinal class, you should
return an object obtained by invoking super.clone. If all of a class’s super-
classes obey this rule, then invoking super.clone will eventually invoke
Object’s cTone method, creating an instance of the right class. This mechanism is
vaguely similar to automatic constructor chaining, except that it isn’t enforced.

The Cloneable interface does not, as of release 1.6, spell out in detail the
responsibilities that a class takes on when it implements this interface. In prac-
tice, a class that implements Cloneable is expected to provide a properly
functioning public clone method. It is not, in general, possible to do so unless
all of the class’s superclasses provide a well-behaved clone implementation,
whether public or protected.

Suppose you want to implement Cloneable in a class whose superclasses pro-
vide well-behaved clone methods. The object you get from super.clone() may
or may not be close to what you’ll eventually return, depending on the nature of
the class. This object will be, from the standpoint of each superclass, a fully func-
tional clone of the original object. The fields declared in your class (if any) will
have values identical to those of the object being cloned. If every field contains a
primitive value or a reference to an immutable object, the returned object may be
exactly what you need, in which case no further processing is necessary. This is
the case, for example, for the PhoneNumber class in Item 9. In this case, all you
need do in addition to declaring that you implement Cloneable is to provide pub-
lic access to Object’s protected clone method:

@Override public PhoneNumber clone() {
try {
return (PhoneNumber) super.clone();
} catch(CloneNotSupportedException e) {
throw new AssertionError(); // Can't happen

}

55



56

CHAPTER 3 METHODS COMMON TO ALL OBJECTS

Note that the above clone method returns PhoneNumber, not Object. As of
release 1.5, it is legal and desirable to do this, because covariant return types were
introduced in release 1.5 as part of generics. In other words, it is now legal for an
overriding method’s return type to be a subclass of the overridden method’s return
type. This allows the overriding method to provide more information about the
returned object and eliminates the need for casting in the client. Because
Object.clone returns Object, PhoneNumber.clone must cast the result of
super.clone() before returning it, but this is far preferable to requiring every
caller of PhoneNumber. clone to cast the result. The general principle at play here
is never make the client do anything the library can do for the client.

If an object contains fields that refer to mutable objects, using the simple
clone implementation shown above can be disastrous. For example, consider the
Stack class in Item 6:

public class Stack {
private Object[] elements;
private int size = 0;
private static final int DEFAULT_INITIAL_CAPACITY = 16;

public Stack() {
this.elements = new Object[DEFAULT_INITIAL_CAPACITY];
}

public void push(Object e) {
ensureCapacity();
elements[size++] = e;

}

public Object pop() {
if (size == 0)
throw new EmptyStackException();
Object result = elements[--size];
elements[size] = null; // Eliminate obsolete reference
return result;

}

// Ensure space for at Teast one more element.
private void ensureCapacity() {
if (elements.length == size)
elements = Arrays.copyOf(elements, 2 * size + 1);

}

Suppose you want to make this class cloneable. If its clone method merely
returns super.clone(), the resulting Stack instance will have the correct value in



ITEM 11: OVERRIDE CLONE JUDICIOUSLY

its size field, but its elements field will refer to the same array as the original
Stack instance. Modifying the original will destroy the invariants in the clone and
vice versa. You will quickly find that your program produces nonsensical results
or throws a NuT1PointerException.

This situation could never occur as a result of calling the sole constructor in
the Stack class. In effect, the c1one method functions as another constructor;
you must ensure that it does no harm to the original object and that it prop-
erly establishes invariants on the clone. In order for the c1one method on Stack
to work properly, it must copy the internals of the stack. The easiest way to do this
is to call clone recursively on the elements array:

@Override public Stack clone() {
try {
Stack result = (Stack) super.clone();
result.elements = elements.clone();
return result;
} catch (CloneNotSupportedException e) {
throw new AssertionError();
}
}

Note that we do not have to cast the result of eTements.clone() to Object[].
As of release 1.5, calling clone on an array returns an array whose compile-time
type is the same as that of the array being cloned.

Note also that the above solution would not work if the elements field were
final, because clone would be prohibited from assigning a new value to the field.
This is a fundamental problem: the clone architecture is incompatible with
normal use of final fields referring to mutable objects, except in cases where
the mutable objects may be safely shared between an object and its clone. In order
to make a class cloneable, it may be necessary to remove final modifiers from
some fields.

It is not always sufficient to call clone recursively. For example, suppose you
are writing a cTone method for a hash table whose internals consist of an array of
buckets, each of which references the first entry in a linked list of key-value pairs
or is nul1 if the bucket is empty. For performance, the class implements its own
lightweight singly linked list instead of using java.util.LinkedList internally:

public class HashTable implements Cloneable {
private Entry[] buckets = ...;

57



58 CHAPTER 3 METHODS COMMON TO ALL OBJECTS

private static class Entry {
final Object key;
Object value;
Entry next;

Entry(Object key, Object value, Entry next) {

this.key = key;
this.value = value;
this.next = next;

. // Remainder omitted
}

Suppose you merely clone the bucket array recursively, as we did for Stack:

// Broken - results in shared internal state!
@Override public HashTable clone() {
try {
HashTable result = (HashTable) super.clone();
result.buckets = buckets.clone();
return result;
} catch (CloneNotSupportedException e) {
throw new AssertionError();
}
3

Though the clone has its own bucket array, this array references the same
linked lists as the original, which can easily cause nondeterministic behavior in
both the clone and the original. To fix this problem, you’ll have to copy the linked
list that comprises each bucket individually. Here is one common approach:

public class HashTable implements Cloneable {
private Entry[] buckets = ...;

private static class Entry {
final Object key;
Object value;
Entry next;

Entry(Object key, Object value, Entry next) {

this.key = key;
this.value = value;
this.next = next;



ITEM 11: OVERRIDE CLONE JUDICIOUSLY

// Recursively copy the Tinked 1ist headed by this Entry
Entry deepCopy() {
return new Entry(key, value,
next == null ? null : next.deepCopy());

}

@Override public HashTable clone() {

try {
HashTable result = (HashTable) super.clone();
result.buckets = new Entry[buckets.length];
for (int i = 0; i < buckets.length; i++)

if (buckets[i] != null)
result.buckets[i] = buckets[i].deepCopy();

return result;

} catch (CloneNotSupportedException e) {
throw new AssertionError();

}

}

... // Remainder omitted

}

The private class HashTable.Entry has been augmented to support a “deep
copy” method. The cTone method on HashTab1e allocates a new buckets array of
the proper size and iterates over the original buckets array, deep-copying each
nonempty bucket. The deep-copy method on Entry invokes itself recursively to
copy the entire linked list headed by the entry. While this technique is cute and
works fine if the buckets aren’t too long, it is not a good way to clone a linked list
because it consumes one stack frame for each element in the list. If the list is long,
this could easily cause a stack overflow. To prevent this from happening, you can
replace the recursion in deepCopy with iteration:

// Iteratively copy the linked 1ist headed by this Entry
Entry deepCopy() {
Entry result = new Entry(key, value, next);

for (Entry p = result; p.next != null; p = p.next)
p.next = new Entry(p.next.key, p.next.value, p.next.next);

return result;

}

A final approach to cloning complex objects is to call super.clone, set all of
the fields in the resulting object to their virgin state, and then call higher-level
methods to regenerate the state of the object. In the case of our HashTable exam-

59



60

CHAPTER 3 METHODS COMMON TO ALL OBJECTS

ple, the buckets field would be initialized to a new bucket array, and the
put(key, value) method (not shown) would be invoked for each key-value map-
ping in the hash table being cloned. This approach typically yields a simple, rea-
sonably elegant cTone method that generally doesn’t run quite as fast as one that
directly manipulates the innards of the object and its clone.

Like a constructor, a clone method should not invoke any nonfinal methods
on the clone under construction (Item 17). If cTone invokes an overridden method,
this method will execute before the subclass in which it is defined has had a
chance to fix its state in the clone, quite possibly leading to corruption in the clone
and the original. Therefore the put(key, value) method discussed in the previ-
ous paragraph should be either final or private. (If it is private, it is presumably the
“helper method” for a nonfinal public method.)

Object’s clone method is declared to throw CloneNotSupportedException,
but overriding clone methods can omit this declaration. Public clone methods
should omit it because methods that don’t throw checked exceptions are easier to
use (Item 59). If a class that is designed for inheritance (Item 17) overrides clone,
the overriding method should mimic the behavior of Object.clone: it should be
declared protected, it should be declared to throw CloneNotSupportedExcep-
tion, and the class should not implement Cloneable. This gives subclasses the
freedom to implement Cloneable or not, just as if they extended Object directly.

One more detail bears noting. If you decide to make a thread-safe class imple-
ment Cloneable, remember that its c1one method must be properly synchronized
just like any other method (Item 66). Object’s cTone method is not synchronized,
so even if it is otherwise satisfactory, you may have to write a synchronized clone
method that invokes super.clone().

To recap, all classes that implement Cloneable should override clone with a
public method whose return type is the class itself. This method should first call
super.clone and then fix any fields that need to be fixed. Typically, this means
copying any mutable objects that comprise the internal “deep structure” of the
object being cloned, and replacing the clone’s references to these objects with ref-
erences to the copies. While these internal copies can generally be made by call-
ing clone recursively, this is not always the best approach. If the class contains
only primitive fields or references to immutable objects, then it is probably the
case that no fields need to be fixed. There are exceptions to this rule. For example,
a field representing a serial number or other unique ID or a field representing the
object’s creation time will need to be fixed, even if it is primitive or immutable.

Is all this complexity really necessary? Rarely. If you extend a class that
implements Cloneable, you have little choice but to implement a well-behaved



ITEM 11: OVERRIDE CLONE JUDICIOUSLY

clone method. Otherwise, you are better off providing an alternative means of
object copying, or simply not providing the capability. For example, it doesn’t
make sense for immutable classes to support object copying, because copies
would be virtually indistinguishable from the original.

A fine approach to object copying is to provide a copy constructor or copy
Jactory. A copy constructor is simply a constructor that takes a single argument
whose type is the class containing the constructor, for example,

public Yum(Yum yum);

A copy factory is the static factory analog of a copy constructor:

public static Yum newInstance(Yum yum);

The copy constructor approach and its static factory variant have many
advantages over Cloneable/clone: they don’t rely on a risk-prone extralinguistic
object creation mechanism; they don’t demand unenforceable adherence to thinly
documented conventions; they don’t conflict with the proper use of final fields;
they don’t throw unnecessary checked exceptions; and they don’t require casts.
While it is impossible to put a copy constructor or factory in an interface,
Cloneable fails to function as an interface because it lacks a public clone
method. Therefore you aren’t giving up interface functionality by using a copy
constructor or factory in preference to a clone method.

Furthermore, a copy constructor or factory can take an argument whose type
is an interface implemented by the class. For example, by convention all general-
purpose collection implementations provide a constructor whose argument is of
type Collection or Map. Interface-based copy constructors and factories, more
properly known as conversion constructors and conversion factories, allow the
client to choose the implementation type of the copy rather than forcing the client
to accept the implementation type of the original. Suppose you have a HashSet s,
and you want to copy it as a TreeSet. The clone method can’t offer this function-
ality, but it’s easy with a conversion constructor: new TreeSet(s).

Given all of the problems associated with CloneabTe, it’s safe to say that
other interfaces should not extend it, and that classes designed for inheritance
(Item 17) should not implement it. Because of its many shortcomings, some
expert programmers simply choose never to override the clone method and never
to invoke it except, perhaps, to copy arrays. If you design a class for inheritance,
be aware that if you choose not to provide a well-behaved protected clone
method, it will be impossible for subclasses to implement Cloneable.

61



