
 A Collection class is a data

type that is capable of

holding a group of items.

 In Java, Collection classes

can be implemented as a

class, along with methods to

add, remove, and examine

items.

Collection Classes

Data Structures

and Other Objects

Using Java

Bags

 For the first example,

think about a bag.

Bags

 For the first example,

think about a bag.

 Inside the bag are

some numbers.

Initial State of a Bag

 When you first begin

to use a bag, the bag

will be empty.

 We count on this to be

the initial state of any

bag that we use.

THIS BAG

IS

EMPTY.

Adding Numbers into a Bag

 Numbers may be

added into a bag.

I AM

PUTTING THE

NUMBER 4

INTO THE

BAG.

Adding Numbers into a Bag

 Numbers may be

added into a bag.

THE 4 IS

IN THE

BAG.

Adding Numbers into a Bag

 Numbers may be

added into a bag.

 The bag can hold

many numbers.

NOW I'M

PUTTING

ANOTHER

NUMBER IN

THE BAG --

AN 8.

added Numbers into a Bag

 Numbers may be

added into a bag.

 The bag can hold

many numbers.

THE 8 IS

ALSO IN

THE BAG.

added Numbers into a Bag

 Numbers may be

added into a bag.

 The bag can hold

many numbers.

 We can even place

the same number

more than once. NOW I'M

PUTTING A

SECOND 4

IN THE

BAG.

Adding Numbers into a Bag

 Numbers may be

added into a bag.

 The bag can hold

many numbers.

 We can even place

the same number

more than once.
NOW THE

BAG HAS

TWO 4'S

AND AN 8..

Examining a Bag

 We may ask about

the contents of the

bag.

HAVE

YOU GOT

ANY 4's

?

YES,

I HAVE

TWO OF

THEM.

Removing a Number from a Bag

 We may remove a

number from a bag.

THIS

4 IS

OUTTA

HERE!

Removing a Number from a Bag

 We may remove a

number from a bag.

 But we remove only

one number at a

time.

ONE 4 IS

GONE, BUT

THE OTHER

4 REMAINS.

How Many Numbers

 Another operation is

to determine how

many numbers are in a

bag.

IN MY OPINION,

THERE ARE

TOO MANY

NUMBERS.

Summary of the Bag Operations

ŒA bag can be put in its initial state,

which is an empty bag.

• Numbers can be added into the bag.

Ž You may check how many occurrences

of a certain number are in the bag.

• Numbers can be removed from the bag.

• You can check how many numbers are

in the bag.

The Bag Class

 Java classes (introduced in

Chapter 2) can be used to

implement a Collection class

such as a Bag.

 The class definition includes:

public class Bag

 The heading of the definition

The Bag Class

 Java classes (introduced in

Chapter 2) can be used to

implement a Collection class

such as a Bag.

 The class definition includes:

class Bag

{

 public Bag()...

 The heading of the definition

 A constructor

The Bag Class

 Java classes (introduced in

Chapter 2) can be used to

implement a Collection class

such as a Bag.

 The class definition includes:

public class Bag

{

 public Bag()...

 public void add(...

 public void remove(...

 ...and so on

  The heading of the definition

 A constructor

 Public methods

The Bag Class

 Java classes (introduced in

Chapter 2) can be used to

implement a Collection class

such as a Bag.

 The class definition includes:

 The heading of the definition

A constructor

 Public methods

 Private instance variables
We’ll look at private

instance variables

 later.

public class Bag

{

 public Bag()...

 public void add(...

 public void remove(...

 ...and so on

The Bag’s Constructor

 Places a bag in the initial state (an empty

bag)

// Postcondition: The Bag has been initialized

// and it is now empty.

public Bag()

{

 . . .

}

The Add Method

Adds a new number to the bag

public void add(int newEntry)

{

 . . .

}

The Size Method

Counts how many integers are in the bag.

// Postcondition: The return value is the number

// of integers in the Bag.

public int size()

{

 . . .

}

The countOccurrences Method

Counts how many copies of a number occur

// Postcondition: The return value is the number

// of copies of target in the Bag.

public int countOccurrences(int target)

{

 . . .

}

The Remove Method

Removes one copy of a number

// Postcondition: If target was in the Bag, then

// one copy of target has been removed from the

// Bag, and the return value is true; otherwise the

// Bag is unchanged and the return value is false.

public boolean remove(int target)

{

 . . .

}

Using the Bag in a Program

 Here is typical code from a

program that uses the new

Bag class:

Bag ages = new Bag();

// Record the ages of three children:

ages.add(4);

ages.add(8);

ages.add(4);

Documentation for the Bag Class

 The documentation gives

specifications for the bag

methods.

 Specifications are written as

precondition/postcondition

contracts.

 Everything needed to use the

Bag class is included in this

documentation.

Bag’s documentation

can be automatically

created with the

Javadoc tool

described in

Appendix H.

A Quiz

Suppose that a Mysterious

Benefactor provides you

with the Bag class, but you

are only permitted to read

the documentation. You

cannot read the class

implementation or .java

file. Can you write a

program that uses the Bag

data type ?

Yes I can.

No. Not unless I see the

class implementation for

the Bag.

A Quiz

Suppose that a Mysterious

Benefactor provides you

with the Bag class, but you

are only permitted to read

the documentation. You

cannot read the class

implementation or .java

file. Can you write a

program that uses the Bag

data type ?

Yes I can.

 You know the name of the

new data type, and you

also know the headings

and specifications of each

of the operations. This is

enough for you to create

and use Bags.

Implementation Details

 The entries of a bag

will be stored in the

front part of an array,

as shown in this

example.

[0] [1] [2] [3] [4] [5] . . .

An array of integers

4 8 4

We don't care what's in

this part of the array.

Implementation Details

 The entries may

appear in any order.

This represents the

same bag as the

previous one. . .

An array of integers

4 4 8

We don't care what's in

this part of the array.

[0] [1] [2] [3] [4] [5] . . .

Implementation Details

 . . . and this also

represents the same

bag.

An array of integers
We don't care what's in

this part of the array.

[0] [1] [2] [3] [4] [5] . . .

4 4 8

Implementation Details

 We also need to keep track of how

many numbers are in the bag.

An array of integers

8 4 4

We don't care what's in

this part of the array.

An integer to keep

track of the bag's size
3

[0] [1] [2] [3] [4] [5] . . .

An Exercise

Use these ideas to write a

list of private instance

variables could implement

the Bag class. You should

have two instance

variables.

You have 60 seconds

to write the declaration.

An Exercise

public class Bag

{

 private int[] data;

 private int manyItems;

 ...

}

One solution:

An Example of Calling Add

public void add(int newEntry)

Before calling add, we

might have this bag b:

2

[0] [1] [2] . . .

8 4
b.data

b.manyItems

An Example of Calling Add

void add(int newEntry)

b.data

b.manyItems

We activate

b.add(17)

What values will be in

b.data and b.manyItems

after the method

finishes ?

[0] [1] [2] . . .

8 4

public void add(int newEntry)

2

An Example of Calling Add

void add(int newEntry)

After activating b.add(17),

we will have this bag b:

3

[0] [1] [2] . . .

8 4 17

public void add(int newEntry)

b.data

b.manyItems

[0] [1] [2] . . .

8 4

2

Pseudocode for add

Œ Make sure there is room for a new entry in

the array.

• Place newEntry in the appropriate location

of the data array.

Ž Add one to the instance variable

manyItems. What is the “appropriate

location” of the data array ?

Pseudocode for add

data[manyItems] = newEntry;

manyItems++;

Œ Make sure there is room for a new entry in

the array.

• Place newEntry in the appropriate location

of the data array.

Ž Add one to the instance variable

manyItems.

Pseudocode for add

data[manyItems++] = newEntry;

Œ Make sure there is room for a new entry in

the array.

• Place newEntry in the appropriate location

of the data array.

Ž Add one to the instance variable

manyItems.

The Other Bag Operations

Read Section 3.2 for the implementations of

the other bag methods.

Remember: If you are just using the Bag

class, then you don’t need to know how the

operations are implemented.

Later we will reimplement the bag using

more efficient algorithms.

We’ll also have a few other operations to

manipulate bags.

Other Kinds of Bags

 In this example, we have implemented a

bag containing integers.

But we could have had a bag of float

numbers, a bag of characters, a bag of

Strings . . .

Suppose you wanted one of these other

bags. How much would you need to change

in the implementation ?

 A Collection class is a class that can hold a group

of items.

 Collection classes can be implemented with a Java

class.

 The author of the class should provide

documentation that another programmer can read

to use the class.

 Other details are given in Section 3.2, which you

should read.

 Summary

THE END

Presentation copyright 2012, Pearson Education

For use with Data Structures and Other Objects Using Java

by Michael Main.

Some artwork in the presentation is used with permission from Presentation Task Force

(copyright New Vision Technologies Inc.) and Corel Gallery Clipart Catalog (copyright

Corel Corporation, 3G Graphics Inc., Archive Arts, Cartesia Software, Image Club

Graphics Inc., One Mile Up Inc., TechPool Studios, Totem Graphics Inc.).

Students and instructors who use Data Structures and Other Objects Using Java are

welcome to use this presentation however they see fit, so long as this copyright notice

remains intact.

