
 Chapter 5 introduces the often-

used data public classure of linked

lists.

 This presentation shows how to

implement the most common

operations on linked lists.

Linked Lists in Action

CHAPTER 4
Data public classures and Other Objects

 For this presentation, each node in the

linked list is a class, as shown here.

data

link

10

data

link

15

data

link

7

null

public class IntNode

{

 private int data;

 private IntNode link;

 ...

}

Declarations for Linked Lists

data

link

7

 The data portion of each node is an int.

link

null

public class IntNode

{

 private int data;

 private IntNode link;

 ...

}

data

link

15

Declarations for Linked Lists

data 10

 Each IntNode also contains a link

which refers to another IntNode.
data 15

data 7

public class IntNode

{

 private int data;

 private IntNode link;

 ...

}

Declarations for Linked Lists

data 10

link

link

null

link

Declarations for Linked Lists

 A program can keep track of the front

node by using a variable such as head

in this example.

 Notice that head is not an IntNode --

it is a reference

to an IntNode.
data

link

10

data

link

15

data

link

7

null
head

Declarations for Linked Lists

 A program can keep track of the front

node by using an IntNode reference

variable such as head.

 Notice that head is not an IntNode --

it is a reference to an IntNode.

 We represent the empty list by storing

null in the head reference.

head

null

Inserting an IntNode at the Front

We want to add a new entry, 13,

to the front of the linked list

shown here.

10

15

7

null
head

Inserting an IntNode at the Front

 Create a new node...

10

15

7

null
head

Inserting an IntNode at the Front

 Create a new node...

 Place the data in the new

node's data field.

10

15

7

null
head

13

Inserting an IntNode at the Front

10

15

7

null
head

13

 Create a new node...

 Place the data in the new

node's data field....

Ž Connect the new node to the

front of the list.

Inserting an IntNode at the Front

10

15

7

null
head

13

 Create a new node...

 Place the data in the new node's

data field....

Ž Connect the new node to the

front of the list.

 Make the head refer to the new

head of the linked list.

Inserting an IntNode at the Front

10

15

7

null
head

13

 Create a new node...

 Place the data in the new node's

data field....

Ž Connect the new node to the

front of the list.

 Make the head refer to the new

head of the linked list.

head = new IntNode(13, head);

public IntNode(int initialData, IntNode initialLink)

{

 data = initialEntry;

 link = initialLink;

}

Inserting an IntNode at the Front

public IntNode(int initialData, IntNode initialLink)

{

 data = initialEntry;

 link = initialLink;

}

Inserting an IntNode at the Front

Does the constructor work

correctly for the first

node on a new list ?

public IntNode(int initialData, IntNode initialLink)

{

 data = initialEntry;

 link = initialLink;

}

Inserting an IntNode at the Front

Suppose head is null

and we execute the

assignment shown here:

head = new IntNode(13, head);

head

null

public IntNode(int initialData, IntNode initialLink)

{

 data = initialEntry;

 link = initialLink;

}

Inserting an IntNode at the Front

head

null

head = new IntNode(13, head);

13

null

public IntNode(int initialData, IntNode initialLink)

{

 data = initialEntry;

 link = initialLink;

}

Inserting an IntNode at the Front

head

13

null

head = new IntNode(13, head);

public IntNode(int initialData, IntNode initialLink)

{

 data = initialEntry;

 link = initialLink;

}

Inserting an IntNode at the Front

head

13

null

When the statement

finishes, the linked list

has one node,

containing 13.

head = new IntNode(13, head);

Caution!

 Always make sure that

your linked list

methods work

correctly with an

empty list.

EMPTY LIST

Pseudocode for Inserting

IntNodes

 IntNodes are often inserted at places other than the

front of a linked list.

 There is a general pseudocode that you can follow

for any insertion function. . .

Pseudocode for Inserting

IntNodes

 Determine whether the new node will be the first node in

the linked list. If so, then there is only one step:

head = new IntNode(newEntry, head);

Pseudocode for Inserting

IntNodes

 Otherwise (if the new node will not be first):

 Start by setting a reference named previous to refer to the

node which is just before the new node's position.

Pseudocode for Inserting

IntNodes

15

10

7

null
head

 Otherwise (if the new node will not be first):

 Start by setting a reference named previous to refer to the

node which is just before the new node's position.

In this example, the

new node will be

the second node

previous

Pseudocode for Inserting

IntNodes

15

10

7

null
head

 Otherwise (if the new node will not be first):

 Start by setting a reference named previous to refer to the

node which is just before the new node's position

What is the name of this

link?

Look at the link

which is in the node

previous

previous

Pseudocode for Inserting

IntNodes

15

10

7

null
head

 Otherwise (if the new node will not be first):

 Start by setting a reference named previous to refer to the

node which is just before the new node's position

This link is called

previous.link

What is the name of this

link ?

previous

Pseudocode for Inserting

IntNodes

15

10

7

null
head

 Otherwise (if the new node will not be first):

 Start by setting a reference named previous to refer to the

node which is just before the new node's position

previous.link

refers to the head

of a small linked

list, with 10 and 7

previous

Pseudocode for Inserting

IntNodes

15

10

7

null
head

 Otherwise (if the new node will not be first):

 Start by setting a reference named previous to refer to the

node which is just before the new node's position.

The new node must

be inserted at the

front of this small

linked list.

13

Write one Java statement

which will do the insertion.

previous

Pseudocode for Inserting

IntNodes

15

10

7

null
head

 Otherwise (if the new node will not be first):

 Start by setting a reference named previous to refer to the

node which is just before the new node's position.
13

Write one Java statement

which will do the insertion.

previous previous.link =

 new IntNode(newEntry, previous.link);

Pseudocode for Inserting

IntNodes

 Determine whether the new node will be the first node in

the linked list. If so, then there is only one step:

head = new IntNode(newEntry, head);

 Otherwise (if the new node will not be first):

 Set a reference named previous to refer to the node

which is just before the new node's position.

 Execute the step:

previous.link =

 new IntNode(newEntry, previous.link);

Pseudocode for Inserting

IntNodes

 The process of adding a new node in the middle

of a list can also be incorporated as a separate

method. This function is called addNodeAfter in

the linked list toolkit of Section 4.2.

Pseudocode for Removing

IntNodes

 IntNodes often need to be removed from a linked

list.

 As with insertion, there is a technique for removing

a node from the front of a list, and a technique for

removing a node from elsewhere.

 We’ll look at the technique for removing a node

from the front of a linked list.

Removing the Head IntNode

10 15 7

null
head

13

head = head.link;

Draw the change that this

statement will make to the

linked list.

Removing the Head IntNode

10 15 7

null
head

13

head = head.link;

Removing the Head IntNode

head = head.link;

10 15 7

null
head

13

Removing the Head IntNode

Here’s what the linked list looks like after the removal finishes.

10 15 7

null
head

 It is easy to insert or remove a node at the front of

a list.

 You also need a technique for inserting or

removing a node elsewhere

 Summary

THE END

Presentation copyright 2012, Pearson Education,

For use with Data public classures and Other Objects Using Java

by Michael Main.

Some artwork in the presentation is used with permission from Presentation Task

Force

(copyright New Vision Technologies Inc) and Corel Gallery Clipart Catalog (copyright

Corel Corporation, 3G Graphics Inc, Archive Arts, Cartesia Software, Image Club

Graphics Inc, One Mile Up Inc, TechPool Studios, Totem Graphics Inc).

Students and in public classors who use Data public classures and Other Objects

Using Java are welcome

to use this presentation however they see fit, so long as this copyright notice remains

intact.

