A Quick, Incomplete Reference to Maple's Commands for Calculus

Command

 $Output,\ Remarks$

Graphics	1 /
plot(sin(x),x=-33);	Plots $\sin x$ on x-interval $[-3,3]$
plot(sin(x),x=-33,y=-22);	As above, except y-interval is specified as $[-2, 2]$
$plot(\{\sin(x),\cos(x)\},x=-33);$	Two functions, same axes
plot([4*cos(t),3*sin(t), t=02*Pi]);	Plots parametric equations on given interval
<pre>plot([1+cos(t), t, t=0Pi], coords=polar);</pre>	Plots upper half of cardiod
plot3d(cos(x^2+y^2),x=-33,y=-33);	Plots 3D surface
with(plots);	Loads the plots library
Algebra, Functions, Limits f:=x->(x+3)^2 +1;	Defines $f(x) = (x+3)^2 + 1$. See ?operators[functional]
g:=x->exp(x);	Defines $g(x) = e^x$
expand(f(x));	Multiplies out the rule for f
factor(");	Factors preceding output
f(2);	Evaluates f at 2
limit(f(x),x=1);	Evaluates limit of f as $x \to 1$
TIMIC(I(A), A-I),	Evaluates fillit of j as x / 1
Derivatives and Integrals	
D(f);	Derivative of f
g:=D(f);	Defines g as derivative of f
g:=(D@@3)(f);	Defines g as third derivative of f
D[i](f);	Partial derivative of f with respect to i th variable
<pre>int(f(x),x);</pre>	An antiderivative of f with respect to x
int(f(x),x=03);	Definite integral from 0 to 3
<pre>int(f(x),x=1infinity);</pre>	Improper integral
Sums, Sequences, and Series	
A:=seq(1/i,i=150);	Finite sequence $A = (1, 1/2, 1/3, \dots, 1/50)$
A[23];	23rd term of sequence A
sum(1/i,i=150);	$1 + 1/2 + 1/3 + \ldots + 1/50$
limit(2*i^2/(3*i^2+1),i=infinity);	Limit of a sequence
taylor(f(x),x=2,7);	7th order Taylor polynomial for f around 2
<pre>P:=convert(",polynom);</pre>	Defines P as Taylor polynomial from previous output
Q:=unapply(P,x);	Turns expression P into function $Q(x)$
series($\sin(x)/(x-1), x=1,8$);	Series expansion, Taylor series at $x = 1$ undefined
Student Library for Calculus	
with(student);	Loads the student library
<pre>leftbox(f(x),x=17,6,color=red);</pre>	Plots f with 6 rectangles below curve
leftsum(f(x),x=17,6);	Formal Riemann sum for f , 6 subintervals
value(");	Evaluates preceding output, here the sum
evalf("");	Decimal approximation to 2d previous output
	T. T

Notes:

- 1. This reference is very incomplete; it barely scratches the surface.
- 2. To learn more about a particular command, type ?commandname; or choose Topic Search under the Help menu at the top of the screen.
- 3. To learn what commands match a particular concept choose Full Text Search under the Help menu at the top of the screen.
- 4. Single, double, and triple quotes (", "", """) refer to first, second, and third previous output, respectively.