Input and Output

Bird's-eye view. A Java program takes input values
from the command line and prints a string of characters
as output. By default, both command-line input and
standard output are associated with the application that
takes commands (the one in which you have been
typing thejava and javac commands). We use the
generic term terminal window to refer to this application.)
Here are some instructions for using the command line andand dranving
on your system. [Windows - Mac - Linux]

A bird’s-eye view of a Java program (revisited)

e Command-line input. All classes have a main () method that takes a stringarray as argument.
That array is the sequence of command-line arguments that we type, provided to Java by the
operating system. By convention, both Java and the operating system process the arguments as
strings, so if we intend for an argument to be a number, we use a method such
asInteger.parselnt () to convert it from string to the appropriate type.

e Standard output. To print output values in our programs, we have been
usingsystem.out.println (). Java sends the results to an abstract stream of characters known
as standard output. By default, the operating system connects standard output to the terminal
window - all of the output in our programs so far has been appearing in the terminal window.

Input and Output

Redirection and piping. For many applications, typing input data as a standard input stream from the
terminal window is untenable because doing so limits our program's processing power by the amount of
data that we can type. Similarly, we often want to save the information printed on the standard output
stream for later use. We can use operating system mechanisms to address both issues.

* Redirecting standard output to a file. By adding a simple directive to the command that invokes a
program, we can redirect its standard output to a file, for permanent storage or for input to some
other program at a later time. For example, the command

java RandomSeq 1000 > data.txt

Random5eq

L* data.txt
standard ourput

Redirecting standard output to a file

specifies that the standard output stream is not to be printed in the terminal window, but instead is
to be written to a text file nameddata.txt. Each call

tostdout.print () orstdout.println () appends text at the end of that file. In this example, the
end result is a file that contains 1,000 random values. No output appears in the terminal window: it
goes directly into the file named after the > symbol. Thus, we can save away information for later
retrieval.

e Redirecting standard output from a file. Similarly, we can redirect standard input so
that stdIn reads data from a file instead of the terminal application. For example, the command

java Average < data.txt
data. txt

—P'-I standard inpu 3

Average

Redirecting from a file to standard input

reads a sequence of numbers from the filedata. txt and computes their average value.
Specifically, the < symbol is a directive to implement the standard input stream by reading from the
fledata.txt instead of by waiting for the user to type something into the terminal window. When
the program calls stdIn.readDouble (), the operating system reads the value from the file. This
facility to redirect standard input from a file enables us to process huge amounts of data from any
source with our programs, limited only by the size of the files that we can store.

e Connecting two programs.The most flexible way to implement the standard input and standard
output abstractions is to specify that they are implemented by our own programs! This mechanism
is called piping. For example, the following command

Input and Output

java RandomSeq 1000 | java Average

Random5eq

|_"' standard output —=| standard input —*

Average

Piping the output of one program o the input of another

specifies that the standard output for RandomSeq and the standard input stream for Average are
the samestream. That is, the result has the same effect as the following sequence of commands

ava RandomSeqg 1000 > data.txt

53
% java Average < data.txt

butthe file data.txt is not needed.

Filters. For many common tasks, it is convenient to think of each program as a filter that converts
a standard input stream to a standard output stream in some way, with piping as the command
mechanism to connect programs together. For example,MovingAverage.java takes a command-
line argument N and prints on standard output a stream of numbers where each number in the
output stream is the average of the N numbers starting at the corresponding position in the
standard input stream.

Your operating system also provides a number of filters. For example, the sort filter puts the lines
on standard input in sorted order:

o

java RandomSeqg 5 | sort
.035813305516568916
.14306638757584322
.348292877655532103
.5761644592016527
.9795908813988247

O O O O O

Another useful filter is more, which reads data from standard input and displays it in your terminal
window one screenful at a time. For example, if you type

% java RandomSeq 1000 | more

°

you will see as many numbers as fit in your terminal window, but more will wait for you to hit the
space bar before displaying each succeeding screenful.

