
DrJava Primer

Welcome to UPenn's DrJava primer. This guide is intended to get you used to the basics of using the
DrJava IDE (Integrated Development Environment).

1. Running DrJava and Setting Preferences

First, make sure you have properly installed DrJava (and the DJK). If you need to install one or both,
and/or if you need to show DrJava where to find tools.jar , see these instructions.

Once it's installed, DrJava appears as a big J icon (right) and you should be
able to open it like any other application. at UPenn: In the labs, the DrJava
icon may be on the desktop, or under the SEAS menu or programming menu.

We highly suggest that you "turn on line numbers"; this makes debugging
much easier. Select Edit > Preferences, click on Display Options at left, and
check Show All Line Numbers. We suggest that you do this on both a lab computer as well as on
your home computer (if you have one).

2. Anatomy of the IDE

The DrJava window is divided into three
panes:

Top right: the Editing pane (or
"Definitions Pane"), where you will
create and edit Java classes.
Top left: list of Open Files
The bottom has 3 tabs: the
Interactions Pane, where you can
interactively type code and get
feedback. We will start working here.
The other tabs are for Compiler
Output (where bugs in the code are
reported) and the Console (which
shows text output of a program).

The toolbar at the top of the window contains standard editing buttons (opening, closing, saving
files; copy, paste, undo; find), as well as Java-specific functions. Of the Java-specific ones, you'll
mostly be using Compile — to compile your source code into bytecode — and reset — to reset the
interactions pane so you have a clean slate for exercising your program.

Commands from the toolbar are also available under the application menus, along with many other
commands; text editing is under the Edit menu, and compile and reset are under Tools.

UPenn SEAS | DrJava Primer https://www.seas.upenn.edu/~cis1xx/resources/drjava/primer/

1 of 5

3. Getting Started with the Interactions Pane

It's easiest to learn DrJava by experimenting with the Interactions Pane. DrJava displays a prompt
which is the '>' character. You as the user will type in some information and hit ENTER or
RETURN. DrJava will attempt to evaluate the Java code you type in. In some cases DrJava will
display a response. If the code you type is invalid, DrJava will display an error message. Notice in
the the interactions below that if the user types in an arithmetic or logical (true/false) expression,
DrJava displays its value. Try the interactions shown below.

Sample Interactions (evaluating expressions)

Welcome to DrJava.
> 1+1
2
> 5*2+1
11
> 5*(2+1)
15
> (true || false) && true
true
> 5.0/2.0 == 2.5
true

Sample Interactions (executing variable declaration statements and assignment statements)

Java has variables (for example: x, y, and z). A Java variable is created with a variable declaration
statement (e.g. int x;). It is given a value with an assignment statement (e.g. x = 1;). The last
interaction below shows that a variable (in this case, y) can be declared and assigned a value in one
statement.

Welcome to DrJava.
> int x;
> x
0
> x = 1;
> x = 2 * x;
> x
2
> int y = 5;

Variables you create will remain defined until you quit and re-open DrJava or RESET the
interactions pane with the RESET button on the toolbar (or when compiling with automatically
resets the interactions).

For command input, note that:

Pressing the up arrow gets you the command you last typed. (THIS SAVES A LOT OF
TIME!!!)
Left- or Right-arrowing past the end of a line takes you to the other end.

UPenn SEAS | DrJava Primer https://www.seas.upenn.edu/~cis1xx/resources/drjava/primer/

2 of 5

You can only edit the bottom-most (current) line, although you can copy from past lines.

History Files

It is frequently useful to save your
interactions in a file so you (or someone
else) can run them again without having to
type them all in again. To try running such
a history file, download
sampleinteraction.hist , select Tools > Load Interactions History as Script, and select the history file.
Once loaded, you can click Next to get the next command from the script, and then either click
Execute or hit enter/return to execute it.

4. Creating Classes and Objects
Creating Classes and .java Source Files

To create a brand new class in DrJava, simply type code in to the Editing Pane. To save the code in a
file, click the SAVE button. DrJava will prompt you for a file name and suggest the same name as
the class, which you should accept. (Java has a rule that a class called X should be stored in a file
called X.java. DrJava will append ".java" on to the end of the file name.) Before accepting, you can
browse to find/create a folder to store the file in.

To open an existing file, select File->Open. You should only open a .java file (which contains
Java source code), not other files such as .class files (which contain compiled bytecode for a
class), .jar files (which potentially contain bytecode for multiple classes) , image
files, or any other type of files.

To start working on a new file, select File > New.

DrJava has syntax hilighting to make it easier to read code; it also auto-indents as you type or if you
select a section of code and hit tab.

While editing, useful commands are:

Safe, save all — you can save the current file with the save button, or select File > Save All to
save all open files.
Revert to saved — undo all changes since you last saved the current file.
Close — closes the (one) current file, selected in the 'open files' pane.
Compile, compile all — to run your code in the interactions pane, you first need to compile it
(with requires saving any changes). You can either compile only the current file with the
toolbar button, or compile all from the Tools menu.

Creating
Objects in
the

UPenn SEAS | DrJava Primer https://www.seas.upenn.edu/~cis1xx/resources/drjava/primer/

3 of 5

Interactions Pane (Example: Counters)

By using the interactions pane, you can create and use objects without needing a main method —
that is, without writing a full-blown Java application. This is great for quickly and easily testing your
classes!

Here's an example with a simple Counter object (Counter.java). Assuming you have typed the
Counter class in to the main frame and compiled it. You can now created instances of the Counter in
the interactions pane

Welcome to DrJava.
> Counter c = new Counter();
> c.getCount()
0
> c.incrementCount()
1
> c.incrementCount();
> c.incrementCount();
> c.getCount()
3
> c.reset();
> c.getCount()
0

5. Debugging

Compiler errors: The first level of debugging is
getting your code to compile. (Often the
compiler won't find some errors until you've
fixed others.) Compiler errors appear in the
Compiler Output tab of the bottom pane, and
are hilighted in the source code. (The line
number is also given.) Syntax hilighting also
helps with catching syntax errors — for
example, the reserved word false is turned
blue, but the typo fasle is not, since DrJava
doesn't recognize it. When compilation is
successful, DrJava displays "Compilation
completed."

Runtime errors: When running your code from the interactions pane, standard Java errors are
displayed. For example, you're likely at some point to see a NullPointerException :

> Example e = new Example();
> e.getString()
NullPointerException:
 at Example.getString(Example.java:21)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at sun.reflect.NativeMethodAccessorImpl.invoke

(NativeMethodAccessorImpl.java:39)
 at sun.reflect.DelegatingMethodAccessorImpl.invoke

UPenn SEAS | DrJava Primer https://www.seas.upenn.edu/~cis1xx/resources/drjava/primer/

4 of 5

(DelegatingMethodAccessorImpl.java:25)
 at java.lang.reflect.Method.invoke(Method.java:585)

Usually, the first line of the Exception's stack trace (bolded here) tells you the line number in your
code that generated the problem, from where you can start debugging. (In this case, it was line 21 of
Example.java , in the getString method.

Logic errors: Lastly, your code may appear to compile and run fine, but produce bad results due to
mis-programming. To combat this, it's best to test each method rigorously to be sure it's doing
exactly what you want and expect.

In tracking down logic errors, you may want to use DrJava's debug mode, available through
Debugger > Debug Mode, which lets you watch what your code is doing as it runs.

Written by Mark Fickett September 2006 for UPenn, based on D. Kaminsky's 2003 primer.

UPenn SEAS | DrJava Primer https://www.seas.upenn.edu/~cis1xx/resources/drjava/primer/

5 of 5

